blob: 512d11e30b12574584988b76b7a581e3ffaeb5f5 [file] [log] [blame]
/* main.c - Application main entry point */
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/sys/printk.h>
#include <zephyr/settings/settings.h>
#include <zephyr/devicetree.h>
#include <zephyr/device.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/hwinfo.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/mesh.h>
#include "board.h"
#define OP_ONOFF_GET BT_MESH_MODEL_OP_2(0x82, 0x01)
#define OP_ONOFF_SET BT_MESH_MODEL_OP_2(0x82, 0x02)
#define OP_ONOFF_SET_UNACK BT_MESH_MODEL_OP_2(0x82, 0x03)
#define OP_ONOFF_STATUS BT_MESH_MODEL_OP_2(0x82, 0x04)
static void attention_on(struct bt_mesh_model *mod)
{
board_led_set(true);
}
static void attention_off(struct bt_mesh_model *mod)
{
board_led_set(false);
}
static const struct bt_mesh_health_srv_cb health_cb = {
.attn_on = attention_on,
.attn_off = attention_off,
};
static struct bt_mesh_health_srv health_srv = {
.cb = &health_cb,
};
BT_MESH_HEALTH_PUB_DEFINE(health_pub, 0);
static const char *const onoff_str[] = { "off", "on" };
static struct {
bool val;
uint8_t tid;
uint16_t src;
uint32_t transition_time;
struct k_work_delayable work;
} onoff;
/* OnOff messages' transition time and remaining time fields are encoded as an
* 8 bit value with a 6 bit step field and a 2 bit resolution field.
* The resolution field maps to:
* 0: 100 ms
* 1: 1 s
* 2: 10 s
* 3: 20 min
*/
static const uint32_t time_res[] = {
100,
MSEC_PER_SEC,
10 * MSEC_PER_SEC,
10 * 60 * MSEC_PER_SEC,
};
static inline int32_t model_time_decode(uint8_t val)
{
uint8_t resolution = (val >> 6) & BIT_MASK(2);
uint8_t steps = val & BIT_MASK(6);
if (steps == 0x3f) {
return SYS_FOREVER_MS;
}
return steps * time_res[resolution];
}
static inline uint8_t model_time_encode(int32_t ms)
{
if (ms == SYS_FOREVER_MS) {
return 0x3f;
}
for (int i = 0; i < ARRAY_SIZE(time_res); i++) {
if (ms >= BIT_MASK(6) * time_res[i]) {
continue;
}
uint8_t steps = ceiling_fraction(ms, time_res[i]);
return steps | (i << 6);
}
return 0x3f;
}
static int onoff_status_send(struct bt_mesh_model *model,
struct bt_mesh_msg_ctx *ctx)
{
uint32_t remaining;
BT_MESH_MODEL_BUF_DEFINE(buf, OP_ONOFF_STATUS, 3);
bt_mesh_model_msg_init(&buf, OP_ONOFF_STATUS);
remaining = k_ticks_to_ms_floor32(
k_work_delayable_remaining_get(&onoff.work)) +
onoff.transition_time;
/* Check using remaining time instead of "work pending" to make the
* onoff status send the right value on instant transitions. As the
* work item is executed in a lower priority than the mesh message
* handler, the work will be pending even on instant transitions.
*/
if (remaining) {
net_buf_simple_add_u8(&buf, !onoff.val);
net_buf_simple_add_u8(&buf, onoff.val);
net_buf_simple_add_u8(&buf, model_time_encode(remaining));
} else {
net_buf_simple_add_u8(&buf, onoff.val);
}
return bt_mesh_model_send(model, ctx, &buf, NULL, NULL);
}
static void onoff_timeout(struct k_work *work)
{
if (onoff.transition_time) {
/* Start transition.
*
* The LED should be on as long as the transition is in
* progress, regardless of the target value, according to the
* Bluetooth Mesh Model specification, section 3.1.1.
*/
board_led_set(true);
k_work_reschedule(&onoff.work, K_MSEC(onoff.transition_time));
onoff.transition_time = 0;
return;
}
board_led_set(onoff.val);
}
/* Generic OnOff Server message handlers */
static int gen_onoff_get(struct bt_mesh_model *model,
struct bt_mesh_msg_ctx *ctx,
struct net_buf_simple *buf)
{
onoff_status_send(model, ctx);
return 0;
}
static int gen_onoff_set_unack(struct bt_mesh_model *model,
struct bt_mesh_msg_ctx *ctx,
struct net_buf_simple *buf)
{
uint8_t val = net_buf_simple_pull_u8(buf);
uint8_t tid = net_buf_simple_pull_u8(buf);
int32_t trans = 0;
int32_t delay = 0;
if (buf->len) {
trans = model_time_decode(net_buf_simple_pull_u8(buf));
delay = net_buf_simple_pull_u8(buf) * 5;
}
/* Only perform change if the message wasn't a duplicate and the
* value is different.
*/
if (tid == onoff.tid && ctx->addr == onoff.src) {
/* Duplicate */
return 0;
}
if (val == onoff.val) {
/* No change */
return 0;
}
printk("set: %s delay: %d ms time: %d ms\n", onoff_str[val], delay,
trans);
onoff.tid = tid;
onoff.src = ctx->addr;
onoff.val = val;
onoff.transition_time = trans;
/* Schedule the next action to happen on the delay, and keep
* transition time stored, so it can be applied in the timeout.
*/
k_work_reschedule(&onoff.work, K_MSEC(delay));
return 0;
}
static int gen_onoff_set(struct bt_mesh_model *model,
struct bt_mesh_msg_ctx *ctx,
struct net_buf_simple *buf)
{
(void)gen_onoff_set_unack(model, ctx, buf);
onoff_status_send(model, ctx);
return 0;
}
static const struct bt_mesh_model_op gen_onoff_srv_op[] = {
{ OP_ONOFF_GET, BT_MESH_LEN_EXACT(0), gen_onoff_get },
{ OP_ONOFF_SET, BT_MESH_LEN_MIN(2), gen_onoff_set },
{ OP_ONOFF_SET_UNACK, BT_MESH_LEN_MIN(2), gen_onoff_set_unack },
BT_MESH_MODEL_OP_END,
};
/* Generic OnOff Client */
static int gen_onoff_status(struct bt_mesh_model *model,
struct bt_mesh_msg_ctx *ctx,
struct net_buf_simple *buf)
{
uint8_t present = net_buf_simple_pull_u8(buf);
if (buf->len) {
uint8_t target = net_buf_simple_pull_u8(buf);
int32_t remaining_time =
model_time_decode(net_buf_simple_pull_u8(buf));
printk("OnOff status: %s -> %s: (%d ms)\n", onoff_str[present],
onoff_str[target], remaining_time);
return 0;
}
printk("OnOff status: %s\n", onoff_str[present]);
return 0;
}
static const struct bt_mesh_model_op gen_onoff_cli_op[] = {
{OP_ONOFF_STATUS, BT_MESH_LEN_MIN(1), gen_onoff_status},
BT_MESH_MODEL_OP_END,
};
/* This application only needs one element to contain its models */
static struct bt_mesh_model models[] = {
BT_MESH_MODEL_CFG_SRV,
BT_MESH_MODEL_HEALTH_SRV(&health_srv, &health_pub),
BT_MESH_MODEL(BT_MESH_MODEL_ID_GEN_ONOFF_SRV, gen_onoff_srv_op, NULL,
NULL),
BT_MESH_MODEL(BT_MESH_MODEL_ID_GEN_ONOFF_CLI, gen_onoff_cli_op, NULL,
NULL),
};
static struct bt_mesh_elem elements[] = {
BT_MESH_ELEM(0, models, BT_MESH_MODEL_NONE),
};
static const struct bt_mesh_comp comp = {
.cid = BT_COMP_ID_LF,
.elem = elements,
.elem_count = ARRAY_SIZE(elements),
};
/* Provisioning */
static int output_number(bt_mesh_output_action_t action, uint32_t number)
{
printk("OOB Number: %u\n", number);
board_output_number(action, number);
return 0;
}
static void prov_complete(uint16_t net_idx, uint16_t addr)
{
board_prov_complete();
}
static void prov_reset(void)
{
bt_mesh_prov_enable(BT_MESH_PROV_ADV | BT_MESH_PROV_GATT);
}
static uint8_t dev_uuid[16];
static const struct bt_mesh_prov prov = {
.uuid = dev_uuid,
.output_size = 4,
.output_actions = BT_MESH_DISPLAY_NUMBER,
.output_number = output_number,
.complete = prov_complete,
.reset = prov_reset,
};
/** Send an OnOff Set message from the Generic OnOff Client to all nodes. */
static int gen_onoff_send(bool val)
{
struct bt_mesh_msg_ctx ctx = {
.app_idx = models[3].keys[0], /* Use the bound key */
.addr = BT_MESH_ADDR_ALL_NODES,
.send_ttl = BT_MESH_TTL_DEFAULT,
};
static uint8_t tid;
if (ctx.app_idx == BT_MESH_KEY_UNUSED) {
printk("The Generic OnOff Client must be bound to a key before "
"sending.\n");
return -ENOENT;
}
BT_MESH_MODEL_BUF_DEFINE(buf, OP_ONOFF_SET_UNACK, 2);
bt_mesh_model_msg_init(&buf, OP_ONOFF_SET_UNACK);
net_buf_simple_add_u8(&buf, val);
net_buf_simple_add_u8(&buf, tid++);
printk("Sending OnOff Set: %s\n", onoff_str[val]);
return bt_mesh_model_send(&models[3], &ctx, &buf, NULL, NULL);
}
static void button_pressed(struct k_work *work)
{
if (bt_mesh_is_provisioned()) {
(void)gen_onoff_send(!onoff.val);
return;
}
/* Self-provision with an arbitrary address.
*
* NOTE: This should never be done in a production environment.
* Addresses should be assigned by a provisioner, and keys should
* be generated from true random numbers. It is done in this
* sample to allow testing without a provisioner.
*/
static uint8_t net_key[16];
static uint8_t dev_key[16];
static uint8_t app_key[16];
uint16_t addr;
int err;
if (IS_ENABLED(CONFIG_HWINFO)) {
addr = sys_get_le16(&dev_uuid[0]) & BIT_MASK(15);
} else {
addr = k_uptime_get_32() & BIT_MASK(15);
}
printk("Self-provisioning with address 0x%04x\n", addr);
err = bt_mesh_provision(net_key, 0, 0, 0, addr, dev_key);
if (err) {
printk("Provisioning failed (err: %d)\n", err);
return;
}
/* Add an application key to both Generic OnOff models: */
err = bt_mesh_app_key_add(0, 0, app_key);
if (err) {
printk("App key add failed (err: %d)\n", err);
return;
}
/* Models must be bound to an app key to send and receive messages with
* it:
*/
models[2].keys[0] = 0;
models[3].keys[0] = 0;
printk("Provisioned and configured!\n");
}
static void bt_ready(int err)
{
if (err) {
printk("Bluetooth init failed (err %d)\n", err);
return;
}
printk("Bluetooth initialized\n");
err = bt_mesh_init(&prov, &comp);
if (err) {
printk("Initializing mesh failed (err %d)\n", err);
return;
}
if (IS_ENABLED(CONFIG_SETTINGS)) {
settings_load();
}
/* This will be a no-op if settings_load() loaded provisioning info */
bt_mesh_prov_enable(BT_MESH_PROV_ADV | BT_MESH_PROV_GATT);
printk("Mesh initialized\n");
}
void main(void)
{
static struct k_work button_work;
int err = -1;
printk("Initializing...\n");
if (IS_ENABLED(CONFIG_HWINFO)) {
err = hwinfo_get_device_id(dev_uuid, sizeof(dev_uuid));
}
if (err < 0) {
dev_uuid[0] = 0xdd;
dev_uuid[1] = 0xdd;
}
k_work_init(&button_work, button_pressed);
err = board_init(&button_work);
if (err) {
printk("Board init failed (err: %d)\n", err);
return;
}
k_work_init_delayable(&onoff.work, onoff_timeout);
/* Initialize the Bluetooth Subsystem */
err = bt_enable(bt_ready);
if (err) {
printk("Bluetooth init failed (err %d)\n", err);
}
}