| /* |
| * Copyright (c) 2018 Intel Corporation |
| * Copyright (c) 2019 Nordic Semiconductor ASA |
| * Copyright (c) 2021 Seagate Technology LLC |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT worldsemi_ws2812_gpio |
| |
| #include <zephyr/drivers/led_strip.h> |
| |
| #include <string.h> |
| |
| #define LOG_LEVEL CONFIG_LED_STRIP_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(ws2812_gpio); |
| |
| #include <zephyr/kernel.h> |
| #include <soc.h> |
| #include <zephyr/drivers/gpio.h> |
| #include <zephyr/device.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/clock_control/nrf_clock_control.h> |
| #include <zephyr/dt-bindings/led/led.h> |
| |
| struct ws2812_gpio_cfg { |
| struct gpio_dt_spec gpio; |
| uint8_t num_colors; |
| const uint8_t *color_mapping; |
| size_t length; |
| }; |
| |
| /* |
| * This is hard-coded to nRF51 in two ways: |
| * |
| * 1. The assembly delays T1H, T0H, TxL |
| * 2. GPIO set/clear |
| */ |
| |
| /* |
| * T1H: 1 bit high pulse delay: 12 cycles == .75 usec |
| * T0H: 0 bit high pulse delay: 4 cycles == .25 usec |
| * TxL: inter-bit low pulse delay: 8 cycles == .5 usec |
| * |
| * We can't use k_busy_wait() here: its argument is in microseconds, |
| * and we need roughly .05 microsecond resolution. |
| */ |
| #define DELAY_T1H "nop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\n" |
| #define DELAY_T0H "nop\nnop\nnop\nnop\n" |
| #define DELAY_TxL "nop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\n" |
| |
| /* |
| * GPIO set/clear (these make assumptions about assembly details |
| * below). |
| * |
| * This uses OUTCLR == OUTSET+4. |
| * |
| * We should be able to make this portable using the results of |
| * https://github.com/zephyrproject-rtos/zephyr/issues/11917. |
| * |
| * We already have the GPIO device stashed in ws2812_gpio_config, so |
| * this driver can be used as a test case for the optimized API. |
| * |
| * Per Arm docs, both Rd and Rn must be r0-r7, so we use the "l" |
| * constraint in the below assembly. |
| */ |
| #define SET_HIGH "str %[p], [%[r], #0]\n" /* OUTSET = BIT(LED_PIN) */ |
| #define SET_LOW "str %[p], [%[r], #4]\n" /* OUTCLR = BIT(LED_PIN) */ |
| |
| /* Send out a 1 bit's pulse */ |
| #define ONE_BIT(base, pin) do { \ |
| __asm volatile (SET_HIGH \ |
| DELAY_T1H \ |
| SET_LOW \ |
| DELAY_TxL \ |
| :: \ |
| [r] "l" (base), \ |
| [p] "l" (pin)); } while (false) |
| |
| /* Send out a 0 bit's pulse */ |
| #define ZERO_BIT(base, pin) do { \ |
| __asm volatile (SET_HIGH \ |
| DELAY_T0H \ |
| SET_LOW \ |
| DELAY_TxL \ |
| :: \ |
| [r] "l" (base), \ |
| [p] "l" (pin)); } while (false) |
| |
| static int send_buf(const struct device *dev, uint8_t *buf, size_t len) |
| { |
| const struct ws2812_gpio_cfg *config = dev->config; |
| volatile uint32_t *base = (uint32_t *)&NRF_GPIO->OUTSET; |
| const uint32_t val = BIT(config->gpio.pin); |
| struct onoff_manager *mgr = |
| z_nrf_clock_control_get_onoff(CLOCK_CONTROL_NRF_SUBSYS_HF); |
| struct onoff_client cli; |
| unsigned int key; |
| int rc; |
| |
| sys_notify_init_spinwait(&cli.notify); |
| rc = onoff_request(mgr, &cli); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| while (sys_notify_fetch_result(&cli.notify, &rc)) { |
| /* pend until clock is up and running */ |
| } |
| |
| key = irq_lock(); |
| |
| while (len--) { |
| uint32_t b = *buf++; |
| int32_t i; |
| |
| /* |
| * Generate signal out of the bits, MSbit first. |
| * |
| * Accumulator maintenance and branching mean the |
| * inter-bit time will be longer than TxL, but the |
| * wp.josh.com blog post says we have at least 5 usec |
| * of slack time between bits before we risk the |
| * signal getting latched, so this will be fine as |
| * long as the compiler does something minimally |
| * reasonable. |
| */ |
| for (i = 7; i >= 0; i--) { |
| if (b & BIT(i)) { |
| ONE_BIT(base, val); |
| } else { |
| ZERO_BIT(base, val); |
| } |
| } |
| } |
| |
| irq_unlock(key); |
| |
| rc = onoff_release(mgr); |
| /* Returns non-negative value on success. Cap to 0 as API states. */ |
| rc = MIN(rc, 0); |
| |
| return rc; |
| } |
| |
| static int ws2812_gpio_update_rgb(const struct device *dev, |
| struct led_rgb *pixels, |
| size_t num_pixels) |
| { |
| const struct ws2812_gpio_cfg *config = dev->config; |
| uint8_t *ptr = (uint8_t *)pixels; |
| size_t i; |
| |
| /* Convert from RGB to on-wire format (e.g. GRB, GRBW, RGB, etc) */ |
| for (i = 0; i < num_pixels; i++) { |
| uint8_t j; |
| |
| for (j = 0; j < config->num_colors; j++) { |
| switch (config->color_mapping[j]) { |
| /* White channel is not supported by LED strip API. */ |
| case LED_COLOR_ID_WHITE: |
| *ptr++ = 0; |
| break; |
| case LED_COLOR_ID_RED: |
| *ptr++ = pixels[i].r; |
| break; |
| case LED_COLOR_ID_GREEN: |
| *ptr++ = pixels[i].g; |
| break; |
| case LED_COLOR_ID_BLUE: |
| *ptr++ = pixels[i].b; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return send_buf(dev, (uint8_t *)pixels, num_pixels * config->num_colors); |
| } |
| |
| static size_t ws2812_gpio_length(const struct device *dev) |
| { |
| const struct ws2812_gpio_cfg *config = dev->config; |
| |
| return config->length; |
| } |
| |
| static const struct led_strip_driver_api ws2812_gpio_api = { |
| .update_rgb = ws2812_gpio_update_rgb, |
| .length = ws2812_gpio_length, |
| }; |
| |
| /* |
| * Retrieve the channel to color mapping (e.g. RGB, BGR, GRB, ...) from the |
| * "color-mapping" DT property. |
| */ |
| #define WS2812_COLOR_MAPPING(idx) \ |
| static const uint8_t ws2812_gpio_##idx##_color_mapping[] = \ |
| DT_INST_PROP(idx, color_mapping) |
| |
| #define WS2812_NUM_COLORS(idx) (DT_INST_PROP_LEN(idx, color_mapping)) |
| |
| /* |
| * The inline assembly above is designed to work on nRF51 devices with |
| * the 16 MHz clock enabled. |
| * |
| * TODO: try to make this portable, or at least port to more devices. |
| */ |
| |
| #define WS2812_GPIO_DEVICE(idx) \ |
| \ |
| static int ws2812_gpio_##idx##_init(const struct device *dev) \ |
| { \ |
| const struct ws2812_gpio_cfg *cfg = dev->config; \ |
| uint8_t i; \ |
| \ |
| if (!gpio_is_ready_dt(&cfg->gpio)) { \ |
| LOG_ERR("GPIO device not ready"); \ |
| return -ENODEV; \ |
| } \ |
| \ |
| for (i = 0; i < cfg->num_colors; i++) { \ |
| switch (cfg->color_mapping[i]) { \ |
| case LED_COLOR_ID_WHITE: \ |
| case LED_COLOR_ID_RED: \ |
| case LED_COLOR_ID_GREEN: \ |
| case LED_COLOR_ID_BLUE: \ |
| break; \ |
| default: \ |
| LOG_ERR("%s: invalid channel to color mapping." \ |
| " Check the color-mapping DT property", \ |
| dev->name); \ |
| return -EINVAL; \ |
| } \ |
| } \ |
| \ |
| return gpio_pin_configure_dt(&cfg->gpio, GPIO_OUTPUT); \ |
| } \ |
| \ |
| WS2812_COLOR_MAPPING(idx); \ |
| \ |
| static const struct ws2812_gpio_cfg ws2812_gpio_##idx##_cfg = { \ |
| .gpio = GPIO_DT_SPEC_INST_GET(idx, gpios), \ |
| .num_colors = WS2812_NUM_COLORS(idx), \ |
| .color_mapping = ws2812_gpio_##idx##_color_mapping, \ |
| .length = DT_INST_PROP(idx, chain_length), \ |
| }; \ |
| \ |
| DEVICE_DT_INST_DEFINE(idx, \ |
| ws2812_gpio_##idx##_init, \ |
| NULL, \ |
| NULL, \ |
| &ws2812_gpio_##idx##_cfg, POST_KERNEL, \ |
| CONFIG_LED_STRIP_INIT_PRIORITY, \ |
| &ws2812_gpio_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(WS2812_GPIO_DEVICE) |