blob: 873e9f87e66fe457cc2894652f3838b9baddee74 [file] [log] [blame]
/* timer kernel services */
/*
* Copyright (c) 1997-2015 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <microkernel.h>
#include <toolchain.h>
#include <sections.h>
#include <minik.h>
#include <kticks.h>
#include <drivers/system_timer.h>
/*******************************************************************************
*
* task_node_cycle_get_32 - read the processor's high precision timer
*
* This routine reads the processor's high precision timer. It reads the
* counter register on the timer device. This counter register increments
* at a relatively high rate (e.g. 20 MHz), and thus is considered a
* "high resolution" timer. This is in contrast to nano_node_tick_get_32() and
* task_node_tick_get_32() which return the value of the kernel ticks variable.
*
* RETURNS: current high precision clock value
*/
uint32_t task_node_cycle_get_32(void)
{
return timer_read();
}
/*******************************************************************************
*
* task_node_tick_get - read the current system clock value
*
* This routine returns the current system clock value as measured in ticks.
*
* RETURNS: current system clock value
*/
int64_t task_node_tick_get(void)
{
return _LowTimeGet();
}
/*******************************************************************************
*
* task_node_tick_get_32 - read the current system clock value
*
* This routine returns the lower 32-bits of the current system clock value
* as measured in ticks.
*
* RETURNS: lower 32-bit of the current system clock value
*/
int32_t task_node_tick_get_32(void)
{
return (int32_t)_k_sys_clock_tick_count;
}
/*******************************************************************************
*
* enlist_timer - insert a timer into the timer queue
*
* RETURNS: N/A
*/
void enlist_timer(K_TIMER *T)
{
K_TIMER *P = _k_timer_list_head;
K_TIMER *Q = NULL;
while (P && (T->Ti > P->Ti)) {
T->Ti -= P->Ti;
Q = P;
P = P->Forw;
}
if (P) {
P->Ti -= T->Ti;
P->Back = T;
} else
_k_timer_list_tail = T;
if (Q)
Q->Forw = T;
else
_k_timer_list_head = T;
T->Forw = P;
T->Back = Q;
}
/*******************************************************************************
*
* delist_timer - remove a timer from the timer queue
*
* RETURNS: N/A
*/
void delist_timer(K_TIMER *T)
{
K_TIMER *P = T->Forw;
K_TIMER *Q = T->Back;
if (P) {
P->Ti += T->Ti;
P->Back = Q;
} else
_k_timer_list_tail = Q;
if (Q)
Q->Forw = P;
else
_k_timer_list_head = P;
T->Ti = -1;
}
/*******************************************************************************
*
* enlist_timeout - allocate and insert a timer into the timer queue
*
* RETURNS: N/A
*/
void enlist_timeout(struct k_args *P)
{
K_TIMER *T;
GETTIMER(T);
T->Ti = P->Time.ticks;
T->Tr = 0;
T->Args = P;
enlist_timer(T);
P->Time.timer = T;
}
/*******************************************************************************
*
* force_timeout - remove a non-expired timer from the timer queue
*
* RETURNS: N/A
*/
void force_timeout(struct k_args *A)
{
K_TIMER *T = A->Time.timer;
if (T->Ti != -1) {
delist_timer(T);
TO_ALIST(&_k_command_stack, A);
}
}
/*******************************************************************************
*
* delist_timeout - remove a non-expired timer from the timer queue and free it
*
* RETURNS: N/A
*/
void delist_timeout(K_TIMER *T)
{
if (T->Ti != -1)
delist_timer(T);
FREETIMER(T);
}
/*******************************************************************************
*
* _k_timer_alloc - handle timer allocation request
*
* This routine, called by K_swapper(), handles the request for allocating a
* timer.
*
* RETURNS: N/A
*/
void _k_timer_alloc(
struct k_args *P /* pointer to timer allocation request arguments */
)
{
K_TIMER *T;
struct k_args *A;
T = _Cget(&_k_timer_free);
P->Args.c1.timer = T;
if (T) {
GETARGS(A);
T->Args = A;
T->Ti = -1; /* -1 indicates that timer is disabled */
}
}
/*******************************************************************************
*
* task_timer_alloc - allocate a timer and return its object identifier
*
* This routine allocates a timer object and returns its identifier,
* or INVALID_OBJECT if no timer is available.
*
* RETURNS: timer identifier on success, INVALID_OBJECT on error
*/
ktimer_t task_timer_alloc(void)
{
struct k_args A;
K_TIMER *timer;
A.Comm = TALLOC;
KERNEL_ENTRY(&A);
timer = A.Args.c1.timer;
return timer ? _timer_ptr_to_id(timer) : INVALID_OBJECT;
}
/*******************************************************************************
*
* _k_timer_dealloc - handle timer deallocation request
*
* This routine, called by K_swapper(), handles the request for deallocating a
* timer.
*
* RETURNS: N/A
*/
void _k_timer_dealloc(struct k_args *P)
{
K_TIMER *T = P->Args.c1.timer;
struct k_args *A = T->Args;
if (T->Ti != -1)
delist_timer(T);
FREETIMER(T);
FREEARGS(A);
}
/*******************************************************************************
*
* task_timer_free - deallocate a timer
*
* This routine frees the resources associated with the timer. If a timer was
* started, it has to be stopped using task_timer_stop() before it can be freed.
*
* RETURNS: N/A
*/
void task_timer_free(ktimer_t timer /* timer to deallocate */
)
{
struct k_args A;
A.Comm = TDEALLOC;
A.Args.c1.timer = _timer_id_to_ptr(timer);
KERNEL_ENTRY(&A);
}
/*******************************************************************************
*
* _k_timer_start - handle start timer request
*
* This routine, called by K_swapper(), handles the start timer request from
* both task_timer_start() and task_timer_restart().
*
* RETURNS: N/A
*/
void _k_timer_start(struct k_args *P /* pointer to timer start
request arguments */
)
{
K_TIMER *T = P->Args.c1.timer; /* ptr to the timer to start */
if (T->Ti != -1) /* Stop the timer if it is active */
delist_timer(T);
T->Ti = (int32_t)P->Args.c1.time1; /* Set the initial delay */
T->Tr = P->Args.c1.time2; /* Set the period */
if ((T->Ti < 0) || (T->Tr < 0)) {/* Either the initial delay and/or */
T->Ti = -1; /* the period is invalid. Mark */
return; /* the timer as inactive. */
}
if (T->Ti == 0) {
if (T->Tr != 0) {/* Match the initial delay to the period. */
T->Ti = T->Tr;
} else { /* Ti=0, Tr=0 is an invalid combination. */
T->Ti = -1; /* Mark the timer as invalid. */
return;
}
}
if (P->Args.c1.sema != ENDLIST) { /* Track the semaphore to
* signal for when the timer
* expires. */
T->Args->Comm = SIGNALS;
T->Args->Args.s1.sema = P->Args.c1.sema;
}
enlist_timer(T);
}
/*******************************************************************************
*
* task_timer_start - start or restart the specified low resolution timer
*
* This routine starts or restarts the specified low resolution timer.
*
* When the specified number of ticks, set by <Ti>, expires, the semaphore is
* signalled. The timer repeats the expiration/signal cycle each time <Tr>
* ticks has elapsed.
*
* Setting <Tr> to 0 stops the timer at the end of the initial delay. Setting
* <Ti> to 0 will cause an initial delay equal to the repetition interval. If
* both <Ti> and <Tr> are set to 0, or if one or both of the values is invalid
* (negative), then this kernel API acts like a task_timer_stop(): if the
* allocated timer was still running (from a previous call), it will be
* cancelled; if not, nothing will happen.
*
* RETURNS: N/A
*/
void task_timer_start(ktimer_t timer, /* timer to start */
int32_t Ti, /* initial delay in ticks */
int32_t Tr, /* repetition interval in ticks */
ksem_t sema /* semaphore to signal */
)
{
struct k_args A;
A.Comm = TSTART;
A.Args.c1.timer = _timer_id_to_ptr(timer);
A.Args.c1.time1 = (int64_t)Ti;
A.Args.c1.time2 = Tr;
A.Args.c1.sema = sema;
KERNEL_ENTRY(&A);
}
/*******************************************************************************
*
* task_timer_restart - restart a timer
*
* This routine restarts the timer specified by <timer>.
*
* RETURNS: N/A
*/
void task_timer_restart(ktimer_t timer, /* timer to restart */
int32_t Ti, /* initial delay */
int32_t Tr /* repetition interval */
)
{
struct k_args A;
A.Comm = TSTART;
A.Args.c1.timer = _timer_id_to_ptr(timer);
A.Args.c1.time1 = (int64_t)Ti;
A.Args.c1.time2 = Tr;
A.Args.c1.sema = ENDLIST;
KERNEL_ENTRY(&A);
}
/*******************************************************************************
*
* _k_timer_stop - handle stop timer request
*
* This routine, called by K_swapper(), handles the request for stopping a
* timer.
*
* RETURNS: N/A
*/
void _k_timer_stop(struct k_args *P)
{
K_TIMER *T = P->Args.c1.timer;
if (T->Ti != -1)
delist_timer(T);
}
/*******************************************************************************
*
* task_timer_stop - stop a timer
*
* This routine stops the specified timer. If the timer period has already
* elapsed, the call has no effect.
*
* RETURNS: N/A
*/
void task_timer_stop(ktimer_t timer /* timer to stop */
)
{
struct k_args A;
A.Comm = TSTOP;
A.Args.c1.timer = _timer_id_to_ptr(timer);
KERNEL_ENTRY(&A);
}
/*******************************************************************************
*
* _k_task_wakeup - handle internally issued task wakeup request
*
* This routine, called by K_swapper(), handles the request for waking a task
* at the end of its sleep period.
*
* RETURNS: N/A
*/
void _k_task_wakeup(struct k_args *P)
{
K_TIMER *T;
struct k_proc *X;
X = P->Ctxt.proc;
T = P->Time.timer;
FREETIMER(T);
reset_state_bit(X, TF_TIME);
}
/*******************************************************************************
*
* _k_task_sleep - handle task sleep request
*
* This routine, called by K_swapper(), handles the request for putting a task
* to sleep.
*
* RETURNS: N/A
*/
void _k_task_sleep(struct k_args *P)
{
K_TIMER *T;
if ((P->Time.ticks) <= 0)
return;
GETTIMER(T);
T->Ti = P->Time.ticks;
T->Tr = 0;
T->Args = P;
P->Comm = WAKEUP;
P->Ctxt.proc = _k_current_task;
P->Time.timer = T;
enlist_timer(T);
set_state_bit(_k_current_task, TF_TIME);
}
/*******************************************************************************
*
* task_sleep - sleep for a number of ticks
*
* This routine suspends the calling task for the specified number of timer
* ticks. When the task is awakened, it is rescheduled according to its
* priority.
*
* RETURNS: N/A
*/
void task_sleep(int32_t ticks /* number of ticks for which to sleep */
)
{
#ifndef LITE
struct k_args A;
A.Comm = SLEEP;
A.Time.ticks = ticks;
KERNEL_ENTRY(&A);
#else
int64_t t = task_node_tick_get();
int64_t total = 0;
do {
task_yield();
total += task_node_tick_delta(&t);
} while (total < ticks);
#endif
}
/*******************************************************************************
*
* _k_time_elapse - handle elapsed ticks calculation request
*
* This routine, called by K_swapper(), handles the request for calculating the
* time elapsed since the specified reference time.
*
* RETURNS: N/A
*/
void _k_time_elapse(struct k_args *P)
{
int64_t now = _LowTimeGet();
P->Args.c1.time2 = (int32_t)(now - P->Args.c1.time1);
P->Args.c1.time1 = now;
}
/*******************************************************************************
*
* task_node_tick_delta - return ticks between calls
*
* This function is meant to be used in contained fragments of code. The first
* call to it in a particular code fragment fills in a reference time variable
* which then gets passed and updated every time the function is called. From
* the second call on, the delta between the value passed to it and the current
* tick count is the return value. Since the first call is meant to only fill in
* the reference time, its return value should be discarded.
*
* Since a code fragment that wants to use task_node_tick_delta() passes in its
* own reference time variable, multiple code fragments can make use of this
* function concurrently.
*
* Note that it is not necessary to allocate a timer to use this call.
*
* RETURNS: elapsed time in system ticks
*/
int32_t task_node_tick_delta(int64_t *reftime /* pointer to reference time */
)
{
struct k_args A;
A.Comm = ELAPSE;
A.Args.c1.time1 = *reftime;
KERNEL_ENTRY(&A);
*reftime = A.Args.c1.time1;
return A.Args.c1.time2;
}