blob: b9d8ab31bb7ece2d81d62963350ff907063706e7 [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Private API for SPI drivers
*/
#ifndef ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_
#define ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#ifdef __cplusplus
extern "C" {
#endif
enum spi_ctx_runtime_op_mode {
SPI_CTX_RUNTIME_OP_MODE_MASTER = BIT(0),
SPI_CTX_RUNTIME_OP_MODE_SLAVE = BIT(1),
};
struct spi_context {
const struct spi_config *config;
const struct spi_config *owner;
const struct gpio_dt_spec *cs_gpios;
size_t num_cs_gpios;
struct k_sem lock;
struct k_sem sync;
int sync_status;
#ifdef CONFIG_SPI_ASYNC
struct k_poll_signal *signal;
bool asynchronous;
#endif /* CONFIG_SPI_ASYNC */
const struct spi_buf *current_tx;
size_t tx_count;
const struct spi_buf *current_rx;
size_t rx_count;
const uint8_t *tx_buf;
size_t tx_len;
uint8_t *rx_buf;
size_t rx_len;
#ifdef CONFIG_SPI_SLAVE
int recv_frames;
#endif /* CONFIG_SPI_SLAVE */
};
#define SPI_CONTEXT_INIT_LOCK(_data, _ctx_name) \
._ctx_name.lock = Z_SEM_INITIALIZER(_data._ctx_name.lock, 0, 1)
#define SPI_CONTEXT_INIT_SYNC(_data, _ctx_name) \
._ctx_name.sync = Z_SEM_INITIALIZER(_data._ctx_name.sync, 0, 1)
#define SPI_CONTEXT_CS_GPIO_SPEC_ELEM(_node_id, _prop, _idx) \
GPIO_DT_SPEC_GET_BY_IDX(_node_id, _prop, _idx),
#define SPI_CONTEXT_CS_GPIOS_FOREACH_ELEM(_node_id) \
DT_FOREACH_PROP_ELEM(_node_id, cs_gpios, \
SPI_CONTEXT_CS_GPIO_SPEC_ELEM)
#define SPI_CONTEXT_CS_GPIOS_INITIALIZE(_node_id, _ctx_name) \
._ctx_name.cs_gpios = (const struct gpio_dt_spec []) { \
COND_CODE_1(DT_SPI_HAS_CS_GPIOS(_node_id), \
(SPI_CONTEXT_CS_GPIOS_FOREACH_ELEM(_node_id)), ({0})) \
}, \
._ctx_name.num_cs_gpios = DT_PROP_LEN_OR(_node_id, cs_gpios, 0),
static inline bool spi_context_configured(struct spi_context *ctx,
const struct spi_config *config)
{
return !!(ctx->config == config);
}
static inline bool spi_context_is_slave(struct spi_context *ctx)
{
return (ctx->config->operation & SPI_OP_MODE_SLAVE);
}
static inline void spi_context_lock(struct spi_context *ctx,
bool asynchronous,
struct k_poll_signal *signal,
const struct spi_config *spi_cfg)
{
if ((spi_cfg->operation & SPI_LOCK_ON) &&
(k_sem_count_get(&ctx->lock) == 0) &&
(ctx->owner == spi_cfg)) {
return;
}
k_sem_take(&ctx->lock, K_FOREVER);
ctx->owner = spi_cfg;
#ifdef CONFIG_SPI_ASYNC
ctx->asynchronous = asynchronous;
ctx->signal = signal;
#endif /* CONFIG_SPI_ASYNC */
}
static inline void spi_context_release(struct spi_context *ctx, int status)
{
#ifdef CONFIG_SPI_SLAVE
if (status >= 0 && (ctx->config->operation & SPI_LOCK_ON)) {
return;
}
#endif /* CONFIG_SPI_SLAVE */
#ifdef CONFIG_SPI_ASYNC
if (!ctx->asynchronous || (status < 0)) {
ctx->owner = NULL;
k_sem_give(&ctx->lock);
}
#else
if (!(ctx->config->operation & SPI_LOCK_ON)) {
ctx->owner = NULL;
k_sem_give(&ctx->lock);
}
#endif /* CONFIG_SPI_ASYNC */
}
static inline int spi_context_wait_for_completion(struct spi_context *ctx)
{
int status = 0;
k_timeout_t timeout;
/* Do not use any timeout in the slave mode, as in this case it is not
* known when the transfer will actually start and what the frequency
* will be.
*/
if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(ctx)) {
timeout = K_FOREVER;
} else {
uint32_t timeout_ms;
timeout_ms = MAX(ctx->tx_len, ctx->rx_len) * 8 * 1000 /
ctx->config->frequency;
timeout_ms += CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE;
timeout = K_MSEC(timeout_ms);
}
#ifdef CONFIG_SPI_ASYNC
if (!ctx->asynchronous) {
if (k_sem_take(&ctx->sync, timeout)) {
LOG_ERR("Timeout waiting for transfer complete");
return -ETIMEDOUT;
}
status = ctx->sync_status;
}
#else
if (k_sem_take(&ctx->sync, timeout)) {
LOG_ERR("Timeout waiting for transfer complete");
return -ETIMEDOUT;
}
status = ctx->sync_status;
#endif /* CONFIG_SPI_ASYNC */
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(ctx) && !status) {
return ctx->recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
return status;
}
static inline void spi_context_complete(struct spi_context *ctx, int status)
{
#ifdef CONFIG_SPI_ASYNC
if (!ctx->asynchronous) {
ctx->sync_status = status;
k_sem_give(&ctx->sync);
} else {
if (ctx->signal) {
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(ctx) && !status) {
/* Let's update the status so it tells
* about number of received frames.
*/
status = ctx->recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
k_poll_signal_raise(ctx->signal, status);
}
if (!(ctx->config->operation & SPI_LOCK_ON)) {
ctx->owner = NULL;
k_sem_give(&ctx->lock);
}
}
#else
ctx->sync_status = status;
k_sem_give(&ctx->sync);
#endif /* CONFIG_SPI_ASYNC */
}
static inline int spi_context_cs_configure_all(struct spi_context *ctx)
{
int ret;
const struct gpio_dt_spec *cs_gpio;
for (cs_gpio = ctx->cs_gpios; cs_gpio < &ctx->cs_gpios[ctx->num_cs_gpios]; cs_gpio++) {
if (!device_is_ready(cs_gpio->port)) {
LOG_ERR("CS GPIO port %s pin %d is not ready",
cs_gpio->port->name, cs_gpio->pin);
return -ENODEV;
}
ret = gpio_pin_configure_dt(cs_gpio, GPIO_OUTPUT_INACTIVE);
if (ret < 0) {
return ret;
}
}
return 0;
}
static inline void _spi_context_cs_control(struct spi_context *ctx,
bool on, bool force_off)
{
if (ctx->config && ctx->config->cs && ctx->config->cs->gpio.port) {
if (on) {
gpio_pin_set_dt(&ctx->config->cs->gpio, 1);
k_busy_wait(ctx->config->cs->delay);
} else {
if (!force_off &&
ctx->config->operation & SPI_HOLD_ON_CS) {
return;
}
k_busy_wait(ctx->config->cs->delay);
gpio_pin_set_dt(&ctx->config->cs->gpio, 0);
}
}
}
static inline void spi_context_cs_control(struct spi_context *ctx, bool on)
{
_spi_context_cs_control(ctx, on, false);
}
static inline void spi_context_unlock_unconditionally(struct spi_context *ctx)
{
/* Forcing CS to go to inactive status */
_spi_context_cs_control(ctx, false, true);
if (!k_sem_count_get(&ctx->lock)) {
ctx->owner = NULL;
k_sem_give(&ctx->lock);
}
}
static inline void *spi_context_get_next_buf(const struct spi_buf **current,
size_t *count,
size_t *buf_len,
uint8_t dfs)
{
/* This loop skips zero-length buffers in the set, if any. */
while (*count) {
if (((*current)->len / dfs) != 0) {
*buf_len = (*current)->len / dfs;
return (*current)->buf;
}
++(*current);
--(*count);
}
*buf_len = 0;
return NULL;
}
static inline
void spi_context_buffers_setup(struct spi_context *ctx,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
uint8_t dfs)
{
LOG_DBG("tx_bufs %p - rx_bufs %p - %u", tx_bufs, rx_bufs, dfs);
ctx->current_tx = tx_bufs ? tx_bufs->buffers : NULL;
ctx->tx_count = ctx->current_tx ? tx_bufs->count : 0;
ctx->tx_buf = (const uint8_t *)
spi_context_get_next_buf(&ctx->current_tx, &ctx->tx_count,
&ctx->tx_len, dfs);
ctx->current_rx = rx_bufs ? rx_bufs->buffers : NULL;
ctx->rx_count = ctx->current_rx ? rx_bufs->count : 0;
ctx->rx_buf = (uint8_t *)
spi_context_get_next_buf(&ctx->current_rx, &ctx->rx_count,
&ctx->rx_len, dfs);
ctx->sync_status = 0;
#ifdef CONFIG_SPI_SLAVE
ctx->recv_frames = 0;
#endif /* CONFIG_SPI_SLAVE */
LOG_DBG("current_tx %p (%zu), current_rx %p (%zu),"
" tx buf/len %p/%zu, rx buf/len %p/%zu",
ctx->current_tx, ctx->tx_count,
ctx->current_rx, ctx->rx_count,
ctx->tx_buf, ctx->tx_len, ctx->rx_buf, ctx->rx_len);
}
static ALWAYS_INLINE
void spi_context_update_tx(struct spi_context *ctx, uint8_t dfs, uint32_t len)
{
if (!ctx->tx_len) {
return;
}
if (len > ctx->tx_len) {
LOG_ERR("Update exceeds current buffer");
return;
}
ctx->tx_len -= len;
if (!ctx->tx_len) {
/* Current buffer is done. Get the next one to be processed. */
++ctx->current_tx;
--ctx->tx_count;
ctx->tx_buf = (const uint8_t *)
spi_context_get_next_buf(&ctx->current_tx,
&ctx->tx_count,
&ctx->tx_len, dfs);
} else if (ctx->tx_buf) {
ctx->tx_buf += dfs * len;
}
LOG_DBG("tx buf/len %p/%zu", ctx->tx_buf, ctx->tx_len);
}
static ALWAYS_INLINE
bool spi_context_tx_on(struct spi_context *ctx)
{
return !!(ctx->tx_len);
}
static ALWAYS_INLINE
bool spi_context_tx_buf_on(struct spi_context *ctx)
{
return !!(ctx->tx_buf && ctx->tx_len);
}
static ALWAYS_INLINE
void spi_context_update_rx(struct spi_context *ctx, uint8_t dfs, uint32_t len)
{
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(ctx)) {
ctx->recv_frames += len;
}
#endif /* CONFIG_SPI_SLAVE */
if (!ctx->rx_len) {
return;
}
if (len > ctx->rx_len) {
LOG_ERR("Update exceeds current buffer");
return;
}
ctx->rx_len -= len;
if (!ctx->rx_len) {
/* Current buffer is done. Get the next one to be processed. */
++ctx->current_rx;
--ctx->rx_count;
ctx->rx_buf = (uint8_t *)
spi_context_get_next_buf(&ctx->current_rx,
&ctx->rx_count,
&ctx->rx_len, dfs);
} else if (ctx->rx_buf) {
ctx->rx_buf += dfs * len;
}
LOG_DBG("rx buf/len %p/%zu", ctx->rx_buf, ctx->rx_len);
}
static ALWAYS_INLINE
bool spi_context_rx_on(struct spi_context *ctx)
{
return !!(ctx->rx_len);
}
static ALWAYS_INLINE
bool spi_context_rx_buf_on(struct spi_context *ctx)
{
return !!(ctx->rx_buf && ctx->rx_len);
}
/*
* Returns the maximum length of a transfer for which all currently active
* directions have a continuous buffer, i.e. the maximum SPI transfer that
* can be done with DMA that handles only non-scattered buffers.
*/
static inline size_t spi_context_max_continuous_chunk(struct spi_context *ctx)
{
if (!ctx->tx_len) {
return ctx->rx_len;
} else if (!ctx->rx_len) {
return ctx->tx_len;
}
return MIN(ctx->tx_len, ctx->rx_len);
}
static inline size_t spi_context_longest_current_buf(struct spi_context *ctx)
{
return ctx->tx_len > ctx->rx_len ? ctx->tx_len : ctx->rx_len;
}
static inline size_t spi_context_total_tx_len(struct spi_context *ctx)
{
size_t n;
size_t total_len = 0;
for (n = 0; n < ctx->tx_count; ++n) {
total_len += ctx->current_tx[n].len;
}
return total_len;
}
static inline size_t spi_context_total_rx_len(struct spi_context *ctx)
{
size_t n;
size_t total_len = 0;
for (n = 0; n < ctx->rx_count; ++n) {
total_len += ctx->current_rx[n].len;
}
return total_len;
}
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_ */