blob: d12a2a6d6f76c8d36b3810ffd16f9d96621c0941 [file] [log] [blame]
/*
* Copyright (c) 2017-2018, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <adc.h>
#include <fsl_adc16.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_mcux_adc16);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
struct mcux_adc16_config {
ADC_Type *base;
void (*irq_config_func)(struct device *dev);
};
struct mcux_adc16_data {
struct device *dev;
struct adc_context ctx;
u16_t *buffer;
u16_t *repeat_buffer;
u32_t channels;
u8_t channel_id;
};
static int mcux_adc16_channel_setup(struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
u8_t channel_id = channel_cfg->channel_id;
if (channel_id > (ADC_SC1_ADCH_MASK >> ADC_SC1_ADCH_SHIFT)) {
LOG_ERR("Channel %d is not valid", channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid channel acquisition time");
return -EINVAL;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Invalid channel reference");
return -EINVAL;
}
return 0;
}
static int start_read(struct device *dev, const struct adc_sequence *sequence)
{
const struct mcux_adc16_config *config = dev->config->config_info;
struct mcux_adc16_data *data = dev->driver_data;
adc16_hardware_average_mode_t mode;
adc16_resolution_t resolution;
int error;
u32_t tmp32;
ADC_Type *base = config->base;
switch (sequence->resolution) {
case 8:
case 9:
resolution = kADC16_Resolution8or9Bit;
break;
case 10:
case 11:
resolution = kADC16_Resolution10or11Bit;
break;
case 12:
case 13:
resolution = kADC16_Resolution12or13Bit;
break;
#if defined(FSL_FEATURE_ADC16_MAX_RESOLUTION) && (FSL_FEATURE_ADC16_MAX_RESOLUTION >= 16U)
case 16:
resolution = kADC16_Resolution16Bit;
break;
#endif
default:
LOG_ERR("Invalid resolution");
return -EINVAL;
}
tmp32 = base->CFG1 & ~(ADC_CFG1_MODE_MASK);
tmp32 |= ADC_CFG1_MODE(resolution);
base->CFG1 = tmp32;
switch (sequence->oversampling) {
case 0:
mode = kADC16_HardwareAverageDisabled;
break;
case 2:
mode = kADC16_HardwareAverageCount4;
break;
case 3:
mode = kADC16_HardwareAverageCount8;
break;
case 4:
mode = kADC16_HardwareAverageCount16;
break;
case 5:
mode = kADC16_HardwareAverageCount32;
break;
default:
LOG_ERR("Invalid oversampling");
return -EINVAL;
}
ADC16_SetHardwareAverage(config->base, mode);
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int mcux_adc16_read(struct device *dev,
const struct adc_sequence *sequence)
{
struct mcux_adc16_data *data = dev->driver_data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int mcux_adc16_read_async(struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_adc16_data *data = dev->driver_data;
int error;
adc_context_lock(&data->ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static void mcux_adc16_start_channel(struct device *dev)
{
const struct mcux_adc16_config *config = dev->config->config_info;
struct mcux_adc16_data *data = dev->driver_data;
adc16_channel_config_t channel_config;
u32_t channel_group = 0U;
data->channel_id = find_lsb_set(data->channels) - 1;
LOG_DBG("Starting channel %d", data->channel_id);
#if defined(FSL_FEATURE_ADC16_HAS_DIFF_MODE) && FSL_FEATURE_ADC16_HAS_DIFF_MODE
channel_config.enableDifferentialConversion = false;
#endif
channel_config.enableInterruptOnConversionCompleted = true;
channel_config.channelNumber = data->channel_id;
ADC16_SetChannelConfig(config->base, channel_group, &channel_config);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_adc16_data *data =
CONTAINER_OF(ctx, struct mcux_adc16_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
mcux_adc16_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_adc16_data *data =
CONTAINER_OF(ctx, struct mcux_adc16_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void mcux_adc16_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct mcux_adc16_config *config = dev->config->config_info;
struct mcux_adc16_data *data = dev->driver_data;
ADC_Type *base = config->base;
u32_t channel_group = 0U;
u16_t result;
result = ADC16_GetChannelConversionValue(base, channel_group);
LOG_DBG("Finished channel %d. Result is 0x%04x",
data->channel_id, result);
*data->buffer++ = result;
data->channels &= ~BIT(data->channel_id);
if (data->channels) {
mcux_adc16_start_channel(dev);
} else {
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static int mcux_adc16_init(struct device *dev)
{
const struct mcux_adc16_config *config = dev->config->config_info;
struct mcux_adc16_data *data = dev->driver_data;
ADC_Type *base = config->base;
adc16_config_t adc_config;
ADC16_GetDefaultConfig(&adc_config);
#if CONFIG_ADC_MCUX_ADC16_VREF_DEFAULT
adc_config.referenceVoltageSource = kADC16_ReferenceVoltageSourceVref;
#else /* CONFIG_ADC_MCUX_ADC16_VREF_ALTERNATE */
adc_config.referenceVoltageSource = kADC16_ReferenceVoltageSourceValt;
#endif
#if CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_1
adc_config.clockDivider = kADC16_ClockDivider1;
#elif CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_2
adc_config.clockDivider = kADC16_ClockDivider2;
#elif CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_4
adc_config.clockDivider = kADC16_ClockDivider4;
#else /* CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_8 */
adc_config.clockDivider = kADC16_ClockDivider8;
#endif
ADC16_Init(base, &adc_config);
#if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && \
FSL_FEATURE_ADC16_HAS_CALIBRATION
ADC16_SetHardwareAverage(base, kADC16_HardwareAverageCount32);
ADC16_DoAutoCalibration(base);
#endif
ADC16_EnableHardwareTrigger(base, false);
config->irq_config_func(dev);
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_adc16_driver_api = {
.channel_setup = mcux_adc16_channel_setup,
.read = mcux_adc16_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_adc16_read_async,
#endif
};
#if CONFIG_ADC_0
static void mcux_adc16_config_func_0(struct device *dev);
static const struct mcux_adc16_config mcux_adc16_config_0 = {
.base = (ADC_Type *)DT_ADC_0_BASE_ADDRESS,
.irq_config_func = mcux_adc16_config_func_0,
};
static struct mcux_adc16_data mcux_adc16_data_0 = {
ADC_CONTEXT_INIT_TIMER(mcux_adc16_data_0, ctx),
ADC_CONTEXT_INIT_LOCK(mcux_adc16_data_0, ctx),
ADC_CONTEXT_INIT_SYNC(mcux_adc16_data_0, ctx),
};
DEVICE_AND_API_INIT(mcux_adc16_0, DT_ADC_0_NAME, &mcux_adc16_init,
&mcux_adc16_data_0, &mcux_adc16_config_0,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&mcux_adc16_driver_api);
static void mcux_adc16_config_func_0(struct device *dev)
{
IRQ_CONNECT(DT_ADC_0_IRQ, DT_ADC_0_IRQ_PRI,
mcux_adc16_isr, DEVICE_GET(mcux_adc16_0), 0);
irq_enable(DT_ADC_0_IRQ);
}
#endif /* CONFIG_ADC_0 */
#if CONFIG_ADC_1
static void mcux_adc16_config_func_1(struct device *dev);
static const struct mcux_adc16_config mcux_adc16_config_1 = {
.base = (ADC_Type *)DT_ADC_1_BASE_ADDRESS,
.irq_config_func = mcux_adc16_config_func_1,
};
static struct mcux_adc16_data mcux_adc16_data_1 = {
ADC_CONTEXT_INIT_TIMER(mcux_adc16_data_1, ctx),
ADC_CONTEXT_INIT_LOCK(mcux_adc16_data_1, ctx),
ADC_CONTEXT_INIT_SYNC(mcux_adc16_data_1, ctx),
};
DEVICE_AND_API_INIT(mcux_adc16_1, DT_ADC_1_NAME, &mcux_adc16_init,
&mcux_adc16_data_1, &mcux_adc16_config_1,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&mcux_adc16_driver_api);
static void mcux_adc16_config_func_1(struct device *dev)
{
IRQ_CONNECT(DT_ADC_1_IRQ, DT_ADC_1_IRQ_PRI,
mcux_adc16_isr, DEVICE_GET(mcux_adc16_1), 0);
irq_enable(DT_ADC_1_IRQ);
}
#endif /* CONFIG_ADC_1 */