| /* |
| * Copyright (c) 2022 Meta Platforms, Inc. and its affiliates. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <errno.h> |
| |
| #include <zephyr/drivers/i3c.h> |
| #include <zephyr/init.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/sys/byteorder.h> |
| #include <zephyr/sys/sys_io.h> |
| #include <zephyr/sys/util.h> |
| |
| #define DEV_ID 0x0 |
| #define DEV_ID_I3C_MASTER 0x5034 |
| |
| #define CONF_STATUS0 0x4 |
| #define CONF_STATUS0_CMDR_DEPTH(x) (4 << (((x)&GENMASK(31, 29)) >> 29)) |
| #define CONF_STATUS0_ECC_CHK BIT(28) |
| #define CONF_STATUS0_INTEG_CHK BIT(27) |
| #define CONF_STATUS0_CSR_DAP_CHK BIT(26) |
| #define CONF_STATUS0_TRANS_TOUT_CHK BIT(25) |
| #define CONF_STATUS0_PROT_FAULTS_CHK BIT(24) |
| #define CONF_STATUS0_GPO_NUM(x) (((x)&GENMASK(23, 16)) >> 16) |
| #define CONF_STATUS0_GPI_NUM(x) (((x)&GENMASK(15, 8)) >> 8) |
| #define CONF_STATUS0_IBIR_DEPTH(x) (4 << (((x)&GENMASK(7, 6)) >> 7)) |
| #define CONF_STATUS0_SUPPORTS_DDR BIT(5) |
| #define CONF_STATUS0_SEC_MASTER BIT(4) |
| #define CONF_STATUS0_DEVS_NUM(x) ((x)&GENMASK(3, 0)) |
| |
| #define CONF_STATUS1 0x8 |
| #define CONF_STATUS1_IBI_HW_RES(x) ((((x)&GENMASK(31, 28)) >> 28) + 1) |
| #define CONF_STATUS1_CMD_DEPTH(x) (4 << (((x)&GENMASK(27, 26)) >> 26)) |
| #define CONF_STATUS1_SLVDDR_RX_DEPTH(x) (8 << (((x)&GENMASK(25, 21)) >> 21)) |
| #define CONF_STATUS1_SLVDDR_TX_DEPTH(x) (8 << (((x)&GENMASK(20, 16)) >> 16)) |
| #define CONF_STATUS1_IBI_DEPTH(x) (2 << (((x)&GENMASK(12, 10)) >> 10)) |
| #define CONF_STATUS1_RX_DEPTH(x) (8 << (((x)&GENMASK(9, 5)) >> 5)) |
| #define CONF_STATUS1_TX_DEPTH(x) (8 << ((x)&GENMASK(4, 0))) |
| |
| #define REV_ID 0xc |
| #define REV_ID_VID(id) (((id)&GENMASK(31, 20)) >> 20) |
| #define REV_ID_PID(id) (((id)&GENMASK(19, 8)) >> 8) |
| #define REV_ID_REV(id) ((id)&GENMASK(7, 0)) |
| #define REV_ID_VERSION(m, n) ((m << 5) | (n)) |
| #define REV_ID_REV_MAJOR(id) (((id)&GENMASK(7, 5)) >> 5) |
| #define REV_ID_REV_MINOR(id) ((id)&GENMASK(4, 0)) |
| |
| #define CTRL 0x10 |
| #define CTRL_DEV_EN BIT(31) |
| #define CTRL_HALT_EN BIT(30) |
| #define CTRL_MCS BIT(29) |
| #define CTRL_MCS_EN BIT(28) |
| #define CTRL_I3C_11_SUPP BIT(26) |
| #define CTRL_THD_DELAY(x) (((x) << 24) & GENMASK(25, 24)) |
| #define CTRL_HJ_DISEC BIT(8) |
| #define CTRL_MST_ACK BIT(7) |
| #define CTRL_HJ_ACK BIT(6) |
| #define CTRL_HJ_INIT BIT(5) |
| #define CTRL_MST_INIT BIT(4) |
| #define CTRL_AHDR_OPT BIT(3) |
| #define CTRL_PURE_BUS_MODE 0 |
| #define CTRL_MIXED_FAST_BUS_MODE 2 |
| #define CTRL_MIXED_SLOW_BUS_MODE 3 |
| #define CTRL_BUS_MODE_MASK GENMASK(1, 0) |
| #define THD_DELAY_MAX 3 |
| |
| #define PRESCL_CTRL0 0x14 |
| #define PRESCL_CTRL0_I2C(x) ((x) << 16) |
| #define PRESCL_CTRL0_I3C(x) (x) |
| #define PRESCL_CTRL0_MAX GENMASK(9, 0) |
| |
| #define PRESCL_CTRL1 0x18 |
| #define PRESCL_CTRL1_PP_LOW_MASK GENMASK(15, 8) |
| #define PRESCL_CTRL1_PP_LOW(x) ((x) << 8) |
| #define PRESCL_CTRL1_OD_LOW_MASK GENMASK(7, 0) |
| #define PRESCL_CTRL1_OD_LOW(x) (x) |
| |
| #define MST_IER 0x20 |
| #define MST_IDR 0x24 |
| #define MST_IMR 0x28 |
| #define MST_ICR 0x2c |
| #define MST_ISR 0x30 |
| #define MST_INT_HALTED BIT(18) |
| #define MST_INT_MR_DONE BIT(17) |
| #define MST_INT_IMM_COMP BIT(16) |
| #define MST_INT_TX_THR BIT(15) |
| #define MST_INT_TX_OVF BIT(14) |
| #define MST_INT_IBID_THR BIT(12) |
| #define MST_INT_IBID_UNF BIT(11) |
| #define MST_INT_IBIR_THR BIT(10) |
| #define MST_INT_IBIR_UNF BIT(9) |
| #define MST_INT_IBIR_OVF BIT(8) |
| #define MST_INT_RX_THR BIT(7) |
| #define MST_INT_RX_UNF BIT(6) |
| #define MST_INT_CMDD_EMP BIT(5) |
| #define MST_INT_CMDD_THR BIT(4) |
| #define MST_INT_CMDD_OVF BIT(3) |
| #define MST_INT_CMDR_THR BIT(2) |
| #define MST_INT_CMDR_UNF BIT(1) |
| #define MST_INT_CMDR_OVF BIT(0) |
| #define MST_INT_MASK GENMASK(18, 0) |
| |
| #define MST_STATUS0 0x34 |
| #define MST_STATUS0_IDLE BIT(18) |
| #define MST_STATUS0_HALTED BIT(17) |
| #define MST_STATUS0_MASTER_MODE BIT(16) |
| #define MST_STATUS0_TX_FULL BIT(13) |
| #define MST_STATUS0_IBID_FULL BIT(12) |
| #define MST_STATUS0_IBIR_FULL BIT(11) |
| #define MST_STATUS0_RX_FULL BIT(10) |
| #define MST_STATUS0_CMDD_FULL BIT(9) |
| #define MST_STATUS0_CMDR_FULL BIT(8) |
| #define MST_STATUS0_TX_EMP BIT(5) |
| #define MST_STATUS0_IBID_EMP BIT(4) |
| #define MST_STATUS0_IBIR_EMP BIT(3) |
| #define MST_STATUS0_RX_EMP BIT(2) |
| #define MST_STATUS0_CMDD_EMP BIT(1) |
| #define MST_STATUS0_CMDR_EMP BIT(0) |
| |
| #define CMDR 0x38 |
| #define CMDR_NO_ERROR 0 |
| #define CMDR_DDR_PREAMBLE_ERROR 1 |
| #define CMDR_DDR_PARITY_ERROR 2 |
| #define CMDR_DDR_RX_FIFO_OVF 3 |
| #define CMDR_DDR_TX_FIFO_UNF 4 |
| #define CMDR_M0_ERROR 5 |
| #define CMDR_M1_ERROR 6 |
| #define CMDR_M2_ERROR 7 |
| #define CMDR_MST_ABORT 8 |
| #define CMDR_NACK_RESP 9 |
| #define CMDR_INVALID_DA 10 |
| #define CMDR_DDR_DROPPED 11 |
| #define CMDR_ERROR(x) (((x)&GENMASK(27, 24)) >> 24) |
| #define CMDR_XFER_BYTES(x) (((x)&GENMASK(19, 8)) >> 8) |
| #define CMDR_CMDID_HJACK_DISEC 0xfe |
| #define CMDR_CMDID_HJACK_ENTDAA 0xff |
| #define CMDR_CMDID(x) ((x)&GENMASK(7, 0)) |
| |
| #define IBIR 0x3c |
| #define IBIR_ACKED BIT(12) |
| #define IBIR_SLVID(x) (((x)&GENMASK(11, 8)) >> 8) |
| #define IBIR_SLVID_INV 0xF |
| #define IBIR_ERROR BIT(7) |
| #define IBIR_XFER_BYTES(x) (((x)&GENMASK(6, 2)) >> 2) |
| #define IBIR_TYPE_IBI 0 |
| #define IBIR_TYPE_HJ 1 |
| #define IBIR_TYPE_MR 2 |
| #define IBIR_TYPE(x) ((x)&GENMASK(1, 0)) |
| |
| #define SLV_IER 0x40 |
| #define SLV_IDR 0x44 |
| #define SLV_IMR 0x48 |
| #define SLV_ICR 0x4c |
| #define SLV_ISR 0x50 |
| #define SLV_INT_DEFSLVS BIT(21) |
| #define SLV_INT_TM BIT(20) |
| #define SLV_INT_ERROR BIT(19) |
| #define SLV_INT_EVENT_UP BIT(18) |
| #define SLV_INT_HJ_DONE BIT(17) |
| #define SLV_INT_MR_DONE BIT(16) |
| #define SLV_INT_DA_UPD BIT(15) |
| #define SLV_INT_SDR_FAIL BIT(14) |
| #define SLV_INT_DDR_FAIL BIT(13) |
| #define SLV_INT_M_RD_ABORT BIT(12) |
| #define SLV_INT_DDR_RX_THR BIT(11) |
| #define SLV_INT_DDR_TX_THR BIT(10) |
| #define SLV_INT_SDR_RX_THR BIT(9) |
| #define SLV_INT_SDR_TX_THR BIT(8) |
| #define SLV_INT_DDR_RX_UNF BIT(7) |
| #define SLV_INT_DDR_TX_OVF BIT(6) |
| #define SLV_INT_SDR_RX_UNF BIT(5) |
| #define SLV_INT_SDR_TX_OVF BIT(4) |
| #define SLV_INT_DDR_RD_COMP BIT(3) |
| #define SLV_INT_DDR_WR_COMP BIT(2) |
| #define SLV_INT_SDR_RD_COMP BIT(1) |
| #define SLV_INT_SDR_WR_COMP BIT(0) |
| #define SLV_INT_MASK GENMASK(20, 0) |
| |
| #define SLV_STATUS0 0x54 |
| #define SLV_STATUS0_REG_ADDR(s) (((s)&GENMASK(23, 16)) >> 16) |
| #define SLV_STATUS0_XFRD_BYTES(s) ((s)&GENMASK(15, 0)) |
| |
| #define SLV_STATUS1 0x58 |
| #define SLV_STATUS1_AS(s) (((s)&GENMASK(21, 20)) >> 20) |
| #define SLV_STATUS1_VEN_TM BIT(19) |
| #define SLV_STATUS1_HJ_DIS BIT(18) |
| #define SLV_STATUS1_MR_DIS BIT(17) |
| #define SLV_STATUS1_PROT_ERR BIT(16) |
| #define SLV_STATUS1_DA(s) (((s)&GENMASK(15, 9)) >> 9) |
| #define SLV_STATUS1_HAS_DA BIT(8) |
| #define SLV_STATUS1_DDR_RX_FULL BIT(7) |
| #define SLV_STATUS1_DDR_TX_FULL BIT(6) |
| #define SLV_STATUS1_DDR_RX_EMPTY BIT(5) |
| #define SLV_STATUS1_DDR_TX_EMPTY BIT(4) |
| #define SLV_STATUS1_SDR_RX_FULL BIT(3) |
| #define SLV_STATUS1_SDR_TX_FULL BIT(2) |
| #define SLV_STATUS1_SDR_RX_EMPTY BIT(1) |
| #define SLV_STATUS1_SDR_TX_EMPTY BIT(0) |
| |
| #define CMD0_FIFO 0x60 |
| #define CMD0_FIFO_IS_DDR BIT(31) |
| #define CMD0_FIFO_IS_CCC BIT(30) |
| #define CMD0_FIFO_BCH BIT(29) |
| #define XMIT_BURST_STATIC_SUBADDR 0 |
| #define XMIT_SINGLE_INC_SUBADDR 1 |
| #define XMIT_SINGLE_STATIC_SUBADDR 2 |
| #define XMIT_BURST_WITHOUT_SUBADDR 3 |
| #define CMD0_FIFO_PRIV_XMIT_MODE(m) ((m) << 27) |
| #define CMD0_FIFO_SBCA BIT(26) |
| #define CMD0_FIFO_RSBC BIT(25) |
| #define CMD0_FIFO_IS_10B BIT(24) |
| #define CMD0_FIFO_PL_LEN(l) ((l) << 12) |
| #define CMD0_FIFO_PL_LEN_MAX 4095 |
| #define CMD0_FIFO_DEV_ADDR(a) ((a) << 1) |
| #define CMD0_FIFO_RNW BIT(0) |
| |
| #define CMD1_FIFO 0x64 |
| #define CMD1_FIFO_CMDID(id) ((id) << 24) |
| #define CMD1_FIFO_CSRADDR(a) (a) |
| #define CMD1_FIFO_CCC(id) (id) |
| |
| #define TX_FIFO 0x68 |
| |
| #define IMD_CMD0 0x70 |
| #define IMD_CMD0_PL_LEN(l) ((l) << 12) |
| #define IMD_CMD0_DEV_ADDR(a) ((a) << 1) |
| #define IMD_CMD0_RNW BIT(0) |
| |
| #define IMD_CMD1 0x74 |
| #define IMD_CMD1_CCC(id) (id) |
| |
| #define IMD_DATA 0x78 |
| #define RX_FIFO 0x80 |
| #define IBI_DATA_FIFO 0x84 |
| #define SLV_DDR_TX_FIFO 0x88 |
| #define SLV_DDR_RX_FIFO 0x8c |
| |
| #define CMD_IBI_THR_CTRL 0x90 |
| #define IBIR_THR(t) ((t) << 24) |
| #define CMDR_THR(t) ((t) << 16) |
| #define CMDR_THR_MASK (GENMASK(20, 16)) |
| #define IBI_THR(t) ((t) << 8) |
| #define CMD_THR(t) (t) |
| |
| #define TX_RX_THR_CTRL 0x94 |
| #define RX_THR(t) ((t) << 16) |
| #define RX_THR_MASK (GENMASK(31, 16)) |
| #define TX_THR(t) (t) |
| #define TX_THR_MASK (GENMASK(15, 0)) |
| |
| #define SLV_DDR_TX_RX_THR_CTRL 0x98 |
| #define SLV_DDR_RX_THR(t) ((t) << 16) |
| #define SLV_DDR_TX_THR(t) (t) |
| |
| #define FLUSH_CTRL 0x9c |
| #define FLUSH_IBI_RESP BIT(23) |
| #define FLUSH_CMD_RESP BIT(22) |
| #define FLUSH_SLV_DDR_RX_FIFO BIT(22) |
| #define FLUSH_SLV_DDR_TX_FIFO BIT(21) |
| #define FLUSH_IMM_FIFO BIT(20) |
| #define FLUSH_IBI_FIFO BIT(19) |
| #define FLUSH_RX_FIFO BIT(18) |
| #define FLUSH_TX_FIFO BIT(17) |
| #define FLUSH_CMD_FIFO BIT(16) |
| |
| #define TTO_PRESCL_CTRL0 0xb0 |
| #define TTO_PRESCL_CTRL0_PRESCL_I2C(x) ((x) << 16) |
| #define TTO_PRESCL_CTRL0_PRESCL_I3C(x) (x) |
| |
| #define TTO_PRESCL_CTRL1 0xb4 |
| #define TTO_PRESCL_CTRL1_DIVB(x) ((x) << 16) |
| #define TTO_PRESCL_CTRL1_DIVA(x) (x) |
| #define TTO_PRESCL_CTRL1_PP_LOW(x) ((x) << 8) |
| #define TTO_PRESCL_CTRL1_OD_LOW(x) (x) |
| |
| #define DEVS_CTRL 0xb8 |
| #define DEVS_CTRL_DEV_CLR_SHIFT 16 |
| #define DEVS_CTRL_DEV_CLR_ALL GENMASK(31, 16) |
| #define DEVS_CTRL_DEV_CLR(dev) BIT(16 + (dev)) |
| #define DEVS_CTRL_DEV_ACTIVE(dev) BIT(dev) |
| #define DEVS_CTRL_DEVS_ACTIVE_MASK GENMASK(15, 0) |
| #define MAX_DEVS 16 |
| |
| #define DEV_ID_RR0(d) (0xc0 + ((d)*0x10)) |
| #define DEV_ID_RR0_LVR_EXT_ADDR BIT(11) |
| #define DEV_ID_RR0_HDR_CAP BIT(10) |
| #define DEV_ID_RR0_IS_I3C BIT(9) |
| #define DEV_ID_RR0_DEV_ADDR_MASK (GENMASK(6, 0) | GENMASK(15, 13)) |
| #define DEV_ID_RR0_SET_DEV_ADDR(a) (((a)&GENMASK(6, 0)) | (((a)&GENMASK(9, 7)) << 6)) |
| #define DEV_ID_RR0_GET_DEV_ADDR(x) ((((x) >> 1) & GENMASK(6, 0)) | (((x) >> 6) & GENMASK(9, 7))) |
| |
| #define DEV_ID_RR1(d) (0xc4 + ((d)*0x10)) |
| #define DEV_ID_RR1_PID_MSB(pid) (pid) |
| |
| #define DEV_ID_RR2(d) (0xc8 + ((d)*0x10)) |
| #define DEV_ID_RR2_PID_LSB(pid) ((pid) << 16) |
| #define DEV_ID_RR2_BCR(bcr) ((bcr) << 8) |
| #define DEV_ID_RR2_DCR(dcr) (dcr) |
| #define DEV_ID_RR2_LVR(lvr) (lvr) |
| |
| #define SIR_MAP(x) (0x180 + ((x)*4)) |
| #define SIR_MAP_DEV_REG(d) SIR_MAP((d) / 2) |
| #define SIR_MAP_DEV_SHIFT(d, fs) ((fs) + (((d) % 2) ? 16 : 0)) |
| #define SIR_MAP_DEV_CONF_MASK(d) (GENMASK(15, 0) << (((d) % 2) ? 16 : 0)) |
| #define SIR_MAP_DEV_CONF(d, c) ((c) << (((d) % 2) ? 16 : 0)) |
| #define DEV_ROLE_SLAVE 0 |
| #define DEV_ROLE_MASTER 1 |
| #define SIR_MAP_DEV_ROLE(role) ((role) << 14) |
| #define SIR_MAP_DEV_SLOW BIT(13) |
| #define SIR_MAP_DEV_PL(l) ((l) << 8) |
| #define SIR_MAP_PL_MAX GENMASK(4, 0) |
| #define SIR_MAP_DEV_DA(a) ((a) << 1) |
| #define SIR_MAP_DEV_ACK BIT(0) |
| |
| #define GPIR_WORD(x) (0x200 + ((x)*4)) |
| #define GPI_REG(val, id) (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0)) |
| |
| #define GPOR_WORD(x) (0x220 + ((x)*4)) |
| #define GPO_REG(val, id) (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0)) |
| |
| #define ASF_INT_STATUS 0x300 |
| #define ASF_INT_RAW_STATUS 0x304 |
| #define ASF_INT_MASK 0x308 |
| #define ASF_INT_TEST 0x30c |
| #define ASF_INT_FATAL_SELECT 0x310 |
| #define ASF_INTEGRITY_ERR BIT(6) |
| #define ASF_PROTOCOL_ERR BIT(5) |
| #define ASF_TRANS_TIMEOUT_ERR BIT(4) |
| #define ASF_CSR_ERR BIT(3) |
| #define ASF_DAP_ERR BIT(2) |
| #define ASF_SRAM_UNCORR_ERR BIT(1) |
| #define ASF_SRAM_CORR_ERR BIT(0) |
| |
| #define ASF_SRAM_CORR_FAULT_STATUS 0x320 |
| #define ASF_SRAM_UNCORR_FAULT_STATUS 0x324 |
| #define ASF_SRAM_CORR_FAULT_INSTANCE(x) ((x) >> 24) |
| #define ASF_SRAM_CORR_FAULT_ADDR(x) ((x)&GENMASK(23, 0)) |
| |
| #define ASF_SRAM_FAULT_STATS 0x328 |
| #define ASF_SRAM_FAULT_UNCORR_STATS(x) ((x) >> 16) |
| #define ASF_SRAM_FAULT_CORR_STATS(x) ((x)&GENMASK(15, 0)) |
| |
| #define ASF_TRANS_TOUT_CTRL 0x330 |
| #define ASF_TRANS_TOUT_EN BIT(31) |
| #define ASF_TRANS_TOUT_VAL(x) (x) |
| |
| #define ASF_TRANS_TOUT_FAULT_MASK 0x334 |
| #define ASF_TRANS_TOUT_FAULT_STATUS 0x338 |
| #define ASF_TRANS_TOUT_FAULT_APB BIT(3) |
| #define ASF_TRANS_TOUT_FAULT_SCL_LOW BIT(2) |
| #define ASF_TRANS_TOUT_FAULT_SCL_HIGH BIT(1) |
| #define ASF_TRANS_TOUT_FAULT_FSCL_HIGH BIT(0) |
| |
| #define ASF_PROTO_FAULT_MASK 0x340 |
| #define ASF_PROTO_FAULT_STATUS 0x344 |
| #define ASF_PROTO_FAULT_SLVSDR_RD_ABORT BIT(31) |
| #define ASF_PROTO_FAULT_SLVDDR_FAIL BIT(30) |
| #define ASF_PROTO_FAULT_S(x) BIT(16 + (x)) |
| #define ASF_PROTO_FAULT_MSTSDR_RD_ABORT BIT(15) |
| #define ASF_PROTO_FAULT_MSTDDR_FAIL BIT(14) |
| #define ASF_PROTO_FAULT_M(x) BIT(x) |
| |
| /******************************************************************************* |
| * Local Constants Definition |
| ******************************************************************************/ |
| |
| /* TODO: this needs to be configurable in the dts...somehow */ |
| #define I3C_CONTROLLER_ADDR 0x08 |
| |
| /* Maximum i3c devices that the IP can be built with */ |
| #define I3C_MAX_DEVS 11 |
| #define I3C_MAX_MSGS 10 |
| #define I3C_SIR_DEFAULT_DA 0x7F |
| #define I3C_MAX_IDLE_CANCEL_WAIT_RETRIES 50 |
| #define I3C_PRESCL_REG_SCALE (4) |
| #define I2C_PRESCL_REG_SCALE (5) |
| #define I3C_WAIT_FOR_IDLE_STATE_US 100 |
| #define I3C_IDLE_TIMEOUT_CYC \ |
| (I3C_WAIT_FOR_IDLE_STATE_US * (sys_clock_hw_cycles_per_sec() / USEC_PER_SEC)) |
| |
| /* Target T_LOW period in open-drain mode. */ |
| #define I3C_BUS_TLOW_OD_MIN_NS 200 |
| |
| /* MIPI I3C v1.1.1 Spec defines tsco max as 12ns */ |
| #define I3C_TSCO_DEFAULT_NS 10 |
| |
| /* Interrupt thresholds. */ |
| /* command response fifo threshold */ |
| #define I3C_CMDR_THR 1 |
| /* command tx fifo threshold - unused */ |
| #define I3C_CMDD_THR 1 |
| /* in-band-interrupt data fifo threshold - unused */ |
| #define I3C_IBID_THR 1 |
| /* in-band-interrupt response queue threshold */ |
| #define I3C_IBIR_THR 1 |
| /* tx data threshold - unused */ |
| #define I3C_TX_THR 1 |
| |
| #define LOG_MODULE_NAME I3C_CADENCE |
| LOG_MODULE_REGISTER(I3C_CADENCE, CONFIG_I3C_CADENCE_LOG_LEVEL); |
| |
| /******************************************************************************* |
| * Local Types Definition |
| ******************************************************************************/ |
| |
| /** Describes peripheral HW configuration determined from CONFx registers. */ |
| struct cdns_i3c_hw_config { |
| /* The maxiumum command queue depth. */ |
| uint32_t cmd_mem_depth; |
| /* The maxiumum command response queue depth. */ |
| uint32_t cmdr_mem_depth; |
| /* The maximum RX FIFO depth. */ |
| uint32_t rx_mem_depth; |
| /* The maximum TX FIFO depth. */ |
| uint32_t tx_mem_depth; |
| /* The maximum IBIR FIFO depth. */ |
| uint32_t ibir_mem_depth; |
| }; |
| |
| /* Cadence I3C/I2C Device Private Data */ |
| struct cdns_i3c_i2c_dev_data { |
| /* Device id within the retaining registers. This is set after bus initialization by the |
| * controller. |
| */ |
| uint8_t id; |
| }; |
| |
| /* Single command/transfer */ |
| struct cdns_i3c_cmd { |
| uint32_t cmd0; |
| uint32_t cmd1; |
| uint32_t len; |
| uint32_t *num_xfer; |
| void *buf; |
| uint32_t error; |
| }; |
| |
| /* Transfer data */ |
| struct cdns_i3c_xfer { |
| struct k_sem complete; |
| int ret; |
| int num_cmds; |
| struct cdns_i3c_cmd cmds[I3C_MAX_MSGS]; |
| }; |
| |
| /* Driver config */ |
| struct cdns_i3c_config { |
| struct i3c_driver_config common; |
| /** base address of the controller */ |
| uintptr_t base; |
| /** input frequency to the I3C Cadence */ |
| uint32_t input_frequency; |
| /** Interrupt configuration function. */ |
| void (*irq_config_func)(const struct device *dev); |
| }; |
| |
| /* Driver instance data */ |
| struct cdns_i3c_data { |
| struct i3c_driver_data common; |
| struct cdns_i3c_hw_config hw_cfg; |
| struct k_mutex bus_lock; |
| struct cdns_i3c_i2c_dev_data cdns_i3c_i2c_priv_data[I3C_MAX_DEVS]; |
| struct cdns_i3c_xfer xfer; |
| struct i3c_target_config *target_config; |
| struct k_sem ibi_hj_complete; |
| uint32_t free_rr_slots; |
| uint8_t max_devs; |
| }; |
| |
| /******************************************************************************* |
| * Global Variables Declaration |
| ******************************************************************************/ |
| |
| /******************************************************************************* |
| * Local Functions Declaration |
| ******************************************************************************/ |
| |
| /******************************************************************************* |
| * Private Functions Code |
| ******************************************************************************/ |
| |
| /* Computes and sets parity */ |
| /* Returns [7:1] 7-bit addr, [0] even/xor parity */ |
| static uint8_t cdns_i3c_even_parity(uint8_t byte) |
| { |
| uint8_t parity = 0; |
| uint8_t b = byte; |
| |
| while (b) { |
| parity = !parity; |
| b = b & (b - 1); |
| } |
| b = (byte << 1) | !parity; |
| |
| return b; |
| } |
| |
| /* Check if command response fifo is empty */ |
| static inline bool cdns_i3c_cmd_rsp_fifo_empty(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_CMDR_EMP) ? true : false); |
| } |
| |
| /* Check if command fifo is empty */ |
| static inline bool cdns_i3c_cmd_fifo_empty(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_CMDD_EMP) ? true : false); |
| } |
| |
| /* Check if command fifo is full */ |
| static inline bool cdns_i3c_cmd_fifo_full(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_CMDD_FULL) ? true : false); |
| } |
| |
| /* Check if ibi response fifo is empty */ |
| static inline bool cdns_i3c_ibi_rsp_fifo_empty(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_IBIR_EMP) ? true : false); |
| } |
| |
| /* Check if tx fifo is full */ |
| static inline bool cdns_i3c_tx_fifo_full(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_TX_FULL) ? true : false); |
| } |
| |
| /* Check if rx fifo is full */ |
| static inline bool cdns_i3c_rx_fifo_full(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_RX_FULL) ? true : false); |
| } |
| |
| /* Check if rx fifo is empty */ |
| static inline bool cdns_i3c_rx_fifo_empty(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_RX_EMP) ? true : false); |
| } |
| |
| /* Check if ibi fifo is empty */ |
| static inline bool cdns_i3c_ibi_fifo_empty(const struct cdns_i3c_config *config) |
| { |
| uint32_t mst_st = sys_read32(config->base + MST_STATUS0); |
| |
| return ((mst_st & MST_STATUS0_IBID_EMP) ? true : false); |
| } |
| |
| /* Interrupt handling */ |
| static inline void cdns_i3c_interrupts_disable(const struct cdns_i3c_config *config) |
| { |
| sys_write32(MST_INT_MASK, config->base + MST_IDR); |
| } |
| |
| static inline void cdns_i3c_interrupts_clear(const struct cdns_i3c_config *config) |
| { |
| sys_write32(MST_INT_MASK, config->base + MST_ICR); |
| } |
| |
| /* FIFO mgmt */ |
| static void cdns_i3c_write_tx_fifo(const struct cdns_i3c_config *config, const void *buf, |
| uint32_t len) |
| { |
| const uint32_t *ptr = buf; |
| uint32_t remain, val; |
| |
| for (remain = len; remain >= 4; remain -= 4) { |
| val = *ptr++; |
| sys_write32(val, config->base + TX_FIFO); |
| } |
| |
| if (remain > 0) { |
| val = 0; |
| memcpy(&val, ptr, remain); |
| sys_write32(val, config->base + TX_FIFO); |
| } |
| } |
| |
| static int cdns_i3c_read_rx_fifo(const struct cdns_i3c_config *config, void *buf, uint32_t len) |
| { |
| uint32_t *ptr = buf; |
| uint32_t remain, val; |
| |
| for (remain = len; remain >= 4; remain -= 4) { |
| if (cdns_i3c_rx_fifo_empty(config)) { |
| return -EIO; |
| } |
| val = sys_le32_to_cpu(sys_read32(config->base + RX_FIFO)); |
| *ptr++ = val; |
| } |
| |
| if (remain > 0) { |
| if (cdns_i3c_rx_fifo_empty(config)) { |
| return -EIO; |
| } |
| val = sys_le32_to_cpu(sys_read32(config->base + RX_FIFO)); |
| memcpy(ptr, &val, remain); |
| } |
| |
| return 0; |
| } |
| |
| static inline int cdns_i3c_wait_for_idle(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| uint32_t start_time = k_cycle_get_32(); |
| |
| /** |
| * Spin waiting for device to go idle. It is unlikely that this will |
| * actually take any time unless if the last transaction came immediately |
| * after an error condition. |
| */ |
| while (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_IDLE)) { |
| if (k_cycle_get_32() - start_time > I3C_IDLE_TIMEOUT_CYC) { |
| return -EAGAIN; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void cdns_i3c_set_prescalers(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| struct i3c_config_controller *ctrl_config = &data->common.ctrl_config; |
| |
| /* These formulas are from section 6.2.1 of the Cadence I3C Master User Guide. */ |
| uint32_t prescl_i3c = DIV_ROUND_UP(config->input_frequency, |
| (ctrl_config->scl.i3c * I3C_PRESCL_REG_SCALE)) - |
| 1; |
| uint32_t prescl_i2c = DIV_ROUND_UP(config->input_frequency, |
| (ctrl_config->scl.i2c * I2C_PRESCL_REG_SCALE)) - |
| 1; |
| |
| /* update with actual value */ |
| ctrl_config->scl.i3c = config->input_frequency / ((prescl_i3c + 1) * I3C_PRESCL_REG_SCALE); |
| ctrl_config->scl.i2c = config->input_frequency / ((prescl_i2c + 1) * I2C_PRESCL_REG_SCALE); |
| |
| LOG_DBG("%s: I3C speed = %u, PRESCL_CTRL0.i3c = 0x%x", dev->name, ctrl_config->scl.i3c, |
| prescl_i3c); |
| LOG_DBG("%s: I2C speed = %u, PRESCL_CTRL0.i2c = 0x%x", dev->name, ctrl_config->scl.i2c, |
| prescl_i2c); |
| |
| /* Calculate the OD_LOW value assuming a desired T_low period of 210ns. */ |
| uint32_t pres_step = 1000000000 / (ctrl_config->scl.i3c * 4); |
| int32_t od_low = DIV_ROUND_UP(I3C_BUS_TLOW_OD_MIN_NS, pres_step) - 2; |
| |
| if (od_low < 0) { |
| od_low = 0; |
| } |
| LOG_DBG("%s: PRESCL_CTRL1.od_low = 0x%x", dev->name, od_low); |
| |
| /* disable in order to update timing */ |
| uint32_t ctrl = sys_read32(config->base + CTRL); |
| |
| if (ctrl & CTRL_DEV_EN) { |
| sys_write32(~CTRL_DEV_EN & ctrl, config->base + CTRL); |
| } |
| |
| sys_write32(PRESCL_CTRL0_I3C(prescl_i3c) | PRESCL_CTRL0_I2C(prescl_i2c), |
| config->base + PRESCL_CTRL0); |
| |
| /* Sets the open drain low time relative to the push-pull. */ |
| sys_write32(PRESCL_CTRL1_OD_LOW(od_low & PRESCL_CTRL1_OD_LOW_MASK), |
| config->base + PRESCL_CTRL1); |
| |
| /* reenable */ |
| if (ctrl & CTRL_DEV_EN) { |
| sys_write32(CTRL_DEV_EN | ctrl, config->base + CTRL); |
| } |
| } |
| |
| /** |
| * @brief Compute RR0 Value from addr |
| * |
| * @param addr Address of the target |
| * |
| * @return RR0 value |
| */ |
| static uint32_t prepare_rr0_dev_address(uint16_t addr) |
| { |
| /* RR0[7:1] = addr[6:0] | parity^[0] */ |
| uint32_t ret = cdns_i3c_even_parity(addr); |
| |
| if (addr & GENMASK(9, 7)) { |
| /* RR0[15:13] = addr[9:7] */ |
| ret |= (addr & GENMASK(9, 7)) << 6; |
| /* RR0[11] = 10b lvr addr */ |
| ret |= DEV_ID_RR0_LVR_EXT_ADDR; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Program Retaining Registers with device lists |
| * |
| * This will program the retaining register with the controller itself |
| * |
| * @param dev Pointer to controller device driver instance. |
| */ |
| static void cdns_i3c_program_controller_retaining_reg(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| /* Set controller retaining register */ |
| uint8_t controller_da = I3C_CONTROLLER_ADDR; |
| |
| if (!i3c_addr_slots_is_free(&data->common.attached_dev.addr_slots, controller_da)) { |
| controller_da = |
| i3c_addr_slots_next_free_find(&data->common.attached_dev.addr_slots, 0); |
| LOG_DBG("%s: 0x%02x DA selected for controller", dev->name, controller_da); |
| } |
| sys_write32(prepare_rr0_dev_address(controller_da), config->base + DEV_ID_RR0(0)); |
| /* Mark the address as I3C device */ |
| i3c_addr_slots_mark_i3c(&data->common.attached_dev.addr_slots, controller_da); |
| } |
| |
| #ifdef CONFIG_I3C_USE_IBI |
| static int cdns_i3c_controller_ibi_enable(const struct device *dev, struct i3c_device_desc *target) |
| { |
| uint32_t sir_map; |
| uint32_t sir_cfg; |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = target->controller_priv; |
| struct i3c_ccc_events i3c_events; |
| int ret = 0; |
| |
| if (!i3c_device_is_ibi_capable(target)) { |
| ret = -EINVAL; |
| return ret; |
| } |
| |
| /* TODO: check for duplicate in SIR */ |
| |
| sir_cfg = SIR_MAP_DEV_ROLE(I3C_BCR_DEVICE_ROLE(target->bcr)) | |
| SIR_MAP_DEV_DA(target->dynamic_addr) | |
| SIR_MAP_DEV_PL(target->data_length.max_ibi); |
| if (target->ibi_cb != NULL) { |
| sir_cfg |= SIR_MAP_DEV_ACK; |
| } |
| if (target->bcr & I3C_BCR_MAX_DATA_SPEED_LIMIT) { |
| sir_cfg |= SIR_MAP_DEV_SLOW; |
| } |
| |
| LOG_DBG("%s: IBI enabling for 0x%02x (BCR 0x%02x)", dev->name, target->dynamic_addr, |
| target->bcr); |
| |
| /* Tell target to enable IBI */ |
| i3c_events.events = I3C_CCC_EVT_INTR; |
| ret = i3c_ccc_do_events_set(target, true, &i3c_events); |
| if (ret != 0) { |
| LOG_ERR("%s: Error sending IBI ENEC for 0x%02x (%d)", dev->name, |
| target->dynamic_addr, ret); |
| return ret; |
| } |
| |
| sir_map = sys_read32(config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1)); |
| sir_map &= ~SIR_MAP_DEV_CONF_MASK(cdns_i3c_device_data->id - 1); |
| sir_map |= SIR_MAP_DEV_CONF(cdns_i3c_device_data->id - 1, sir_cfg); |
| |
| sys_write32(sir_map, config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1)); |
| |
| return ret; |
| } |
| |
| static int cdns_i3c_controller_ibi_disable(const struct device *dev, struct i3c_device_desc *target) |
| { |
| uint32_t sir_map; |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = target->controller_priv; |
| struct i3c_ccc_events i3c_events; |
| int ret = 0; |
| |
| if (!i3c_device_is_ibi_capable(target)) { |
| ret = -EINVAL; |
| return ret; |
| } |
| |
| /* Tell target to disable IBI */ |
| i3c_events.events = I3C_CCC_EVT_INTR; |
| ret = i3c_ccc_do_events_set(target, false, &i3c_events); |
| if (ret != 0) { |
| LOG_ERR("%s: Error sending IBI DISEC for 0x%02x (%d)", dev->name, |
| target->dynamic_addr, ret); |
| return ret; |
| } |
| |
| sir_map = sys_read32(config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1)); |
| sir_map &= ~SIR_MAP_DEV_CONF_MASK(cdns_i3c_device_data->id - 1); |
| sir_map |= |
| SIR_MAP_DEV_CONF(cdns_i3c_device_data->id - 1, SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR)); |
| sys_write32(sir_map, config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1)); |
| |
| return ret; |
| } |
| |
| static int cdns_i3c_target_ibi_raise_hj(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| struct i3c_config_controller *ctrl_config = &data->common.ctrl_config; |
| |
| /* HJ requests should not be done by primary controllers */ |
| if (!ctrl_config->is_secondary) { |
| LOG_ERR("%s: controller is primary, HJ not available", dev->name); |
| return -ENOTSUP; |
| } |
| /* Check if target already has a DA assigned to it */ |
| if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_HAS_DA) { |
| LOG_ERR("%s: HJ not available, DA already assigned", dev->name); |
| return -EACCES; |
| } |
| /* Check if HJ requests DISEC CCC with DISHJ field set has been received */ |
| if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_HJ_DIS) { |
| LOG_ERR("%s: HJ requests are currently disabled by DISEC", dev->name); |
| return -EAGAIN; |
| } |
| |
| sys_write32(CTRL_HJ_INIT | sys_read32(config->base + CTRL), config->base + CTRL); |
| k_sem_reset(&data->ibi_hj_complete); |
| if (k_sem_take(&data->ibi_hj_complete, K_MSEC(500)) != 0) { |
| LOG_ERR("%s: timeout waiting for DAA after HJ", dev->name); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| static int cdns_i3c_target_ibi_raise(const struct device *dev, struct i3c_ibi *request) |
| { |
| if (request == NULL) { |
| return -EINVAL; |
| } |
| |
| switch (request->ibi_type) { |
| case I3C_IBI_TARGET_INTR: |
| return -ENOTSUP; |
| case I3C_IBI_CONTROLLER_ROLE_REQUEST: |
| /* TODO: Cadence I3C can support CR, but not implemented yet */ |
| return -ENOTSUP; |
| case I3C_IBI_HOTJOIN: |
| return cdns_i3c_target_ibi_raise_hj(dev); |
| default: |
| return -EINVAL; |
| } |
| } |
| #endif |
| |
| static void cdns_i3c_cancel_transfer(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| uint32_t val; |
| uint32_t retry_count; |
| |
| /* Disable further interrupts */ |
| sys_write32(MST_INT_CMDD_EMP, config->base + MST_IDR); |
| |
| /* Ignore if no pending transfer */ |
| if (data->xfer.num_cmds == 0) { |
| return; |
| } |
| |
| data->xfer.num_cmds = 0; |
| |
| /* Clear main enable bit to disable further transactions */ |
| sys_write32(~CTRL_DEV_EN & sys_read32(config->base + CTRL), config->base + CTRL); |
| |
| /** |
| * Spin waiting for device to go idle. It is unlikely that this will |
| * actually take any time since we only get here if a transaction didn't |
| * complete in a long time. |
| */ |
| retry_count = I3C_MAX_IDLE_CANCEL_WAIT_RETRIES; |
| while (retry_count--) { |
| val = sys_read32(config->base + MST_STATUS0); |
| if (val & MST_STATUS0_IDLE) { |
| break; |
| } |
| k_msleep(10); |
| } |
| if (retry_count == 0) { |
| data->xfer.ret = -ETIMEDOUT; |
| } |
| |
| /** |
| * Flush all queues. |
| */ |
| sys_write32(FLUSH_RX_FIFO | FLUSH_TX_FIFO | FLUSH_CMD_FIFO | FLUSH_CMD_RESP, |
| config->base + FLUSH_CTRL); |
| |
| /* Re-enable device */ |
| sys_write32(CTRL_DEV_EN | sys_read32(config->base + CTRL), config->base + CTRL); |
| } |
| |
| /** |
| * @brief Start a I3C/I2C Transfer |
| * |
| * This is to be called from a I3C/I2C transfer function. This will write |
| * all data to tx and cmd fifos |
| * |
| * @param dev Pointer to controller device driver instance. |
| */ |
| static void cdns_i3c_start_transfer(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_xfer *xfer = &data->xfer; |
| |
| /* Ensure no pending command response queue threshold interrupt */ |
| sys_write32(MST_INT_CMDD_EMP, config->base + MST_ICR); |
| |
| /* Make sure RX FIFO is empty. */ |
| while (!cdns_i3c_rx_fifo_empty(config)) { |
| (void)sys_read32(config->base + RX_FIFO); |
| } |
| /* Make sure CMDR FIFO is empty too */ |
| while (!cdns_i3c_cmd_rsp_fifo_empty(config)) { |
| (void)sys_read32(config->base + CMDR); |
| } |
| |
| /* Write all tx data to fifo */ |
| for (unsigned int i = 0; i < xfer->num_cmds; i++) { |
| if (!(xfer->cmds[i].cmd0 & CMD0_FIFO_RNW)) { |
| cdns_i3c_write_tx_fifo(config, xfer->cmds[i].buf, xfer->cmds[i].len); |
| } |
| } |
| |
| /* Write all data to cmd fifos */ |
| for (unsigned int i = 0; i < xfer->num_cmds; i++) { |
| /* The command ID is just the msg index. */ |
| xfer->cmds[i].cmd1 |= CMD1_FIFO_CMDID(i); |
| sys_write32(xfer->cmds[i].cmd1, config->base + CMD1_FIFO); |
| sys_write32(xfer->cmds[i].cmd0, config->base + CMD0_FIFO); |
| } |
| |
| /* kickoff transfer */ |
| sys_write32(CTRL_MCS | sys_read32(config->base + CTRL), config->base + CTRL); |
| sys_write32(MST_INT_CMDD_EMP, config->base + MST_IER); |
| } |
| |
| /** |
| * @brief Send Common Command Code (CCC). |
| * |
| * @see i3c_do_ccc |
| * |
| * @param dev Pointer to controller device driver instance. |
| * @param payload Pointer to CCC payload. |
| * |
| * @return @see i3c_do_ccc |
| */ |
| static int cdns_i3c_do_ccc(const struct device *dev, struct i3c_ccc_payload *payload) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| struct cdns_i3c_cmd *dcmd = &data->xfer.cmds[0]; |
| int ret = 0; |
| int num_cmds = 0; |
| |
| /* make sure we are currently the active controller */ |
| if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) { |
| return -EACCES; |
| } |
| |
| if (payload == NULL) { |
| return -EINVAL; |
| } |
| |
| /* |
| * Ensure data will fit within FIFOs. |
| * |
| * TODO: This limitation prevents burst transfers greater than the |
| * FIFO sizes and should be replaced with an implementation that |
| * utilizes the RX/TX data threshold interrupts. |
| */ |
| uint32_t num_msgs = |
| 1 + ((payload->ccc.data_len > 0) ? payload->targets.num_targets |
| : MAX(payload->targets.num_targets - 1, 0)); |
| if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) { |
| LOG_ERR("%s: Too many messages", dev->name); |
| return -ENOMEM; |
| } |
| |
| uint32_t rxsize = 0; |
| uint32_t txsize = ROUND_UP(payload->ccc.data_len, 4); |
| |
| for (int i = 0; i < payload->targets.num_targets; i++) { |
| if (payload->targets.payloads[i].rnw) { |
| rxsize += ROUND_UP(payload->targets.payloads[i].data_len, 4); |
| } else { |
| txsize += ROUND_UP(payload->targets.payloads[i].data_len, 4); |
| } |
| } |
| if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) { |
| LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name); |
| return -ENOMEM; |
| } |
| |
| LOG_DBG("%s: CCC[0x%02x]", dev->name, payload->ccc.id); |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| /* wait for idle */ |
| ret = cdns_i3c_wait_for_idle(dev); |
| if (ret != 0) { |
| goto error; |
| } |
| |
| dcmd->cmd1 = CMD1_FIFO_CCC(payload->ccc.id); |
| dcmd->cmd0 = CMD0_FIFO_IS_CCC; |
| dcmd->len = 0; |
| |
| size_t idx = 0; |
| |
| if (payload->ccc.data_len > 0) { |
| /* Write additional data for CCC if needed */ |
| dcmd->buf = payload->ccc.data; |
| dcmd->len = payload->ccc.data_len; |
| dcmd->cmd0 |= CMD0_FIFO_PL_LEN(payload->ccc.data_len); |
| /* write the address of num_xfer which is to be updated upon message completion */ |
| dcmd->num_xfer = &(payload->ccc.num_xfer); |
| } else if (payload->targets.num_targets > 0) { |
| dcmd->buf = payload->targets.payloads[0].data; |
| dcmd->len = payload->targets.payloads[0].data_len; |
| dcmd->cmd0 |= CMD0_FIFO_DEV_ADDR(payload->targets.payloads[0].addr) | |
| CMD0_FIFO_PL_LEN(payload->targets.payloads[0].data_len); |
| if (payload->targets.payloads[0].rnw) { |
| dcmd->cmd0 |= CMD0_FIFO_RNW; |
| } |
| /* write the address of num_xfer which is to be updated upon message completion */ |
| dcmd->num_xfer = &(payload->targets.payloads[0].num_xfer); |
| idx++; |
| } |
| num_cmds++; |
| |
| if (!i3c_ccc_is_payload_broadcast(payload)) { |
| /* |
| * If there are payload(s) for each target, |
| * RESTART and then send payload for each target. |
| */ |
| while (idx < payload->targets.num_targets) { |
| num_cmds++; |
| struct cdns_i3c_cmd *cmd = &data->xfer.cmds[idx + 1]; |
| struct i3c_ccc_target_payload *tgt_payload = |
| &payload->targets.payloads[idx]; |
| /* Send repeated start on all transfers except the last */ |
| if (idx < (payload->targets.num_targets - 1)) { |
| cmd->cmd0 |= CMD0_FIFO_RSBC; |
| } |
| cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(tgt_payload->addr); |
| if (tgt_payload->rnw) { |
| cmd->cmd0 |= CMD0_FIFO_RNW; |
| } |
| |
| cmd->buf = tgt_payload->data; |
| cmd->len = tgt_payload->data_len; |
| /* |
| * write the address of num_xfer which is to be updated upon message |
| * completion |
| */ |
| cmd->num_xfer = &(tgt_payload->num_xfer); |
| |
| idx++; |
| } |
| } |
| |
| data->xfer.ret = -ETIMEDOUT; |
| data->xfer.num_cmds = num_cmds; |
| |
| cdns_i3c_start_transfer(dev); |
| if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) { |
| cdns_i3c_cancel_transfer(dev); |
| } |
| |
| if (data->xfer.ret < 0) { |
| LOG_ERR("%s: CCC[0x%02x] error (%d)", dev->name, payload->ccc.id, data->xfer.ret); |
| } |
| |
| ret = data->xfer.ret; |
| error: |
| k_mutex_unlock(&data->bus_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Perform Dynamic Address Assignment. |
| * |
| * @see i3c_do_daa |
| * |
| * @param dev Pointer to controller device driver instance. |
| * |
| * @return @see i3c_do_daa |
| */ |
| static int cdns_i3c_do_daa(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| struct i3c_config_controller *ctrl_config = &data->common.ctrl_config; |
| |
| /* DAA should not be done by secondary controllers */ |
| if (ctrl_config->is_secondary) { |
| return -ENOTSUP; |
| } |
| |
| /* read dev active reg */ |
| uint32_t olddevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK; |
| /* ignore the controller register */ |
| olddevs |= BIT(0); |
| |
| /* the Cadence I3C IP will assign an address for it from the RR */ |
| struct i3c_ccc_payload entdaa_ccc; |
| |
| memset(&entdaa_ccc, 0, sizeof(entdaa_ccc)); |
| entdaa_ccc.ccc.id = I3C_CCC_ENTDAA; |
| |
| int status = cdns_i3c_do_ccc(dev, &entdaa_ccc); |
| |
| if (status != 0) { |
| return status; |
| } |
| |
| /* read again dev active reg */ |
| uint32_t newdevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK; |
| /* look for new bits that were set */ |
| newdevs &= ~olddevs; |
| |
| if (newdevs) { |
| /* loop through each set bit for new devices */ |
| for (uint8_t i = find_lsb_set(newdevs); i <= find_msb_set(newdevs); i++) { |
| uint8_t rr_idx = i - 1; |
| |
| if (newdevs & BIT(rr_idx)) { |
| /* Read RRx registers */ |
| uint32_t dev_id_rr0 = sys_read32(config->base + DEV_ID_RR0(rr_idx)); |
| uint32_t dev_id_rr1 = sys_read32(config->base + DEV_ID_RR1(rr_idx)); |
| uint32_t dev_id_rr2 = sys_read32(config->base + DEV_ID_RR2(rr_idx)); |
| |
| uint64_t pid = ((uint64_t)dev_id_rr1 << 16) + (dev_id_rr2 >> 16); |
| uint8_t dyn_addr = (dev_id_rr0 & 0xFE) >> 1; |
| uint8_t bcr = dev_id_rr2 >> 8; |
| uint8_t dcr = dev_id_rr2 & 0xFF; |
| |
| const struct i3c_device_id i3c_id = I3C_DEVICE_ID(pid); |
| struct i3c_device_desc *target = i3c_device_find(dev, &i3c_id); |
| |
| if (target == NULL) { |
| LOG_INF("%s: PID 0x%012llx is not in registered device " |
| "list, given DA 0x%02x", |
| dev->name, pid, dyn_addr); |
| i3c_addr_slots_mark_i3c( |
| &data->common.attached_dev.addr_slots, dyn_addr); |
| } else { |
| target->dynamic_addr = dyn_addr; |
| target->bcr = bcr; |
| target->dcr = dcr; |
| |
| LOG_DBG("%s: PID 0x%012llx assigned dynamic address 0x%02x", |
| dev->name, pid, dyn_addr); |
| } |
| } |
| } |
| } else { |
| LOG_DBG("%s: ENTDAA: No devices found", dev->name); |
| } |
| |
| /* mark slot as not free, may already be set if already attached */ |
| data->free_rr_slots &= ~newdevs; |
| |
| /* Unmask Hot-Join request interrupts. HJ will send DISEC HJ from the CTRL value */ |
| struct i3c_ccc_events i3c_events; |
| |
| i3c_events.events = I3C_CCC_EVT_HJ; |
| status = i3c_ccc_do_events_all_set(dev, true, &i3c_events); |
| if (status != 0) { |
| LOG_DBG("%s: Broadcast ENEC was NACK", dev->name); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Configure I2C hardware. |
| * |
| * @param dev Pointer to controller device driver instance. |
| * @param config Value of the configuration parameters. |
| * |
| * @retval 0 If successful. |
| * @retval -EINVAL If invalid configure parameters. |
| * @retval -EIO General Input/Output errors. |
| * @retval -ENOSYS If not implemented. |
| */ |
| static int cdns_i3c_i2c_api_configure(const struct device *dev, uint32_t config) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| struct i3c_config_controller *ctrl_config = &data->common.ctrl_config; |
| |
| switch (I2C_SPEED_GET(config)) { |
| case I2C_SPEED_STANDARD: |
| ctrl_config->scl.i2c = 100000; |
| break; |
| case I2C_SPEED_FAST: |
| ctrl_config->scl.i2c = 400000; |
| break; |
| case I2C_SPEED_FAST_PLUS: |
| ctrl_config->scl.i2c = 1000000; |
| break; |
| case I2C_SPEED_HIGH: |
| ctrl_config->scl.i2c = 3400000; |
| break; |
| case I2C_SPEED_ULTRA: |
| ctrl_config->scl.i2c = 5000000; |
| break; |
| default: |
| break; |
| } |
| |
| cdns_i3c_set_prescalers(dev); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Configure I3C hardware. |
| * |
| * @param dev Pointer to controller device driver instance. |
| * @param type Type of configuration parameters being passed |
| * in @p config. |
| * @param config Pointer to the configuration parameters. |
| * |
| * @retval 0 If successful. |
| * @retval -EINVAL If invalid configure parameters. |
| * @retval -EIO General Input/Output errors. |
| * @retval -ENOSYS If not implemented. |
| */ |
| static int cdns_i3c_configure(const struct device *dev, enum i3c_config_type type, void *config) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| struct i3c_config_controller *ctrl_cfg = config; |
| |
| if ((ctrl_cfg->scl.i2c == 0U) || (ctrl_cfg->scl.i3c == 0U)) { |
| return -EINVAL; |
| } |
| |
| data->common.ctrl_config.scl.i3c = ctrl_cfg->scl.i3c; |
| data->common.ctrl_config.scl.i2c = ctrl_cfg->scl.i2c; |
| cdns_i3c_set_prescalers(dev); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Complete a I3C/I2C Transfer |
| * |
| * This is to be called from an ISR when the Command Response FIFO |
| * is Empty. This will check each Command Response reading the RX |
| * FIFO if message was a RnW and if any message had an error. |
| * |
| * @param dev Pointer to controller device driver instance. |
| */ |
| static void cdns_i3c_complete_transfer(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| uint32_t cmdr; |
| uint32_t id = 0; |
| uint32_t rx = 0; |
| int ret = 0; |
| struct cdns_i3c_cmd *cmd; |
| bool was_full; |
| |
| /* Used only to determine in the case of a controller abort */ |
| was_full = cdns_i3c_rx_fifo_full(config); |
| |
| /* Disable further interrupts */ |
| sys_write32(MST_INT_CMDD_EMP, config->base + MST_IDR); |
| |
| /* Ignore if no pending transfer */ |
| if (data->xfer.num_cmds == 0) { |
| return; |
| } |
| |
| /* Process all results in fifo */ |
| for (uint32_t status0 = sys_read32(config->base + MST_STATUS0); |
| !(status0 & MST_STATUS0_CMDR_EMP); status0 = sys_read32(config->base + MST_STATUS0)) { |
| cmdr = sys_read32(config->base + CMDR); |
| id = CMDR_CMDID(cmdr); |
| |
| if (id == CMDR_CMDID_HJACK_DISEC || id == CMDR_CMDID_HJACK_ENTDAA || |
| id >= data->xfer.num_cmds) { |
| continue; |
| } |
| |
| cmd = &data->xfer.cmds[id]; |
| |
| /* Read any rx data into buffer */ |
| if (cmd->cmd0 & CMD0_FIFO_RNW) { |
| rx = MIN(CMDR_XFER_BYTES(cmdr), cmd->len); |
| if (cmd->num_xfer != NULL) { |
| *cmd->num_xfer = rx; |
| } |
| ret = cdns_i3c_read_rx_fifo(config, cmd->buf, rx); |
| } |
| |
| /* Record error */ |
| cmd->error = CMDR_ERROR(cmdr); |
| } |
| |
| for (int i = 0; i < data->xfer.num_cmds; i++) { |
| switch (data->xfer.cmds[i].error) { |
| case CMDR_NO_ERROR: |
| break; |
| |
| case CMDR_MST_ABORT: |
| /* |
| * A controller abort is forced if the RX FIFO fills up |
| * There is also the case where the fifo can be full as |
| * the len of the packet is the same length of the fifo |
| * Check that the requested len is greater than the total |
| * transferred to confirm that is not case. Otherwise the |
| * abort was caused by the buffer length being meet and |
| * the target did not give an End of Data (EoD) in the T |
| * bit. Do not treat that condition as an error because |
| * some targets will just auto-increment the read address |
| * way beyond the buffer not giving an EoD. |
| */ |
| if ((was_full) && (data->xfer.cmds[i].len > *data->xfer.cmds[i].num_xfer)) { |
| ret = -ENOSPC; |
| } else { |
| LOG_DBG("%s: Controller Abort due to buffer length excedded with " |
| "no EoD from target", |
| dev->name); |
| } |
| break; |
| |
| case CMDR_M0_ERROR: { |
| uint8_t ccc = data->xfer.cmds[i].cmd1 & 0xFF; |
| /* |
| * The M0 is an illegally formatted CCC. i.e. the Controller |
| * receives 1 byte instead of 2 with the GETMWL CCC. This can |
| * be problematic for CCCs that can have variable length such |
| * as GETMXDS and GETCAPS. Verify the number of bytes received matches |
| * what's expected from the specification and ignore the error. The IP will |
| * still retramsit the same CCC and theres nothing that can be done to |
| * prevent this. It it still up to the application to read `num_xfer` to |
| * determine the number of bytes returned. |
| */ |
| if (ccc == I3C_CCC_GETMXDS) { |
| /* |
| * Whether GETMXDS format 1 and format 2 can't be known ahead of |
| * time which will be returned. |
| */ |
| if ((*data->xfer.cmds[i].num_xfer != |
| sizeof(((union i3c_ccc_getmxds *)0)->fmt1)) && |
| (*data->xfer.cmds[i].num_xfer != |
| sizeof(((union i3c_ccc_getmxds *)0)->fmt2))) { |
| ret = -EIO; |
| } |
| } else if (ccc == I3C_CCC_GETCAPS) { |
| /* GETCAPS can only return 1-4 bytes */ |
| if (*data->xfer.cmds[i].num_xfer > sizeof(union i3c_ccc_getcaps)) { |
| ret = -EIO; |
| } |
| } else { |
| ret = -EIO; |
| } |
| break; |
| } |
| |
| case CMDR_DDR_PREAMBLE_ERROR: |
| case CMDR_DDR_PARITY_ERROR: |
| case CMDR_M1_ERROR: |
| case CMDR_M2_ERROR: |
| case CMDR_NACK_RESP: |
| case CMDR_DDR_DROPPED: |
| ret = -EIO; |
| break; |
| |
| case CMDR_DDR_RX_FIFO_OVF: |
| case CMDR_DDR_TX_FIFO_UNF: |
| ret = -ENOSPC; |
| break; |
| |
| case CMDR_INVALID_DA: |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| } |
| |
| data->xfer.ret = ret; |
| |
| /* Indicate no transfer is pending */ |
| data->xfer.num_cmds = 0; |
| |
| k_sem_give(&data->xfer.complete); |
| } |
| |
| /** |
| * @brief Transfer messages in I2C mode. |
| * |
| * @param dev Pointer to device driver instance. |
| * @param target Pointer to target device descriptor. |
| * @param msgs Pointer to I2C messages. |
| * @param num_msgs Number of messages to transfers. |
| * |
| * @retval 0 If successful. |
| * @retval -EIO General input / output error. |
| * @retval -EINVAL Address not registered |
| */ |
| static int cdns_i3c_i2c_transfer(const struct device *dev, struct i3c_i2c_device_desc *i2c_dev, |
| struct i2c_msg *msgs, uint8_t num_msgs) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| uint32_t txsize = 0; |
| uint32_t rxsize = 0; |
| int ret; |
| |
| /* make sure we are currently the active controller */ |
| if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) { |
| return -EACCES; |
| } |
| |
| if (num_msgs == 0) { |
| return 0; |
| } |
| |
| if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) { |
| LOG_ERR("%s: Too many messages", dev->name); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Ensure data will fit within FIFOs |
| */ |
| for (unsigned int i = 0; i < num_msgs; i++) { |
| if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) { |
| rxsize += ROUND_UP(msgs[i].len, 4); |
| } else { |
| txsize += ROUND_UP(msgs[i].len, 4); |
| } |
| } |
| if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) { |
| LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name); |
| return -ENOMEM; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| /* wait for idle */ |
| ret = cdns_i3c_wait_for_idle(dev); |
| if (ret != 0) { |
| goto error; |
| } |
| |
| for (unsigned int i = 0; i < num_msgs; i++) { |
| struct cdns_i3c_cmd *cmd = &data->xfer.cmds[i]; |
| |
| cmd->len = msgs[i].len; |
| cmd->buf = msgs[i].buf; |
| |
| cmd->cmd0 = CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR); |
| cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(i2c_dev->addr); |
| cmd->cmd0 |= CMD0_FIFO_PL_LEN(msgs[i].len); |
| |
| /* Send repeated start on all transfers except the last or those marked STOP. */ |
| if ((i < (num_msgs - 1)) && ((msgs[i].flags & I2C_MSG_STOP) == 0)) { |
| cmd->cmd0 |= CMD0_FIFO_RSBC; |
| } |
| |
| if (msgs[i].flags & I2C_MSG_ADDR_10_BITS) { |
| cmd->cmd0 |= CMD0_FIFO_IS_10B; |
| } |
| |
| if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) { |
| cmd->cmd0 |= CMD0_FIFO_RNW; |
| } |
| |
| /* i2c transfers are a don't care for num_xfer */ |
| cmd->num_xfer = NULL; |
| } |
| |
| data->xfer.ret = -ETIMEDOUT; |
| data->xfer.num_cmds = num_msgs; |
| |
| cdns_i3c_start_transfer(dev); |
| if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) { |
| cdns_i3c_cancel_transfer(dev); |
| } |
| |
| ret = data->xfer.ret; |
| error: |
| k_mutex_unlock(&data->bus_lock); |
| |
| return ret; |
| } |
| |
| static int cdns_i3c_master_get_rr_slot(const struct device *dev, uint8_t dyn_addr) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| |
| if (dyn_addr == 0) { |
| if (!data->free_rr_slots) { |
| return -ENOSPC; |
| } |
| |
| return find_lsb_set(data->free_rr_slots) - 1; |
| } |
| |
| uint32_t activedevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK; |
| |
| activedevs &= ~BIT(0); |
| |
| /* loop through each set bit for new devices */ |
| for (uint8_t i = find_lsb_set(activedevs); i <= find_msb_set(activedevs); i++) { |
| if (activedevs & BIT(i)) { |
| uint32_t rr = sys_read32(config->base + DEV_ID_RR0(i)); |
| |
| if (!(rr & DEV_ID_RR0_IS_I3C) || DEV_ID_RR0_GET_DEV_ADDR(rr) != dyn_addr) { |
| continue; |
| } |
| return i; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int cdns_i3c_attach_device(const struct device *dev, struct i3c_device_desc *desc, |
| uint8_t addr) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| int slot = cdns_i3c_master_get_rr_slot(dev, desc->dynamic_addr); |
| |
| if (slot < 0) { |
| LOG_ERR("%s: no space for i3c device: %s", dev->name, desc->dev->name); |
| return slot; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| data->cdns_i3c_i2c_priv_data[slot].id = slot; |
| desc->controller_priv = &(data->cdns_i3c_i2c_priv_data[slot]); |
| data->free_rr_slots &= ~BIT(slot); |
| |
| uint32_t dev_id_rr0 = DEV_ID_RR0_IS_I3C | prepare_rr0_dev_address(addr); |
| uint32_t dev_id_rr1 = DEV_ID_RR1_PID_MSB((desc->pid & 0xFFFFFFFF0000) >> 16); |
| uint32_t dev_id_rr2 = DEV_ID_RR2_PID_LSB(desc->pid & 0xFFFF); |
| |
| sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(slot)); |
| sys_write32(dev_id_rr1, config->base + DEV_ID_RR1(slot)); |
| sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(slot)); |
| |
| /** Mark Devices as active, devices that will be found and marked active during DAA, |
| * it will be given the exact DA programmed in it's RR if the PID matches and marked |
| * as active duing ENTDAA, otherwise they get set as active here. If dynamic address |
| * is set, then it assumed that it was already initialized by the primary controller. |
| */ |
| if ((desc->static_addr != 0) || (desc->dynamic_addr != 0)) { |
| sys_write32(sys_read32(config->base + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(slot), |
| config->base + DEVS_CTRL); |
| } |
| |
| k_mutex_unlock(&data->bus_lock); |
| |
| return 0; |
| } |
| |
| static int cdns_i3c_reattach_device(const struct device *dev, struct i3c_device_desc *desc, |
| uint8_t old_dyn_addr) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = desc->controller_priv; |
| |
| if (cdns_i3c_device_data == NULL) { |
| LOG_ERR("%s: %s: device not attached", dev->name, desc->dev->name); |
| return -EINVAL; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| uint32_t dev_id_rr0 = DEV_ID_RR0_IS_I3C | prepare_rr0_dev_address(desc->dynamic_addr); |
| uint32_t dev_id_rr1 = DEV_ID_RR1_PID_MSB((desc->pid & 0xFFFFFFFF0000) >> 16); |
| uint32_t dev_id_rr2 = DEV_ID_RR2_PID_LSB(desc->pid & 0xFFFF) | DEV_ID_RR2_BCR(desc->bcr) | |
| DEV_ID_RR2_DCR(desc->dcr); |
| |
| sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(cdns_i3c_device_data->id)); |
| sys_write32(dev_id_rr1, config->base + DEV_ID_RR1(cdns_i3c_device_data->id)); |
| sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(cdns_i3c_device_data->id)); |
| |
| k_mutex_unlock(&data->bus_lock); |
| |
| return 0; |
| } |
| |
| static int cdns_i3c_detach_device(const struct device *dev, struct i3c_device_desc *desc) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = desc->controller_priv; |
| |
| if (cdns_i3c_device_data == NULL) { |
| LOG_ERR("%s: %s: device not attached", dev->name, desc->dev->name); |
| return -EINVAL; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| sys_write32(sys_read32(config->base + DEVS_CTRL) | |
| DEVS_CTRL_DEV_CLR(cdns_i3c_device_data->id), |
| config->base + DEVS_CTRL); |
| data->free_rr_slots |= BIT(cdns_i3c_device_data->id); |
| desc->controller_priv = NULL; |
| |
| k_mutex_unlock(&data->bus_lock); |
| |
| return 0; |
| } |
| |
| static int cdns_i3c_i2c_attach_device(const struct device *dev, struct i3c_i2c_device_desc *desc) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| |
| int slot = cdns_i3c_master_get_rr_slot(dev, 0); |
| |
| if (slot < 0) { |
| LOG_ERR("%s: no space for i2c device: addr 0x%02x", dev->name, desc->addr); |
| return slot; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| uint32_t dev_id_rr0 = prepare_rr0_dev_address(desc->addr); |
| uint32_t dev_id_rr2 = DEV_ID_RR2_LVR(desc->lvr); |
| |
| sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(slot)); |
| sys_write32(0, config->base + DEV_ID_RR1(slot)); |
| sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(slot)); |
| |
| data->cdns_i3c_i2c_priv_data[slot].id = slot; |
| desc->controller_priv = &(data->cdns_i3c_i2c_priv_data[slot]); |
| data->free_rr_slots &= ~BIT(slot); |
| |
| sys_write32(sys_read32(config->base + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(slot), |
| config->base + DEVS_CTRL); |
| |
| k_mutex_unlock(&data->bus_lock); |
| |
| return 0; |
| } |
| |
| static int cdns_i3c_i2c_detach_device(const struct device *dev, struct i3c_i2c_device_desc *desc) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| struct cdns_i3c_i2c_dev_data *cdns_i2c_device_data = desc->controller_priv; |
| |
| if (cdns_i2c_device_data == NULL) { |
| LOG_ERR("%s: device not attached", dev->name); |
| return -EINVAL; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| sys_write32(sys_read32(config->base + DEVS_CTRL) | |
| DEVS_CTRL_DEV_CLR(cdns_i2c_device_data->id), |
| config->base + DEVS_CTRL); |
| data->free_rr_slots |= BIT(cdns_i2c_device_data->id); |
| desc->controller_priv = NULL; |
| |
| k_mutex_unlock(&data->bus_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Transfer messages in I3C mode. |
| * |
| * @see i3c_transfer |
| * |
| * @param dev Pointer to device driver instance. |
| * @param target Pointer to target device descriptor. |
| * @param msgs Pointer to I3C messages. |
| * @param num_msgs Number of messages to transfers. |
| * |
| * @return @see i3c_transfer |
| */ |
| static int cdns_i3c_transfer(const struct device *dev, struct i3c_device_desc *target, |
| struct i3c_msg *msgs, uint8_t num_msgs) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| int txsize = 0; |
| int rxsize = 0; |
| int ret; |
| |
| /* make sure we are currently the active controller */ |
| if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) { |
| return -EACCES; |
| } |
| |
| if (num_msgs == 0) { |
| return 0; |
| } |
| |
| if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) { |
| LOG_ERR("%s: Too many messages", dev->name); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Ensure data will fit within FIFOs. |
| * |
| * TODO: This limitation prevents burst transfers greater than the |
| * FIFO sizes and should be replaced with an implementation that |
| * utilizes the RX/TX data interrupts. |
| */ |
| for (int i = 0; i < num_msgs; i++) { |
| if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) { |
| rxsize += ROUND_UP(msgs[i].len, 4); |
| } else { |
| txsize += ROUND_UP(msgs[i].len, 4); |
| } |
| } |
| if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) { |
| LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name); |
| return -ENOMEM; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| /* wait for idle */ |
| ret = cdns_i3c_wait_for_idle(dev); |
| if (ret != 0) { |
| goto error; |
| } |
| |
| /* |
| * Prepare transfer commands. Currently there is only a single transfer |
| * in-flight but it would be possible to keep a queue of transfers. If so, |
| * this preparation could be completed outside of the bus lock allowing |
| * greater parallelism. |
| */ |
| bool send_broadcast = true; |
| |
| for (int i = 0; i < num_msgs; i++) { |
| struct cdns_i3c_cmd *cmd = &data->xfer.cmds[i]; |
| uint32_t pl = msgs[i].len; |
| |
| cmd->len = pl; |
| cmd->buf = msgs[i].buf; |
| |
| cmd->cmd0 = CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR); |
| cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(target->dynamic_addr); |
| if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) { |
| cmd->cmd0 |= CMD0_FIFO_RNW; |
| /* |
| * For I3C_XMIT_MODE_NO_ADDR reads in SDN mode, |
| * CMD0_FIFO_PL_LEN specifies the abort limit not bytes to read |
| */ |
| cmd->cmd0 |= CMD0_FIFO_PL_LEN(pl + 1); |
| } else { |
| cmd->cmd0 |= CMD0_FIFO_PL_LEN(pl); |
| } |
| |
| /* Send broadcast header on first transfer or after a STOP. */ |
| if (!(msgs[i].flags & I3C_MSG_NBCH) && (send_broadcast)) { |
| cmd->cmd0 |= CMD0_FIFO_BCH; |
| send_broadcast = false; |
| } |
| |
| /* Send repeated start on all transfers except the last or those marked STOP. */ |
| if ((i < (num_msgs - 1)) && ((msgs[i].flags & I3C_MSG_STOP) == 0)) { |
| cmd->cmd0 |= CMD0_FIFO_RSBC; |
| } else { |
| send_broadcast = true; |
| } |
| |
| /* write the address of num_xfer which is to be updated upon message completion */ |
| cmd->num_xfer = &(msgs[i].num_xfer); |
| } |
| |
| data->xfer.ret = -ETIMEDOUT; |
| data->xfer.num_cmds = num_msgs; |
| |
| cdns_i3c_start_transfer(dev); |
| if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) { |
| LOG_ERR("%s: transfer timed out", dev->name); |
| cdns_i3c_cancel_transfer(dev); |
| } |
| |
| ret = data->xfer.ret; |
| error: |
| k_mutex_unlock(&data->bus_lock); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_I3C_USE_IBI |
| static int cdns_i3c_read_ibi_fifo(const struct cdns_i3c_config *config, void *buf, uint32_t len) |
| { |
| uint32_t *ptr = buf; |
| uint32_t remain, val; |
| |
| for (remain = len; remain >= 4; remain -= 4) { |
| if (cdns_i3c_ibi_fifo_empty(config)) { |
| return -EIO; |
| } |
| val = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO)); |
| *ptr++ = val; |
| } |
| |
| if (remain > 0) { |
| if (cdns_i3c_ibi_fifo_empty(config)) { |
| return -EIO; |
| } |
| val = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO)); |
| memcpy(ptr, &val, remain); |
| } |
| |
| return 0; |
| } |
| |
| static void cdns_i3c_handle_ibi(const struct device *dev, uint32_t ibir) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| |
| uint8_t ibi_data[CONFIG_I3C_IBI_MAX_PAYLOAD_SIZE]; |
| |
| /* The slave ID returned here is the device ID in the SIR map NOT the device ID |
| * in the RR map. |
| */ |
| uint8_t slave_id = IBIR_SLVID(ibir); |
| |
| if (slave_id == IBIR_SLVID_INV) { |
| /* DA does not match any value among SIR map */ |
| return; |
| } |
| |
| uint32_t dev_id_rr0 = sys_read32(config->base + DEV_ID_RR0(slave_id + 1)); |
| uint8_t dyn_addr = DEV_ID_RR0_GET_DEV_ADDR(dev_id_rr0); |
| struct i3c_device_desc *desc = |
| i3c_dev_list_i3c_addr_find(&data->common.attached_dev, dyn_addr); |
| |
| /* |
| * Check for NAK or error conditions. |
| * |
| * Note: The logging is for debugging only so will be compiled out in most cases. |
| * However, if the log level for this module is DEBUG and log mode is IMMEDIATE or MINIMAL, |
| * this option is also set this may cause problems due to being inside an ISR. |
| */ |
| if (!(IBIR_ACKED & ibir)) { |
| LOG_DBG("%s: NAK for slave ID %u", dev->name, (unsigned int)slave_id); |
| return; |
| } |
| if (ibir & IBIR_ERROR) { |
| LOG_ERR("%s: Data overflow", dev->name); |
| return; |
| } |
| |
| /* Read out any payload bytes */ |
| uint8_t ibi_len = IBIR_XFER_BYTES(ibir); |
| |
| if (ibi_len > 0) { |
| if (cdns_i3c_read_ibi_fifo(config, ibi_data, ibi_len) < 0) { |
| LOG_ERR("%s: Failed to get payload", dev->name); |
| } |
| } |
| |
| if (i3c_ibi_work_enqueue_target_irq(desc, ibi_data, ibi_len) != 0) { |
| LOG_ERR("%s: Error enqueue IBI IRQ work", dev->name); |
| } |
| } |
| |
| static void cdns_i3c_handle_hj(const struct device *dev, uint32_t ibir) |
| { |
| if (!(IBIR_ACKED & ibir)) { |
| LOG_DBG("%s: NAK for HJ", dev->name); |
| return; |
| } |
| |
| if (i3c_ibi_work_enqueue_hotjoin(dev) != 0) { |
| LOG_ERR("%s: Error enqueue IBI HJ work", dev->name); |
| } |
| } |
| |
| static void cnds_i3c_master_demux_ibis(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| |
| for (uint32_t status0 = sys_read32(config->base + MST_STATUS0); |
| !(status0 & MST_STATUS0_IBIR_EMP); status0 = sys_read32(config->base + MST_STATUS0)) { |
| uint32_t ibir = sys_read32(config->base + IBIR); |
| |
| switch (IBIR_TYPE(ibir)) { |
| case IBIR_TYPE_IBI: |
| cdns_i3c_handle_ibi(dev, ibir); |
| break; |
| case IBIR_TYPE_HJ: |
| cdns_i3c_handle_hj(dev, ibir); |
| break; |
| case IBIR_TYPE_MR: |
| /* not implemented */ |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void cdns_i3c_target_ibi_hj_complete(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| |
| k_sem_give(&data->ibi_hj_complete); |
| } |
| #endif |
| |
| static void cdns_i3c_irq_handler(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| |
| if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) { |
| uint32_t int_st = sys_read32(config->base + MST_ISR); |
| |
| /* Command queue empty */ |
| if (int_st & MST_INT_HALTED) { |
| LOG_WRN("Core Halted, 2 read aborts"); |
| sys_write32(MST_INT_HALTED, config->base + MST_ICR); |
| } |
| |
| /* Command queue empty */ |
| if (int_st & MST_INT_CMDD_EMP) { |
| cdns_i3c_complete_transfer(dev); |
| sys_write32(MST_INT_CMDD_EMP, config->base + MST_ICR); |
| } |
| |
| /* Command queue threshold */ |
| if (int_st & MST_INT_CMDD_THR) { |
| sys_write32(MST_INT_CMDD_THR, config->base + MST_ICR); |
| } |
| |
| /* Command response threshold hit */ |
| if (int_st & MST_INT_CMDR_THR) { |
| sys_write32(MST_INT_CMDR_THR, config->base + MST_ICR); |
| } |
| |
| /* RX data ready */ |
| if (int_st & MST_INT_RX_THR) { |
| sys_write32(MST_INT_RX_THR, config->base + MST_ICR); |
| } |
| |
| /* In-band interrupt */ |
| if (int_st & MST_INT_IBIR_THR) { |
| sys_write32(MST_INT_IBIR_THR, config->base + MST_ICR); |
| #ifdef CONFIG_I3C_USE_IBI |
| cnds_i3c_master_demux_ibis(dev); |
| #else |
| LOG_ERR("%s: IBI received - Kconfig for using IBIs is not enabled", |
| dev->name); |
| #endif |
| } |
| |
| /* In-band interrupt data */ |
| if (int_st & MST_INT_IBID_THR) { |
| sys_write32(MST_INT_IBID_THR, config->base + MST_ICR); |
| } |
| |
| /* In-band interrupt data */ |
| if (int_st & MST_INT_TX_OVF) { |
| sys_write32(MST_INT_TX_OVF, config->base + MST_ICR); |
| LOG_ERR("%s: controller tx buffer overflow,", dev->name); |
| } |
| |
| /* In-band interrupt data */ |
| if (int_st & MST_INT_RX_UNF) { |
| sys_write32(MST_INT_RX_UNF, config->base + MST_ICR); |
| LOG_ERR("%s: controller rx buffer underflow,", dev->name); |
| } |
| |
| /* In-band interrupt data */ |
| if (int_st & MST_INT_IBID_THR) { |
| sys_write32(MST_INT_IBID_THR, config->base + MST_ICR); |
| } |
| } else { |
| uint32_t int_sl = sys_read32(config->base + SLV_ISR); |
| struct cdns_i3c_data *data = dev->data; |
| const struct i3c_target_callbacks *target_cb = data->target_config->callbacks; |
| |
| /* SLV SDR rx fifo threshold */ |
| if (int_sl & SLV_INT_SDR_RX_THR) { |
| /* while rx fifo is not empty */ |
| while (!(sys_read32(config->base + SLV_STATUS1) & |
| SLV_STATUS1_SDR_RX_EMPTY)) { |
| /* Target writes only write to the first byte of the 32 bit width |
| * fifo |
| */ |
| uint8_t rx_data = (uint8_t)sys_read32(config->base + RX_FIFO); |
| /* call function pointer for write */ |
| if (target_cb != NULL && target_cb->write_received_cb != NULL) { |
| target_cb->write_received_cb(data->target_config, rx_data); |
| } |
| } |
| } |
| |
| /* SLV SDR tx fifo threshold */ |
| if (int_sl & SLV_INT_SDR_TX_THR) { |
| int status = 0; |
| |
| if (target_cb != NULL && target_cb->read_processed_cb) { |
| /* while tx fifo is not full and there is still data available */ |
| while ((!(sys_read32(config->base + SLV_STATUS1) & |
| SLV_STATUS1_SDR_TX_FULL)) && |
| (status == 0)) { |
| /* call function pointer for read */ |
| uint8_t byte; |
| /* will return negative if no data left to transmit and 0 if |
| * data available |
| */ |
| status = target_cb->read_processed_cb(data->target_config, |
| &byte); |
| if (status == 0) { |
| cdns_i3c_write_tx_fifo(config, &byte, sizeof(byte)); |
| } |
| } |
| } |
| } |
| |
| /* SLV SDR rx complete */ |
| if (int_sl & SLV_INT_SDR_RD_COMP) { |
| /* a read needs to be done on slv_status 0 else a NACK will happen */ |
| (void)sys_read32(config->base + SLV_STATUS0); |
| /* call stop function pointer */ |
| if (target_cb != NULL && target_cb->stop_cb) { |
| target_cb->stop_cb(data->target_config); |
| } |
| } |
| |
| /* SLV SDR tx complete */ |
| if (int_sl & SLV_INT_SDR_WR_COMP) { |
| /* a read needs to be done on slv_status 0 else a NACK will happen */ |
| (void)sys_read32(config->base + SLV_STATUS0); |
| /* call stop function pointer */ |
| if (target_cb != NULL && target_cb->stop_cb) { |
| target_cb->stop_cb(data->target_config); |
| } |
| } |
| |
| /* DA has been updated */ |
| if (int_sl & SLV_INT_DA_UPD) { |
| LOG_INF("%s: DA updated to 0x%02lx", dev->name, |
| SLV_STATUS1_DA(sys_read32(config->base + SLV_STATUS1))); |
| /* HJ could send a DISEC which would trigger the SLV_INT_EVENT_UP bit, |
| * but it's still expected to eventually send a DAA |
| */ |
| #ifdef CONFIG_I3C_USE_IBI |
| cdns_i3c_target_ibi_hj_complete(dev); |
| #endif |
| } |
| |
| /* HJ complete and DA has been assigned */ |
| if (int_sl & SLV_INT_HJ_DONE) { |
| } |
| |
| /* Controllership has been been given */ |
| if (int_sl & SLV_INT_MR_DONE) { |
| /* TODO: implement support for controllership handoff */ |
| } |
| |
| /* EISC or DISEC has been received */ |
| if (int_sl & SLV_INT_EVENT_UP) { |
| } |
| |
| /* sdr transfer aborted by controller */ |
| if (int_sl & SLV_INT_M_RD_ABORT) { |
| /* TODO: consider flushing tx buffer? */ |
| } |
| |
| /* SLV SDR rx fifo underflow */ |
| if (int_sl & SLV_INT_SDR_RX_UNF) { |
| LOG_ERR("%s: slave sdr rx buffer underflow", dev->name); |
| } |
| |
| /* SLV SDR tx fifo overflow */ |
| if (int_sl & SLV_INT_SDR_TX_OVF) { |
| LOG_ERR("%s: slave sdr tx buffer overflow,", dev->name); |
| } |
| |
| sys_write32(int_sl, config->base + SLV_ICR); |
| } |
| } |
| |
| static void cdns_i3c_read_hw_cfg(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| |
| uint32_t devid = sys_read32(config->base + DEV_ID); |
| uint32_t revid = sys_read32(config->base + REV_ID); |
| |
| LOG_DBG("%s: Device info:\r\n" |
| " vid: 0x%03lX, pid: 0x%03lX\r\n" |
| " revision: major = %lu, minor = %lu\r\n" |
| " device ID: 0x%04X", |
| dev->name, REV_ID_VID(revid), REV_ID_PID(revid), REV_ID_REV_MAJOR(revid), |
| REV_ID_REV_MINOR(revid), devid); |
| |
| /* |
| * Depths are specified as number of words (32bit), convert to bytes |
| */ |
| uint32_t cfg0 = sys_read32(config->base + CONF_STATUS0); |
| uint32_t cfg1 = sys_read32(config->base + CONF_STATUS1); |
| |
| data->hw_cfg.cmdr_mem_depth = CONF_STATUS0_CMDR_DEPTH(cfg0) * 4; |
| data->hw_cfg.cmd_mem_depth = CONF_STATUS1_CMD_DEPTH(cfg1) * 4; |
| data->hw_cfg.rx_mem_depth = CONF_STATUS1_RX_DEPTH(cfg1) * 4; |
| data->hw_cfg.tx_mem_depth = CONF_STATUS1_TX_DEPTH(cfg1) * 4; |
| data->hw_cfg.ibir_mem_depth = CONF_STATUS0_IBIR_DEPTH(cfg0) * 4; |
| |
| LOG_DBG("%s: FIFO info:\r\n" |
| " cmd_mem_depth = %u\r\n" |
| " cmdr_mem_depth = %u\r\n" |
| " rx_mem_depth = %u\r\n" |
| " tx_mem_depth = %u\r\n" |
| " ibir_mem_depth = %u", |
| dev->name, data->hw_cfg.cmd_mem_depth, data->hw_cfg.cmdr_mem_depth, |
| data->hw_cfg.rx_mem_depth, data->hw_cfg.tx_mem_depth, data->hw_cfg.ibir_mem_depth); |
| |
| /* Regardless of the cmd depth size we are limited by our cmd array length. */ |
| data->hw_cfg.cmd_mem_depth = MIN(data->hw_cfg.cmd_mem_depth, ARRAY_SIZE(data->xfer.cmds)); |
| } |
| |
| /** |
| * @brief Get configuration of the I3C hardware. |
| * |
| * This provides a way to get the current configuration of the I3C hardware. |
| * |
| * This can return cached config or probed hardware parameters, but it has to |
| * be up to date with current configuration. |
| * |
| * @param[in] dev Pointer to controller device driver instance. |
| * @param[in] type Type of configuration parameters being passed |
| * in @p config. |
| * @param[in,out] config Pointer to the configuration parameters. |
| * |
| * Note that if @p type is @c I3C_CONFIG_CUSTOM, @p config must contain |
| * the ID of the parameter to be retrieved. |
| * |
| * @retval 0 If successful. |
| * @retval -EIO General Input/Output errors. |
| * @retval -ENOSYS If not implemented. |
| */ |
| static int cdns_i3c_config_get(const struct device *dev, enum i3c_config_type type, void *config) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| int ret = 0; |
| |
| if (config == NULL) { |
| ret = -EINVAL; |
| goto out_configure; |
| } |
| |
| (void)memcpy(config, &data->common.ctrl_config, sizeof(data->common.ctrl_config)); |
| |
| out_configure: |
| return ret; |
| } |
| |
| /** |
| * @brief Writes to the Target's TX FIFO |
| * |
| * The Cadence I3C will then ACK read requests to it's TX FIFO from a |
| * Controller |
| * |
| * @param dev Pointer to the device structure for an I3C controller |
| * driver configured in target mode. |
| * @param buf Pointer to the buffer |
| * @param len Length of the buffer |
| * |
| * @retval Total number of bytes written |
| * @retval -EACCES Not in Target Mode |
| * @retval -ENOSPC No space in Tx FIFO |
| */ |
| static int cdns_i3c_target_tx_write(const struct device *dev, uint8_t *buf, uint16_t len) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| struct cdns_i3c_data *data = dev->data; |
| |
| /* check if we are currently a target */ |
| if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) { |
| return -EACCES; |
| } |
| |
| /* check if there is space available in the tx fifo */ |
| if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_SDR_TX_FULL) { |
| return -ENOSPC; |
| } |
| |
| k_mutex_lock(&data->bus_lock, K_FOREVER); |
| |
| /* write as much as you can to the fifo */ |
| uint16_t i; |
| |
| for (i = 0; |
| i < len && (!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_SDR_TX_FULL)); |
| i++) { |
| sys_write32((uint32_t)buf[i], config->base + TX_FIFO); |
| } |
| |
| /* setup THR interrupt */ |
| uint32_t thr_ctrl = sys_read32(config->base + TX_RX_THR_CTRL); |
| |
| /* |
| * Interrupt at half of the data or FIFO depth to give it enough time to be |
| * processed. The ISR will then callback to the function pointer |
| * `read_processed_cb` to collect more data to transmit |
| */ |
| thr_ctrl &= ~TX_THR_MASK; |
| thr_ctrl |= TX_THR(MIN((data->hw_cfg.tx_mem_depth / 4) / 2, i / 2)); |
| sys_write32(thr_ctrl, config->base + TX_RX_THR_CTRL); |
| |
| k_mutex_unlock(&data->bus_lock); |
| |
| /* return total bytes written */ |
| return i; |
| } |
| |
| /** |
| * @brief Instructs the I3C Target device to register itself to the I3C Controller |
| * |
| * This routine instructs the I3C Target device to register itself to the I3C |
| * Controller via its parent controller's i3c_target_register() API. |
| * |
| * @param dev Pointer to target device driver instance. |
| * @param cfg Config struct with functions and parameters used by the I3C driver |
| * to send bus events |
| * |
| * @return @see i3c_device_find. |
| */ |
| static int cdns_i3c_target_register(const struct device *dev, struct i3c_target_config *cfg) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| |
| data->target_config = cfg; |
| return 0; |
| } |
| |
| /** |
| * @brief Unregisters the provided config as Target device |
| * |
| * This routine disables I3C target mode for the 'dev' I3C bus driver using |
| * the provided 'config' struct containing the functions and parameters |
| * to send bus events. |
| * |
| * @param dev Pointer to target device driver instance. |
| * @param cfg Config struct with functions and parameters used by the I3C driver |
| * to send bus events |
| * |
| * @return @see i3c_device_find. |
| */ |
| static int cdns_i3c_target_unregister(const struct device *dev, struct i3c_target_config *cfg) |
| { |
| /* no way to disable? maybe write DA to 0? */ |
| return 0; |
| } |
| |
| /** |
| * @brief Find a registered I3C target device. |
| * |
| * This returns the I3C device descriptor of the I3C device |
| * matching the incoming @p id. |
| * |
| * @param dev Pointer to controller device driver instance. |
| * @param id Pointer to I3C device ID. |
| * |
| * @return @see i3c_device_find. |
| */ |
| static struct i3c_device_desc *cdns_i3c_device_find(const struct device *dev, |
| const struct i3c_device_id *id) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| |
| return i3c_dev_list_find(&config->common.dev_list, id); |
| } |
| |
| /** |
| * Find a registered I2C target device. |
| * |
| * Controller only API. |
| * |
| * This returns the I2C device descriptor of the I2C device |
| * matching the device address @p addr. |
| * |
| * @param dev Pointer to controller device driver instance. |
| * @param id I2C target device address. |
| * |
| * @return @see i3c_i2c_device_find. |
| */ |
| static struct i3c_i2c_device_desc *cdns_i3c_i2c_device_find(const struct device *dev, uint16_t addr) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| |
| return i3c_dev_list_i2c_addr_find(&data->common.attached_dev, addr); |
| } |
| |
| /** |
| * @brief Transfer messages in I2C mode. |
| * |
| * @see i2c_transfer |
| * |
| * @param dev Pointer to device driver instance. |
| * @param target Pointer to target device descriptor. |
| * @param msgs Pointer to I2C messages. |
| * @param num_msgs Number of messages to transfers. |
| * |
| * @return @see i2c_transfer |
| */ |
| static int cdns_i3c_i2c_api_transfer(const struct device *dev, struct i2c_msg *msgs, |
| uint8_t num_msgs, uint16_t addr) |
| { |
| struct i3c_i2c_device_desc *i2c_dev = cdns_i3c_i2c_device_find(dev, addr); |
| int ret; |
| |
| if (i2c_dev == NULL) { |
| ret = -ENODEV; |
| } else { |
| ret = cdns_i3c_i2c_transfer(dev, i2c_dev, msgs, num_msgs); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Determine I3C bus mode from the i2c devices on the bus |
| * |
| * Reads the LVR of all I2C devices and returns the I3C bus |
| * Mode |
| * |
| * @param dev_list Pointer to device list |
| * |
| * @return @see enum i3c_bus_mode. |
| */ |
| static enum i3c_bus_mode i3c_bus_mode(const struct i3c_dev_list *dev_list) |
| { |
| enum i3c_bus_mode mode = I3C_BUS_MODE_PURE; |
| |
| for (int i = 0; i < dev_list->num_i2c; i++) { |
| switch (I3C_LVR_I2C_DEV_IDX(dev_list->i2c[i].lvr)) { |
| case I3C_LVR_I2C_DEV_IDX_0: |
| if (mode < I3C_BUS_MODE_MIXED_FAST) { |
| mode = I3C_BUS_MODE_MIXED_FAST; |
| } |
| break; |
| case I3C_LVR_I2C_DEV_IDX_1: |
| if (mode < I3C_BUS_MODE_MIXED_LIMITED) { |
| mode = I3C_BUS_MODE_MIXED_LIMITED; |
| } |
| break; |
| case I3C_LVR_I2C_DEV_IDX_2: |
| if (mode < I3C_BUS_MODE_MIXED_SLOW) { |
| mode = I3C_BUS_MODE_MIXED_SLOW; |
| } |
| break; |
| default: |
| mode = I3C_BUS_MODE_INVALID; |
| break; |
| } |
| } |
| return mode; |
| } |
| |
| /** |
| * Determine THD_DEL value for CTRL register |
| * |
| * @param dev Pointer to device driver instance. |
| * |
| * @return Value to be written to THD_DEL |
| */ |
| static uint8_t cdns_i3c_clk_to_data_turnaround(const struct device *dev) |
| { |
| const struct cdns_i3c_config *config = dev->config; |
| uint32_t input_clock_frequency = config->input_frequency; |
| uint8_t thd_delay = |
| DIV_ROUND_UP(I3C_TSCO_DEFAULT_NS, (NSEC_PER_SEC / input_clock_frequency)); |
| |
| if (thd_delay > THD_DELAY_MAX) { |
| thd_delay = THD_DELAY_MAX; |
| } |
| |
| return (THD_DELAY_MAX - thd_delay); |
| } |
| |
| /** |
| * @brief Initialize the hardware. |
| * |
| * @param dev Pointer to controller device driver instance. |
| */ |
| static int cdns_i3c_bus_init(const struct device *dev) |
| { |
| struct cdns_i3c_data *data = dev->data; |
| const struct cdns_i3c_config *config = dev->config; |
| struct i3c_config_controller *ctrl_config = &data->common.ctrl_config; |
| |
| /* Clear all retaining regs */ |
| sys_write32(DEVS_CTRL_DEV_CLR_ALL, config->base + DEVS_CTRL); |
| |
| uint32_t conf0 = sys_read32(config->base + CONF_STATUS0); |
| |
| data->max_devs = CONF_STATUS0_DEVS_NUM(conf0); |
| data->free_rr_slots = GENMASK(data->max_devs, 1); |
| ctrl_config->is_secondary = (conf0 & CONF_STATUS0_SEC_MASTER) ? true : false; |
| ctrl_config->supported_hdr = (conf0 & CONF_STATUS0_SUPPORTS_DDR) ? I3C_MSG_HDR_DDR : 0; |
| |
| k_mutex_init(&data->bus_lock); |
| k_sem_init(&data->xfer.complete, 0, 1); |
| k_sem_init(&data->ibi_hj_complete, 0, 1); |
| |
| cdns_i3c_interrupts_disable(config); |
| cdns_i3c_interrupts_clear(config); |
| |
| config->irq_config_func(dev); |
| |
| /* Ensure the bus is disabled. */ |
| sys_write32(~CTRL_DEV_EN & sys_read32(config->base + CTRL), config->base + CTRL); |
| |
| cdns_i3c_read_hw_cfg(dev); |
| |
| /* determine prescaler timings for i3c and i2c scl */ |
| cdns_i3c_set_prescalers(dev); |
| |
| enum i3c_bus_mode mode = i3c_bus_mode(&config->common.dev_list); |
| |
| LOG_DBG("%s: i3c bus mode %d", dev->name, mode); |
| int cdns_mode; |
| |
| switch (mode) { |
| case I3C_BUS_MODE_PURE: |
| cdns_mode = CTRL_PURE_BUS_MODE; |
| break; |
| case I3C_BUS_MODE_MIXED_FAST: |
| cdns_mode = CTRL_MIXED_FAST_BUS_MODE; |
| break; |
| case I3C_BUS_MODE_MIXED_LIMITED: |
| case I3C_BUS_MODE_MIXED_SLOW: |
| cdns_mode = CTRL_MIXED_SLOW_BUS_MODE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * When a Hot-Join request happens, disable all events coming from this device. |
| * We will issue ENTDAA afterwards from the threaded IRQ handler. |
| * Set HJ ACK later after bus init to prevent targets from indirect DAA enforcement. |
| * |
| * Set the I3C Bus Mode based on the LVR of the I2C devices |
| */ |
| uint32_t ctrl = CTRL_HJ_DISEC | CTRL_MCS_EN | (CTRL_BUS_MODE_MASK & cdns_mode) | |
| CTRL_THD_DELAY(cdns_i3c_clk_to_data_turnaround(dev)); |
| /* Disable Controllership requests as it is not supported yet by the driver */ |
| ctrl &= ~CTRL_MST_ACK; |
| |
| /* |
| * Cadence I3C release r105v1p0 and above support I3C v1.1 timing change |
| * for tCASHr_min = tCAS_min / 2, otherwise tCASr_min = tCAS_min (as |
| * per MIPI spec v1.0) |
| */ |
| uint32_t rev_id = sys_read32(config->base + REV_ID); |
| |
| if (REV_ID_REV(rev_id) >= REV_ID_VERSION(1, 5)) { |
| ctrl |= CTRL_I3C_11_SUPP; |
| } |
| |
| /* write ctrl register value */ |
| sys_write32(ctrl, config->base + CTRL); |
| |
| /* enable Core */ |
| sys_write32(CTRL_DEV_EN | ctrl, config->base + CTRL); |
| |
| /* Set fifo thresholds. */ |
| sys_write32(CMD_THR(I3C_CMDD_THR) | IBI_THR(I3C_IBID_THR) | CMDR_THR(I3C_CMDR_THR) | |
| IBIR_THR(I3C_IBIR_THR), |
| config->base + CMD_IBI_THR_CTRL); |
| |
| /* Set TX/RX interrupt thresholds. */ |
| if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) { |
| sys_write32(TX_THR(I3C_TX_THR) | RX_THR(data->hw_cfg.rx_mem_depth), |
| config->base + TX_RX_THR_CTRL); |
| } else { |
| sys_write32(TX_THR(1) | RX_THR(1), config->base + TX_RX_THR_CTRL); |
| } |
| |
| /* enable target interrupts */ |
| sys_write32(SLV_INT_DA_UPD | SLV_INT_SDR_RD_COMP | SLV_INT_SDR_WR_COMP | |
| SLV_INT_SDR_RX_THR | SLV_INT_SDR_TX_THR | SLV_INT_SDR_RX_UNF | |
| SLV_INT_SDR_TX_OVF | SLV_INT_HJ_DONE, |
| config->base + SLV_IER); |
| |
| /* Enable IBI interrupts. */ |
| sys_write32(MST_INT_IBIR_THR | MST_INT_RX_UNF | MST_INT_HALTED | MST_INT_TX_OVF, |
| config->base + MST_IER); |
| |
| int ret = i3c_addr_slots_init(dev); |
| |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* Program retaining regs. */ |
| cdns_i3c_program_controller_retaining_reg(dev); |
| |
| /* only primary controllers are responsible for initializing the bus */ |
| if (!ctrl_config->is_secondary) { |
| /* Perform bus initialization */ |
| ret = i3c_bus_init(dev, &config->common.dev_list); |
| #ifdef CONFIG_I3C_USE_IBI |
| /* Bus Initialization Complete, allow HJ ACKs */ |
| sys_write32(CTRL_HJ_ACK | sys_read32(config->base + CTRL), config->base + CTRL); |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| static struct i3c_driver_api api = { |
| .i2c_api.configure = cdns_i3c_i2c_api_configure, |
| .i2c_api.transfer = cdns_i3c_i2c_api_transfer, |
| |
| .configure = cdns_i3c_configure, |
| .config_get = cdns_i3c_config_get, |
| |
| .attach_i3c_device = cdns_i3c_attach_device, |
| .reattach_i3c_device = cdns_i3c_reattach_device, |
| .detach_i3c_device = cdns_i3c_detach_device, |
| .attach_i2c_device = cdns_i3c_i2c_attach_device, |
| .detach_i2c_device = cdns_i3c_i2c_detach_device, |
| |
| .do_daa = cdns_i3c_do_daa, |
| .do_ccc = cdns_i3c_do_ccc, |
| |
| .i3c_device_find = cdns_i3c_device_find, |
| |
| .i3c_xfers = cdns_i3c_transfer, |
| |
| .target_tx_write = cdns_i3c_target_tx_write, |
| .target_register = cdns_i3c_target_register, |
| .target_unregister = cdns_i3c_target_unregister, |
| |
| #ifdef CONFIG_I3C_USE_IBI |
| .ibi_enable = cdns_i3c_controller_ibi_enable, |
| .ibi_disable = cdns_i3c_controller_ibi_disable, |
| .ibi_raise = cdns_i3c_target_ibi_raise, |
| #endif |
| }; |
| |
| #define CADENCE_I3C_INSTANTIATE(n) \ |
| static void cdns_i3c_config_func_##n(const struct device *dev); \ |
| static struct i3c_device_desc cdns_i3c_device_array_##n[] = I3C_DEVICE_ARRAY_DT_INST(n); \ |
| static struct i3c_i2c_device_desc cdns_i3c_i2c_device_array_##n[] = \ |
| I3C_I2C_DEVICE_ARRAY_DT_INST(n); \ |
| static const struct cdns_i3c_config i3c_config_##n = { \ |
| .base = DT_INST_REG_ADDR(n), \ |
| .input_frequency = DT_INST_PROP(n, input_clock_frequency), \ |
| .irq_config_func = cdns_i3c_config_func_##n, \ |
| .common.dev_list.i3c = cdns_i3c_device_array_##n, \ |
| .common.dev_list.num_i3c = ARRAY_SIZE(cdns_i3c_device_array_##n), \ |
| .common.dev_list.i2c = cdns_i3c_i2c_device_array_##n, \ |
| .common.dev_list.num_i2c = ARRAY_SIZE(cdns_i3c_i2c_device_array_##n), \ |
| }; \ |
| static struct cdns_i3c_data i3c_data_##n = { \ |
| .common.ctrl_config.scl.i3c = DT_INST_PROP_OR(n, i3c_scl_hz, 0), \ |
| .common.ctrl_config.scl.i2c = DT_INST_PROP_OR(n, i2c_scl_hz, 0), \ |
| }; \ |
| DEVICE_DT_INST_DEFINE(n, cdns_i3c_bus_init, NULL, &i3c_data_##n, &i3c_config_##n, \ |
| POST_KERNEL, CONFIG_I3C_CONTROLLER_INIT_PRIORITY, &api); \ |
| static void cdns_i3c_config_func_##n(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), cdns_i3c_irq_handler, \ |
| DEVICE_DT_INST_GET(n), 0); \ |
| irq_enable(DT_INST_IRQN(n)); \ |
| }; |
| |
| #define DT_DRV_COMPAT cdns_i3c |
| DT_INST_FOREACH_STATUS_OKAY(CADENCE_I3C_INSTANTIATE) |