| /* |
| * Copyright (c) 2024 MASSDRIVER EI (massdriver.space) |
| * Copyright (c) 2018-2023 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <limits.h> |
| |
| #include <zephyr/init.h> |
| #include <zephyr/devicetree.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/sys_clock.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/irq.h> |
| |
| #define DT_DRV_COMPAT riscv_machine_timer |
| |
| #define MTIME_REG DT_INST_REG_ADDR_BY_NAME(0, mtime) |
| #define MTIMECMP_REG DT_INST_REG_ADDR_BY_NAME(0, mtimecmp) |
| #define TIMER_IRQN DT_INST_IRQN(0) |
| |
| #define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| |
| /* the unsigned long cast limits divisions to native CPU register width */ |
| #define cycle_diff_t unsigned long |
| #define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
| |
| /* |
| * We have two constraints on the maximum number of cycles we can wait for. |
| * |
| * 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
| * |
| * 2) The number of cycles between two reports must fit in a cycle_diff_t |
| * variable before converting it to ticks. |
| * |
| * Then: |
| * |
| * 3) Pick the smallest between (1) and (2). |
| * |
| * 4) Take into account some room for the unavoidable IRQ servicing latency. |
| * Let's use 3/4 of the max range. |
| * |
| * Finally let's add the LSB value to the result so to clear out a bunch of |
| * consecutive set bits coming from the original max values to produce a |
| * nicer literal for assembly generation. |
| */ |
| #define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
| #define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
| #define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
| #define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
| #define CYCLES_MAX (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
| |
| static struct k_spinlock lock; |
| static uint64_t last_count; |
| static uint64_t last_ticks; |
| static uint32_t last_elapsed; |
| |
| #if defined(CONFIG_TEST) |
| const int32_t z_sys_timer_irq_for_test = TIMER_IRQN; |
| #endif |
| |
| static uintptr_t get_hart_mtimecmp(void) |
| { |
| return MTIMECMP_REG + (arch_proc_id() * 8); |
| } |
| |
| static void set_mtimecmp(uint64_t time) |
| { |
| #ifdef CONFIG_64BIT |
| *(volatile uint64_t *)get_hart_mtimecmp() = time; |
| #else |
| volatile uint32_t *r = (uint32_t *)get_hart_mtimecmp(); |
| |
| /* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit, |
| * but are NOT internally latched for multiword transfers. So |
| * we have to be careful about sequencing to avoid triggering |
| * spurious interrupts: always set the high word to a max |
| * value first. |
| */ |
| r[1] = 0xffffffff; |
| r[0] = (uint32_t)time; |
| r[1] = (uint32_t)(time >> 32); |
| #endif |
| } |
| |
| static uint64_t mtime(void) |
| { |
| #ifdef CONFIG_64BIT |
| return *(volatile uint64_t *)MTIME_REG; |
| #else |
| volatile uint32_t *r = (uint32_t *)MTIME_REG; |
| uint32_t lo, hi; |
| |
| /* Likewise, must guard against rollover when reading */ |
| do { |
| hi = r[1]; |
| lo = r[0]; |
| } while (r[1] != hi); |
| |
| return (((uint64_t)hi) << 32) | lo; |
| #endif |
| } |
| |
| static void timer_isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| uint64_t now = mtime(); |
| uint64_t dcycles = now - last_count; |
| uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK; |
| |
| last_count += (cycle_diff_t)dticks * CYC_PER_TICK; |
| last_ticks += dticks; |
| last_elapsed = 0; |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| uint64_t next = last_count + CYC_PER_TICK; |
| |
| set_mtimecmp(next); |
| } |
| |
| k_spin_unlock(&lock, key); |
| sys_clock_announce(dticks); |
| } |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| ARG_UNUSED(idle); |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t cyc; |
| |
| if (ticks == K_TICKS_FOREVER) { |
| cyc = last_count + CYCLES_MAX; |
| } else { |
| cyc = (last_ticks + last_elapsed + ticks) * CYC_PER_TICK; |
| if ((cyc - last_count) > CYCLES_MAX) { |
| cyc = last_count + CYCLES_MAX; |
| } |
| } |
| set_mtimecmp(cyc); |
| |
| k_spin_unlock(&lock, key); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t now = mtime(); |
| uint64_t dcycles = now - last_count; |
| uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK; |
| |
| last_elapsed = dticks; |
| k_spin_unlock(&lock, key); |
| return dticks; |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| return ((uint32_t)mtime()) << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER; |
| } |
| |
| uint64_t sys_clock_cycle_get_64(void) |
| { |
| return mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER; |
| } |
| |
| static int sys_clock_driver_init(void) |
| { |
| IRQ_CONNECT(TIMER_IRQN, 0, timer_isr, NULL, 0); |
| last_ticks = mtime() / CYC_PER_TICK; |
| last_count = last_ticks * CYC_PER_TICK; |
| set_mtimecmp(last_count + CYC_PER_TICK); |
| irq_enable(TIMER_IRQN); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| void smp_timer_init(void) |
| { |
| set_mtimecmp(last_count + CYC_PER_TICK); |
| irq_enable(TIMER_IRQN); |
| } |
| #endif |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |