blob: fbb8bf9f2cd9b6671a2bc858565b595a2cd31207 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief I2S bus (SSP) driver for Intel CAVS.
*
* Limitations:
* - DMA is used in simple single block transfer mode (with linked list
* enabled) and "interrupt on full transfer completion" mode.
*/
#define DT_DRV_COMPAT intel_cavs_i2s
#include <errno.h>
#include <string.h>
#include <sys/__assert.h>
#include <kernel.h>
#include <device.h>
#include <init.h>
#include <drivers/dma.h>
#include <drivers/i2s.h>
#include <soc.h>
#include "i2s_cavs.h"
#define LOG_DOMAIN dev_i2s_cavs
#define LOG_LEVEL CONFIG_I2S_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
/* length of the buffer queue */
#define I2S_CAVS_BUF_Q_LEN 2
#define CAVS_SSP_WORD_SIZE_BITS_MIN 4
#define CAVS_SSP_WORD_SIZE_BITS_MAX 32
#define CAVS_SSP_WORD_PER_FRAME_MIN 1
#define CAVS_SSP_WORD_PER_FRAME_MAX 8
#define CAVS_I2S_DMA_BURST_SIZE 8
/*
* This indicates the Tx/Rx stream. Most members of the stream are
* self-explanatory
*
* in_queue and out_queue are used as follows
* transmit stream:
* application provided buffer is queued to in_queue until loaded to DMA.
* when DMA channel is idle, buffer is retrieved from in_queue and loaded
* to DMA and queued to out_queue.
* when DMA completes, buffer is retrieved from out_queue and freed.
*
* receive stream:
* driver allocates buffer from slab and loads DMA
* buffer is queued to in_queue
* when DMA completes, buffer is retrieved from in_queue and queued to
* out_queue
* when application reads, buffer is read (may optionally block) from
* out_queue and presented to application.
*/
struct stream {
int32_t state;
uint32_t dma_channel;
struct dma_config dma_cfg;
struct dma_block_config dma_block;
struct k_msgq in_queue;
void *in_msgs[I2S_CAVS_BUF_Q_LEN];
struct k_msgq out_queue;
void *out_msgs[I2S_CAVS_BUF_Q_LEN];
};
struct i2s_cavs_config {
struct i2s_cavs_ssp *regs;
struct i2s_cavs_mn_div *mn_regs;
uint32_t irq_id;
void (*irq_connect)(void);
const struct device *dev_dma;
};
/* Device run time data */
struct i2s_cavs_dev_data {
struct i2s_config cfg;
struct stream tx;
struct stream rx;
};
#define DEV_NAME(dev) ((dev)->name)
#define DEV_CFG(dev) \
((const struct i2s_cavs_config *const)(dev)->config)
#define DEV_DATA(dev) \
((struct i2s_cavs_dev_data *const)(dev)->data)
static void i2s_dma_tx_callback(const struct device *, void *, uint32_t, int);
static void i2s_tx_stream_disable(struct i2s_cavs_dev_data *,
volatile struct i2s_cavs_ssp *const, const struct device *);
static void i2s_rx_stream_disable(struct i2s_cavs_dev_data *,
volatile struct i2s_cavs_ssp *const, const struct device *);
static inline void i2s_purge_stream_buffers(struct stream *strm,
struct k_mem_slab *mem_slab)
{
void *buffer;
while (k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, &buffer);
}
while (k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, &buffer);
}
}
/* This function is executed in the interrupt context */
static void i2s_dma_tx_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
const struct device *dev = (const struct device *)arg;
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
struct stream *strm = &dev_data->tx;
void *buffer;
int ret;
ret = k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret == 0) {
/* transmission complete. free the buffer */
k_mem_slab_free(dev_data->cfg.mem_slab, &buffer);
} else {
LOG_ERR("no buffer in output queue for channel %u",
channel);
}
switch (strm->state) {
case I2S_STATE_RUNNING:
/* get the next buffer from queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret == 0) {
/* reload the DMA */
dma_reload(dev_cfg->dev_dma, strm->dma_channel,
(uint32_t)buffer, (uint32_t)&ssp->ssd,
dev_data->cfg.block_size);
dma_start(dev_cfg->dev_dma, strm->dma_channel);
ssp->ssc1 |= SSCR1_TSRE;
k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
}
if (ret || status) {
/*
* DMA encountered an error (status != 0)
* or
* No bufers in input queue
*/
LOG_ERR("DMA status %08x channel %u k_msgq_get ret %d",
status, channel, ret);
strm->state = I2S_STATE_STOPPING;
i2s_tx_stream_disable(dev_data, ssp, dev_cfg->dev_dma);
}
break;
case I2S_STATE_STOPPING:
i2s_tx_stream_disable(dev_data, ssp, dev_cfg->dev_dma);
break;
}
}
static void i2s_dma_rx_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
const struct device *dev = (const struct device *)arg;
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
struct stream *strm = &dev_data->rx;
void *buffer;
int ret;
switch (strm->state) {
case I2S_STATE_RUNNING:
/* retrieve buffer from input queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("get buffer from in_queue %p failed (%d)",
&strm->in_queue, ret);
}
/* put buffer to output queue */
ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> out_queue %p err %d",
buffer, &strm->out_queue, ret);
}
/* allocate new buffer for next audio frame */
ret = k_mem_slab_alloc(dev_data->cfg.mem_slab, &buffer,
K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from slab %p err %d",
dev_data->cfg.mem_slab, ret);
i2s_rx_stream_disable(dev_data, ssp, dev_cfg->dev_dma);
strm->state = I2S_STATE_READY;
} else {
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> in_queue %p err %d",
buffer, &strm->in_queue, ret);
}
SOC_DCACHE_INVALIDATE(buffer, dev_data->cfg.block_size);
/* reload the DMA */
dma_reload(dev_cfg->dev_dma, strm->dma_channel,
(uint32_t)&ssp->ssd, (uint32_t)buffer,
dev_data->cfg.block_size);
dma_start(dev_cfg->dev_dma, strm->dma_channel);
ssp->ssc1 |= SSCR1_RSRE;
}
break;
case I2S_STATE_STOPPING:
i2s_rx_stream_disable(dev_data, ssp, dev_cfg->dev_dma);
strm->state = I2S_STATE_READY;
break;
}
}
static int i2s_cavs_configure(const struct device *dev, enum i2s_dir dir,
struct i2s_config *i2s_cfg)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
volatile struct i2s_cavs_mn_div *const mn_div = dev_cfg->mn_regs;
struct dma_block_config *dma_block;
uint8_t num_words = i2s_cfg->channels;
uint8_t word_size_bits = i2s_cfg->word_size;
uint8_t word_size_bytes;
uint32_t bit_clk_freq, mclk;
int ret;
uint32_t ssc0;
uint32_t ssc1;
uint32_t ssc2;
uint32_t ssc3;
uint32_t sspsp;
uint32_t sspsp2;
uint32_t sstsa;
uint32_t ssrsa;
uint32_t ssto;
uint32_t ssioc = 0U;
uint32_t mdiv;
uint32_t i2s_m = 0U;
uint32_t i2s_n = 0U;
uint32_t frame_len = 0U;
bool inverted_frame = false;
if ((dev_data->tx.state != I2S_STATE_NOT_READY) &&
(dev_data->tx.state != I2S_STATE_READY) &&
(dev_data->rx.state != I2S_STATE_NOT_READY) &&
(dev_data->rx.state != I2S_STATE_READY)) {
LOG_ERR("invalid state tx(%u) rx(%u)", dev_data->tx.state,
dev_data->rx.state);
return -EINVAL;
}
if (i2s_cfg->frame_clk_freq == 0U) {
LOG_ERR("Invalid frame_clk_freq %u",
i2s_cfg->frame_clk_freq);
return -EINVAL;
}
if (word_size_bits < CAVS_SSP_WORD_SIZE_BITS_MIN ||
word_size_bits > CAVS_SSP_WORD_SIZE_BITS_MAX) {
LOG_ERR("Unsupported I2S word size %u", word_size_bits);
return -EINVAL;
}
if (num_words < CAVS_SSP_WORD_PER_FRAME_MIN ||
num_words > CAVS_SSP_WORD_PER_FRAME_MAX) {
LOG_ERR("Unsupported words per frame number %u", num_words);
return -EINVAL;
}
if ((i2s_cfg->options & I2S_OPT_PINGPONG) == I2S_OPT_PINGPONG) {
LOG_ERR("Ping-pong mode not supported");
return -ENOTSUP;
}
memcpy(&dev_data->cfg, i2s_cfg, sizeof(struct i2s_config));
/* reset SSP settings */
/* sscr0 dynamic settings are DSS, EDSS, SCR, FRDC, ECS */
ssc0 = SSCR0_MOD | SSCR0_PSP | SSCR0_RIM;
/* sscr1 dynamic settings are SFRMDIR, SCLKDIR, SCFR */
ssc1 = SSCR1_TTE | SSCR1_TTELP | SSCR1_TRAIL;
/* sscr2 dynamic setting is LJDFD */
ssc2 = 0U;
/* sscr3 dynamic settings are TFT, RFT */
ssc3 = SSCR3_TX(CAVS_I2S_DMA_BURST_SIZE) |
SSCR3_RX(CAVS_I2S_DMA_BURST_SIZE);
/* sspsp dynamic settings are SCMODE, SFRMP, DMYSTRT, SFRMWDTH */
sspsp = 0U;
/* sspsp2 no dynamic setting */
sspsp2 = 0x0;
/* ssto no dynamic setting */
ssto = 0x0;
/* sstsa dynamic setting is TTSA, set according to num_words */
sstsa = BIT_MASK(num_words);
/* ssrsa dynamic setting is RTSA, set according to num_words */
ssrsa = BIT_MASK(num_words);
if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
/* set BCLK mode as slave */
ssc1 |= SSCR1_SCLKDIR;
} else {
/* enable BCLK output */
ssioc = SSIOC_SCOE;
}
if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE) {
/* set WCLK mode as slave */
ssc1 |= SSCR1_SFRMDIR;
}
ssioc |= SSIOC_SFCR;
/* clock signal polarity */
switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) {
case I2S_FMT_CLK_NF_NB:
break;
case I2S_FMT_CLK_NF_IB:
sspsp |= SSPSP_SCMODE(2);
break;
case I2S_FMT_CLK_IF_NB:
inverted_frame = true; /* handled later with format */
break;
case I2S_FMT_CLK_IF_IB:
sspsp |= SSPSP_SCMODE(2);
inverted_frame = true; /* handled later with format */
break;
default:
LOG_ERR("Unsupported Clock format");
return -EINVAL;
}
mclk = soc_get_ref_clk_freq();
bit_clk_freq = i2s_cfg->frame_clk_freq * word_size_bits * num_words;
/* BCLK is generated from MCLK - must be divisible */
if (mclk % bit_clk_freq) {
LOG_INF("MCLK/BCLK is not an integer, using M/N divider");
/*
* Simplification: Instead of calculating lowest values of
* M and N, just set M and N as BCLK and MCLK respectively
* in 0.1KHz units
* In addition, double M so that it can be later divided by 2
* to get an approximately 50% duty cycle clock
*/
i2s_m = (bit_clk_freq << 1) / 100U;
i2s_n = mclk / 100U;
/* set divider value of 1 which divides the clock by 2 */
mdiv = 1U;
/* Select M/N divider as the clock source */
ssc0 |= SSCR0_ECS;
} else {
mdiv = (mclk / bit_clk_freq) - 1;
}
/* divisor must be within SCR range */
if (mdiv > (SSCR0_SCR_MASK >> 8)) {
LOG_ERR("Divisor is not within SCR range");
return -EINVAL;
}
/* set the SCR divisor */
ssc0 |= SSCR0_SCR(mdiv);
/* format */
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
ssc0 |= SSCR0_FRDC(i2s_cfg->channels);
/* set asserted frame length */
frame_len = word_size_bits;
/* handle frame polarity, I2S default is falling/active low */
sspsp |= SSPSP_SFRMP(!inverted_frame) | SSPSP_FSRT;
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
ssc0 |= SSCR0_FRDC(i2s_cfg->channels);
/* LJDFD enable */
ssc2 &= ~SSCR2_LJDFD;
/* set asserted frame length */
frame_len = word_size_bits;
/* LEFT_J default is rising/active high, opposite of I2S */
sspsp |= SSPSP_SFRMP(inverted_frame);
break;
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
case I2S_FMT_DATA_FORMAT_PCM_LONG:
default:
LOG_ERR("Unsupported I2S data format");
return -EINVAL;
}
sspsp |= SSPSP_SFRMWDTH(frame_len);
if (word_size_bits > 16) {
ssc0 |= (SSCR0_EDSS | SSCR0_DSIZE(word_size_bits - 16));
} else {
ssc0 |= SSCR0_DSIZE(word_size_bits);
}
ssp->ssc0 = ssc0;
ssp->ssc1 = ssc1;
ssp->ssc2 = ssc2;
ssp->ssc3 = ssc3;
ssp->sspsp2 = sspsp2;
ssp->sspsp = sspsp;
ssp->ssioc = ssioc;
ssp->ssto = ssto;
ssp->sstsa = sstsa;
ssp->ssrsa = ssrsa;
mn_div->mval = I2S_MNVAL(i2s_m);
mn_div->nval = I2S_MNVAL(i2s_n);
/* Set up DMA channel parameters */
word_size_bytes = (word_size_bits + 7) / 8U;
dev_data->tx.dma_cfg.source_data_size = word_size_bytes;
dev_data->tx.dma_cfg.dest_data_size = word_size_bytes;
dev_data->rx.dma_cfg.source_data_size = word_size_bytes;
dev_data->rx.dma_cfg.dest_data_size = word_size_bytes;
dma_block = dev_data->tx.dma_cfg.head_block;
dma_block->block_size = i2s_cfg->block_size;
dma_block->source_address = (uint32_t)NULL;
dma_block->dest_address = (uint32_t)&ssp->ssd;
ret = dma_config(dev_cfg->dev_dma, dev_data->tx.dma_channel,
&dev_data->tx.dma_cfg);
if (ret < 0) {
LOG_ERR("dma_config failed: %d", ret);
return ret;
}
dma_block = dev_data->rx.dma_cfg.head_block;
dma_block->block_size = i2s_cfg->block_size;
dma_block->source_address = (uint32_t)&ssp->ssd;
dma_block->dest_address = (uint32_t)NULL;
ret = dma_config(dev_cfg->dev_dma, dev_data->rx.dma_channel,
&dev_data->rx.dma_cfg);
if (ret < 0) {
LOG_ERR("dma_config failed: %d", ret);
return ret;
}
/* enable port */
ssp->ssc0 |= SSCR0_SSE;
/* enable interrupt */
irq_enable(dev_cfg->irq_id);
dev_data->tx.state = I2S_STATE_READY;
dev_data->rx.state = I2S_STATE_READY;
return 0;
}
static int i2s_tx_stream_start(struct i2s_cavs_dev_data *dev_data,
volatile struct i2s_cavs_ssp *const ssp,
const struct device *dev_dma)
{
int ret = 0;
void *buffer;
unsigned int key;
struct stream *strm = &dev_data->tx;
/* retrieve buffer from input queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("No buffer in input queue to start transmission");
return ret;
}
ret = dma_reload(dev_dma, strm->dma_channel, (uint32_t)buffer,
(uint32_t)&ssp->ssd, dev_data->cfg.block_size);
if (ret != 0) {
LOG_ERR("dma_reload failed (%d)", ret);
return ret;
}
/* put buffer in output queue */
ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in output queue");
return ret;
}
ret = dma_start(dev_dma, strm->dma_channel);
if (ret < 0) {
LOG_ERR("dma_start failed (%d)", ret);
return ret;
}
/* Enable transmit operation */
key = irq_lock();
ssp->ssc1 |= SSCR1_TSRE;
ssp->sstsa |= SSTSA_TXEN;
irq_unlock(key);
return 0;
}
static int i2s_rx_stream_start(struct i2s_cavs_dev_data *dev_data,
volatile struct i2s_cavs_ssp *const ssp,
const struct device *dev_dma)
{
int ret = 0;
void *buffer;
unsigned int key;
struct stream *strm = &dev_data->rx;
/* allocate receive buffer from SLAB */
ret = k_mem_slab_alloc(dev_data->cfg.mem_slab, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from mem_slab failed (%d)", ret);
return ret;
}
SOC_DCACHE_INVALIDATE(buffer, dev_data->cfg.block_size);
ret = dma_reload(dev_dma, strm->dma_channel, (uint32_t)&ssp->ssd,
(uint32_t)buffer, dev_data->cfg.block_size);
if (ret != 0) {
LOG_ERR("dma_reload failed (%d)", ret);
return ret;
}
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in output queue");
return ret;
}
LOG_INF("Starting DMA Ch%u", strm->dma_channel);
ret = dma_start(dev_dma, strm->dma_channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA Ch%d (%d)", strm->dma_channel,
ret);
return ret;
}
/* Enable Receive operation */
key = irq_lock();
ssp->ssc1 |= SSCR1_RSRE;
ssp->ssrsa |= SSRSA_RXEN;
irq_unlock(key);
return 0;
}
static void i2s_tx_stream_disable(struct i2s_cavs_dev_data *dev_data,
volatile struct i2s_cavs_ssp *const ssp,
const struct device *dev_dma)
{
struct stream *strm = &dev_data->tx;
unsigned int key;
/*
* Enable transmit undderrun interrupt to allow notification
* upon transmit FIFO being emptied.
* Defer disabling of TX to the underrun processing in ISR
*/
key = irq_lock();
ssp->ssc0 &= ~SSCR0_TIM;
irq_unlock(key);
LOG_INF("Stopping DMA channel %u for TX stream", strm->dma_channel);
dma_stop(dev_dma, strm->dma_channel);
/* purge buffers queued in the stream */
i2s_purge_stream_buffers(strm, dev_data->cfg.mem_slab);
}
static void i2s_rx_stream_disable(struct i2s_cavs_dev_data *dev_data,
volatile struct i2s_cavs_ssp *const ssp,
const struct device *dev_dma)
{
struct stream *strm = &dev_data->rx;
uint32_t data;
/* Disable DMA service request handshake logic. Handshake is
* not required now since DMA is not in operation.
*/
ssp->ssrsa &= ~SSRSA_RXEN;
LOG_INF("Stopping RX stream & DMA channel %u", strm->dma_channel);
dma_stop(dev_dma, strm->dma_channel);
/* Empty the FIFO */
while (ssp->sss & SSSR_RNE) {
/* read the RX FIFO */
data = ssp->ssd;
}
/* purge buffers queued in the stream */
i2s_purge_stream_buffers(strm, dev_data->cfg.mem_slab);
}
static int i2s_cavs_trigger(const struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
struct stream *strm;
unsigned int key;
int ret = 0;
strm = (dir == I2S_DIR_TX) ? &dev_data->tx : &dev_data->rx;
key = irq_lock();
switch (cmd) {
case I2S_TRIGGER_START:
if (strm->state != I2S_STATE_READY) {
LOG_ERR("START trigger: invalid state %u", strm->state);
ret = -EIO;
break;
}
if (dir == I2S_DIR_TX) {
ret = i2s_tx_stream_start(dev_data, ssp,
dev_cfg->dev_dma);
} else {
ret = i2s_rx_stream_start(dev_data, ssp,
dev_cfg->dev_dma);
}
if (ret < 0) {
LOG_DBG("START trigger failed %d", ret);
break;
}
strm->state = I2S_STATE_RUNNING;
break;
case I2S_TRIGGER_STOP:
case I2S_TRIGGER_DRAIN:
case I2S_TRIGGER_DROP:
if (strm->state != I2S_STATE_RUNNING) {
LOG_DBG("STOP/DRAIN/DROP trigger: invalid state");
ret = -EIO;
break;
}
strm->state = I2S_STATE_STOPPING;
break;
case I2S_TRIGGER_PREPARE:
break;
default:
LOG_ERR("Unsupported trigger command");
ret = -EINVAL;
}
irq_unlock(key);
return ret;
}
static int i2s_cavs_read(const struct device *dev, void **mem_block,
size_t *size)
{
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
struct stream *strm = &dev_data->rx;
void *buffer;
int ret = 0;
if (strm->state == I2S_STATE_NOT_READY) {
LOG_ERR("invalid state %d", strm->state);
return -EIO;
}
ret = k_msgq_get(&strm->out_queue, &buffer,
SYS_TIMEOUT_MS(dev_data->cfg.timeout));
if (ret != 0) {
return -EAGAIN;
}
*mem_block = buffer;
*size = dev_data->cfg.block_size;
return 0;
}
static int i2s_cavs_write(const struct device *dev, void *mem_block,
size_t size)
{
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
struct stream *strm = &dev_data->tx;
int ret;
if (strm->state != I2S_STATE_RUNNING &&
strm->state != I2S_STATE_READY) {
LOG_ERR("invalid state (%d)", strm->state);
return -EIO;
}
SOC_DCACHE_FLUSH(mem_block, size);
ret = k_msgq_put(&strm->in_queue, &mem_block,
SYS_TIMEOUT_MS(dev_data->cfg.timeout));
if (ret) {
LOG_ERR("k_msgq_put failed %d", ret);
return ret;
}
return ret;
}
/* clear IRQ sources atm */
static void i2s_cavs_isr(const struct device *dev)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
uint32_t status;
/* clear interrupts */
status = ssp->sss;
ssp->sss = status;
if (status & SSSR_TUR) {
/*
* transmit underrun occurred.
* 1. disable transmission
* 2. disable underrun interrupt
*/
ssp->sstsa &= ~SSTSA_TXEN;
ssp->ssc0 |= SSCR0_TIM;
dev_data->tx.state = I2S_STATE_READY;
}
}
static int i2s_cavs_initialize(const struct device *dev)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
if (!device_is_ready(dev_cfg->dev_dma)) {
LOG_ERR("%s device not ready", dev_cfg->dev_dma->name);
return -ENODEV;
}
/* Initialize the buffer queues */
k_msgq_init(&dev_data->tx.in_queue, (char *)dev_data->tx.in_msgs,
sizeof(void *), I2S_CAVS_BUF_Q_LEN);
k_msgq_init(&dev_data->rx.in_queue, (char *)dev_data->rx.in_msgs,
sizeof(void *), I2S_CAVS_BUF_Q_LEN);
k_msgq_init(&dev_data->tx.out_queue, (char *)dev_data->tx.out_msgs,
sizeof(void *), I2S_CAVS_BUF_Q_LEN);
k_msgq_init(&dev_data->rx.out_queue, (char *)dev_data->rx.out_msgs,
sizeof(void *), I2S_CAVS_BUF_Q_LEN);
/* register ISR */
dev_cfg->irq_connect();
dev_data->tx.state = I2S_STATE_NOT_READY;
dev_data->rx.state = I2S_STATE_NOT_READY;
LOG_INF("Device %s initialized", DEV_NAME(dev));
return 0;
}
static const struct i2s_driver_api i2s_cavs_driver_api = {
.configure = i2s_cavs_configure,
.read = i2s_cavs_read,
.write = i2s_cavs_write,
.trigger = i2s_cavs_trigger,
};
#define I2S_CAVS_DEVICE_INIT(n) \
static void i2s_cavs_irq_connect_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
i2s_cavs_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
} \
\
static const struct i2s_cavs_config i2s_cavs_config_##n = { \
.regs = (struct i2s_cavs_ssp *) \
DT_INST_REG_ADDR_BY_IDX(n, 0), \
.mn_regs = (struct i2s_cavs_mn_div *) \
DT_INST_REG_ADDR_BY_IDX(n, 1), \
.irq_id = DT_INST_IRQN(n), \
.irq_connect = i2s_cavs_irq_connect_##n, \
.dev_dma = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)),\
}; \
\
static struct i2s_cavs_dev_data i2s_cavs_data_##n = { \
.tx = { \
.dma_channel = \
DT_INST_DMAS_CELL_BY_NAME(n, tx, channel),\
.dma_cfg = { \
.source_burst_length = \
CAVS_I2S_DMA_BURST_SIZE, \
.dest_burst_length = \
CAVS_I2S_DMA_BURST_SIZE, \
.dma_callback = i2s_dma_tx_callback, \
.user_data = \
(void *)DEVICE_DT_INST_GET(n), \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&i2s_cavs_data_##n.tx.dma_block,\
.channel_direction = \
MEMORY_TO_PERIPHERAL,\
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(n, tx, channel),\
}, \
}, \
.rx = { \
.dma_channel = \
DT_INST_DMAS_CELL_BY_NAME(n, rx, channel),\
.dma_cfg = { \
.source_burst_length = \
CAVS_I2S_DMA_BURST_SIZE, \
.dest_burst_length = \
CAVS_I2S_DMA_BURST_SIZE, \
.dma_callback = i2s_dma_rx_callback, \
.user_data = \
(void *)DEVICE_DT_INST_GET(n), \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&i2s_cavs_data_##n.rx.dma_block,\
.channel_direction = \
PERIPHERAL_TO_MEMORY,\
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(n, rx, channel),\
}, \
}, \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
i2s_cavs_initialize, device_pm_control_nop, \
&i2s_cavs_data_##n, \
&i2s_cavs_config_##n, \
POST_KERNEL, CONFIG_I2S_INIT_PRIORITY, \
&i2s_cavs_driver_api);
DT_INST_FOREACH_STATUS_OKAY(I2S_CAVS_DEVICE_INIT)