blob: c4f1e57d30a9d66476578def0e21c617959fe4d1 [file] [log] [blame]
/*
* Copyright (c) 2021 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <drivers/i2s.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include <nrfx_i2s.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(i2s_nrfx, CONFIG_I2S_LOG_LEVEL);
struct stream_cfg {
struct i2s_config cfg;
nrfx_i2s_config_t nrfx_cfg;
};
struct i2s_nrfx_drv_data {
struct onoff_manager *clk_mgr;
struct onoff_client clk_cli;
struct stream_cfg tx;
struct k_msgq tx_queue;
struct stream_cfg rx;
struct k_msgq rx_queue;
const uint32_t *last_tx_buffer;
enum i2s_state state;
enum i2s_dir active_dir;
bool tx_configured : 1;
bool rx_configured : 1;
bool stop : 1; /* stop after the current (TX or RX) block */
bool discard_rx : 1; /* discard further RX blocks */
bool request_clock : 1;
volatile bool next_tx_buffer_needed;
};
struct i2s_nrfx_drv_cfg {
nrfx_i2s_data_handler_t data_handler;
nrfx_i2s_config_t nrfx_def_cfg;
enum clock_source {
PCLK32M,
PCLK32M_HFXO,
ACLK
} clk_src;
};
/* Finds the clock settings that give the frame clock frequency closest to
* the one requested, taking into account the hardware limitations.
*/
static void find_suitable_clock(const struct i2s_nrfx_drv_cfg *drv_cfg,
nrfx_i2s_config_t *config,
const struct i2s_config *i2s_cfg)
{
static const struct {
uint16_t ratio_val;
nrf_i2s_ratio_t ratio_enum;
} ratios[] = {
{ 32, NRF_I2S_RATIO_32X },
{ 48, NRF_I2S_RATIO_48X },
{ 64, NRF_I2S_RATIO_64X },
{ 96, NRF_I2S_RATIO_96X },
{ 128, NRF_I2S_RATIO_128X },
{ 192, NRF_I2S_RATIO_192X },
{ 256, NRF_I2S_RATIO_256X },
{ 384, NRF_I2S_RATIO_384X },
{ 512, NRF_I2S_RATIO_512X }
};
const uint32_t src_freq =
(NRF_I2S_HAS_CLKCONFIG && drv_cfg->clk_src == ACLK)
/* The I2S_NRFX_DEVICE() macro contains build assertions that
* make sure that the ACLK clock source is only used when it is
* available and only with the "hfclkaudio-frequency" property
* defined, but the default value of 0 here needs to be used to
* prevent compilation errors when the property is not defined
* (this expression will be eventually optimized away then).
*/
? DT_PROP_OR(DT_NODELABEL(clock), hfclkaudio_frequency, 0)
: 32*1000*1000UL;
uint32_t bits_per_frame = 2 * i2s_cfg->word_size;
uint32_t best_diff = UINT32_MAX;
uint8_t r, best_r = 0;
nrf_i2s_mck_t best_mck_cfg = 0;
for (r = 0; r < ARRAY_SIZE(ratios); ++r) {
/* Only multiples of the frame width can be used as ratios. */
if ((ratios[r].ratio_val % bits_per_frame) != 0) {
continue;
}
if (IS_ENABLED(CONFIG_SOC_SERIES_NRF53X)) {
uint32_t requested_mck =
i2s_cfg->frame_clk_freq * ratios[r].ratio_val;
/* As specified in the nRF5340 PS:
*
* MCKFREQ = 4096 * floor(f_MCK * 1048576 /
* (f_source + f_MCK / 2))
* f_actual = f_source /
* floor(1048576 * 4096 / MCKFREQ)
*/
uint32_t mck_factor =
(uint32_t)((requested_mck * 1048576ULL) /
(src_freq + requested_mck / 2));
uint32_t actual_mck = src_freq / (1048576 / mck_factor);
uint32_t lrck_freq = actual_mck / ratios[r].ratio_val;
uint32_t diff = lrck_freq >= i2s_cfg->frame_clk_freq
? (lrck_freq - i2s_cfg->frame_clk_freq)
: (i2s_cfg->frame_clk_freq - lrck_freq);
if (diff < best_diff) {
best_mck_cfg = mck_factor * 4096;
best_r = r;
/* Stop if an exact match is found. */
if (diff == 0) {
break;
}
best_diff = diff;
}
} else {
static const struct {
uint8_t divider_val;
nrf_i2s_mck_t divider_enum;
} dividers[] = {
{ 8, NRF_I2S_MCK_32MDIV8 },
{ 10, NRF_I2S_MCK_32MDIV10 },
{ 11, NRF_I2S_MCK_32MDIV11 },
{ 15, NRF_I2S_MCK_32MDIV15 },
{ 16, NRF_I2S_MCK_32MDIV16 },
{ 21, NRF_I2S_MCK_32MDIV21 },
{ 23, NRF_I2S_MCK_32MDIV23 },
{ 30, NRF_I2S_MCK_32MDIV30 },
{ 31, NRF_I2S_MCK_32MDIV31 },
{ 32, NRF_I2S_MCK_32MDIV32 },
{ 42, NRF_I2S_MCK_32MDIV42 },
{ 63, NRF_I2S_MCK_32MDIV63 },
{ 125, NRF_I2S_MCK_32MDIV125 }
};
for (uint8_t d = 0; d < ARRAY_SIZE(dividers); ++d) {
uint32_t mck_freq =
src_freq / dividers[d].divider_val;
uint32_t lrck_freq =
mck_freq / ratios[r].ratio_val;
uint32_t diff =
lrck_freq >= i2s_cfg->frame_clk_freq
? (lrck_freq - i2s_cfg->frame_clk_freq)
: (i2s_cfg->frame_clk_freq - lrck_freq);
if (diff < best_diff) {
best_mck_cfg = dividers[d].divider_enum;
best_r = r;
/* Stop if an exact match is found. */
if (diff == 0) {
break;
}
best_diff = diff;
}
/* Since dividers are in ascending order, stop
* checking next ones for the current ratio
* after resulting LRCK frequency falls below
* the one requested.
*/
if (lrck_freq < i2s_cfg->frame_clk_freq) {
break;
}
}
}
}
config->mck_setup = best_mck_cfg;
config->ratio = ratios[best_r].ratio_enum;
}
static bool get_next_tx_buffer(struct i2s_nrfx_drv_data *drv_data,
nrfx_i2s_buffers_t *buffers)
{
int ret = k_msgq_get(&drv_data->tx_queue,
&buffers->p_tx_buffer,
K_NO_WAIT);
return (ret == 0);
}
static bool get_next_rx_buffer(struct i2s_nrfx_drv_data *drv_data,
nrfx_i2s_buffers_t *buffers)
{
int ret = k_mem_slab_alloc(drv_data->rx.cfg.mem_slab,
(void **)&buffers->p_rx_buffer,
K_NO_WAIT);
if (ret < 0) {
LOG_ERR("Failed to allocate next RX buffer: %d",
ret);
return false;
}
return true;
}
static void free_tx_buffer(struct i2s_nrfx_drv_data *drv_data,
const void *buffer)
{
k_mem_slab_free(drv_data->tx.cfg.mem_slab, (void **)&buffer);
LOG_DBG("Freed TX %p", buffer);
}
static void free_rx_buffer(struct i2s_nrfx_drv_data *drv_data, void *buffer)
{
k_mem_slab_free(drv_data->rx.cfg.mem_slab, &buffer);
LOG_DBG("Freed RX %p", buffer);
}
static bool supply_next_buffers(struct i2s_nrfx_drv_data *drv_data,
nrfx_i2s_buffers_t *next)
{
drv_data->last_tx_buffer = next->p_tx_buffer;
if (drv_data->active_dir != I2S_DIR_TX) { /* -> RX active */
if (!get_next_rx_buffer(drv_data, next)) {
drv_data->state = I2S_STATE_ERROR;
nrfx_i2s_stop();
return false;
}
}
LOG_DBG("Next buffers: %p/%p", next->p_tx_buffer, next->p_rx_buffer);
nrfx_i2s_next_buffers_set(next);
return true;
}
static void data_handler(const struct device *dev,
const nrfx_i2s_buffers_t *released, uint32_t status)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
bool stop_transfer = false;
if (status & NRFX_I2S_STATUS_TRANSFER_STOPPED) {
if (drv_data->state == I2S_STATE_STOPPING) {
drv_data->state = I2S_STATE_READY;
}
if (drv_data->last_tx_buffer) {
/* Usually, these pointers are equal, i.e. the last TX
* buffer that were to be transferred is released by the
* driver after it stops. The last TX buffer pointer is
* then set to NULL here so that the buffer can be freed
* below, just as any other TX buffer released by the
* driver. However, it may happen that the buffer is not
* released this way, for example, when the transfer
* ends with an error because an RX buffer allocation
* fails. In such case, the last TX buffer needs to be
* freed here.
*/
if (drv_data->last_tx_buffer != released->p_tx_buffer) {
free_tx_buffer(drv_data,
drv_data->last_tx_buffer);
}
drv_data->last_tx_buffer = NULL;
}
nrfx_i2s_uninit();
if (drv_data->request_clock) {
(void)onoff_release(drv_data->clk_mgr);
}
}
if (released == NULL) {
/* This means that buffers for the next part of the transfer
* were not supplied and the previous ones cannot be released
* yet, as pointers to them were latched in the I2S registers.
* It is not an error when the transfer is to be stopped (those
* buffers will be released after the transfer actually stops).
*/
if (drv_data->state != I2S_STATE_STOPPING) {
LOG_ERR("Next buffers not supplied on time");
drv_data->state = I2S_STATE_ERROR;
}
nrfx_i2s_stop();
return;
}
if (released->p_rx_buffer) {
if (drv_data->discard_rx) {
free_rx_buffer(drv_data, released->p_rx_buffer);
} else {
int ret = k_msgq_put(&drv_data->rx_queue,
&released->p_rx_buffer,
K_NO_WAIT);
if (ret < 0) {
LOG_ERR("No room in RX queue");
drv_data->state = I2S_STATE_ERROR;
stop_transfer = true;
free_rx_buffer(drv_data, released->p_rx_buffer);
} else {
LOG_DBG("Queued RX %p", released->p_rx_buffer);
/* If the TX direction is not active and
* the transfer should be stopped after
* the current block, stop the reception.
*/
if (drv_data->active_dir == I2S_DIR_RX &&
drv_data->stop) {
drv_data->discard_rx = true;
stop_transfer = true;
}
}
}
}
if (released->p_tx_buffer) {
/* If the last buffer that was to be transferred has just been
* released, it is time to stop the transfer.
*/
if (released->p_tx_buffer == drv_data->last_tx_buffer) {
drv_data->discard_rx = true;
stop_transfer = true;
} else {
free_tx_buffer(drv_data, released->p_tx_buffer);
}
}
if (stop_transfer) {
nrfx_i2s_stop();
} else if (status & NRFX_I2S_STATUS_NEXT_BUFFERS_NEEDED) {
nrfx_i2s_buffers_t next = { 0 };
if (drv_data->active_dir != I2S_DIR_RX) { /* -> TX active */
if (drv_data->stop) {
/* If the stream is to be stopped, don't get
* the next TX buffer from the queue, instead
* supply the one used last time (it won't be
* transferred, the stream will stop right
* before this buffer would be started again).
*/
next.p_tx_buffer = drv_data->last_tx_buffer;
} else if (get_next_tx_buffer(drv_data, &next)) {
/* Next TX buffer successfully retrieved from
* the queue, nothing more to do here.
*/
} else if (drv_data->state == I2S_STATE_STOPPING) {
/* If there are no more TX blocks queued and
* the current state is STOPPING (so the DRAIN
* command was triggered) it is time to finish
* the transfer.
*/
drv_data->stop = true;
/* Supply the same buffer as last time; it will
* not be transferred anyway, as the transfer
* will be stopped earlier.
*/
next.p_tx_buffer = drv_data->last_tx_buffer;
} else {
/* Next TX buffer cannot be supplied now.
* Defer it to when the user writes more data.
*/
drv_data->next_tx_buffer_needed = true;
return;
}
}
(void)supply_next_buffers(drv_data, &next);
}
}
static void purge_queue(const struct device *dev, enum i2s_dir dir)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
void *mem_block;
if (dir == I2S_DIR_TX || dir == I2S_DIR_BOTH) {
while (k_msgq_get(&drv_data->tx_queue,
&mem_block,
K_NO_WAIT) == 0) {
free_tx_buffer(drv_data, mem_block);
}
}
if (dir == I2S_DIR_RX || dir == I2S_DIR_BOTH) {
while (k_msgq_get(&drv_data->rx_queue,
&mem_block,
K_NO_WAIT) == 0) {
free_rx_buffer(drv_data, mem_block);
}
}
}
static int i2s_nrfx_configure(const struct device *dev, enum i2s_dir dir,
const struct i2s_config *i2s_cfg)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
const struct i2s_nrfx_drv_cfg *drv_cfg = dev->config;
nrfx_i2s_config_t nrfx_cfg;
if (drv_data->state != I2S_STATE_READY) {
LOG_ERR("Cannot configure in state: %d", drv_data->state);
return -EINVAL;
}
if (i2s_cfg->frame_clk_freq == 0) { /* -> reset state */
purge_queue(dev, dir);
if (dir == I2S_DIR_TX || dir == I2S_DIR_BOTH) {
drv_data->tx_configured = false;
memset(&drv_data->tx, 0, sizeof(drv_data->tx));
}
if (dir == I2S_DIR_RX || dir == I2S_DIR_BOTH) {
drv_data->rx_configured = false;
memset(&drv_data->rx, 0, sizeof(drv_data->rx));
}
return 0;
}
__ASSERT_NO_MSG(i2s_cfg->mem_slab != NULL &&
i2s_cfg->block_size != 0);
if ((i2s_cfg->block_size % sizeof(uint32_t)) != 0) {
LOG_ERR("This device can transfer only full 32-bit words");
return -EINVAL;
}
nrfx_cfg = drv_cfg->nrfx_def_cfg;
switch (i2s_cfg->word_size) {
case 8:
nrfx_cfg.sample_width = NRF_I2S_SWIDTH_8BIT;
break;
case 16:
nrfx_cfg.sample_width = NRF_I2S_SWIDTH_16BIT;
break;
case 24:
nrfx_cfg.sample_width = NRF_I2S_SWIDTH_24BIT;
break;
#if defined(I2S_CONFIG_SWIDTH_SWIDTH_32Bit)
case 32:
nrfx_cfg.sample_width = NRF_I2S_SWIDTH_32BIT;
break;
#endif
default:
LOG_ERR("Unsupported word size: %u", i2s_cfg->word_size);
return -EINVAL;
}
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
nrfx_cfg.alignment = NRF_I2S_ALIGN_LEFT;
nrfx_cfg.format = NRF_I2S_FORMAT_I2S;
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
nrfx_cfg.alignment = NRF_I2S_ALIGN_LEFT;
nrfx_cfg.format = NRF_I2S_FORMAT_ALIGNED;
break;
case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED:
nrfx_cfg.alignment = NRF_I2S_ALIGN_RIGHT;
nrfx_cfg.format = NRF_I2S_FORMAT_ALIGNED;
break;
default:
LOG_ERR("Unsupported data format: 0x%02x", i2s_cfg->format);
return -EINVAL;
}
if ((i2s_cfg->format & I2S_FMT_DATA_ORDER_LSB) ||
(i2s_cfg->format & I2S_FMT_BIT_CLK_INV) ||
(i2s_cfg->format & I2S_FMT_FRAME_CLK_INV)) {
LOG_ERR("Unsupported stream format: 0x%02x", i2s_cfg->format);
return -EINVAL;
}
if (i2s_cfg->channels == 2 ||
(i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK)
== I2S_FMT_DATA_FORMAT_I2S) {
nrfx_cfg.channels = NRF_I2S_CHANNELS_STEREO;
} else if (i2s_cfg->channels == 1) {
nrfx_cfg.channels = NRF_I2S_CHANNELS_LEFT;
} else {
LOG_ERR("Unsupported number of channels: %u",
i2s_cfg->channels);
return -EINVAL;
}
if ((i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) &&
(i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE)) {
nrfx_cfg.mode = NRF_I2S_MODE_SLAVE;
} else if (!(i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) &&
!(i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE)) {
nrfx_cfg.mode = NRF_I2S_MODE_MASTER;
} else {
LOG_ERR("Unsupported operation mode: 0x%02x", i2s_cfg->options);
return -EINVAL;
}
/* If the master clock generator is needed (i.e. in Master mode or when
* the MCK output is used), find a suitable clock configuration for it.
*/
if (nrfx_cfg.mode == NRF_I2S_MODE_MASTER ||
nrfx_cfg.mck_pin != NRFX_I2S_PIN_NOT_USED) {
find_suitable_clock(drv_cfg, &nrfx_cfg, i2s_cfg);
/* Unless the PCLK32M source is used with the HFINT oscillator
* (which is always available without any additional actions),
* it is required to request the proper clock to be running
* before starting the transfer itself.
*/
drv_data->request_clock = (drv_cfg->clk_src != PCLK32M);
} else {
nrfx_cfg.mck_setup = NRF_I2S_MCK_DISABLED;
drv_data->request_clock = false;
}
if ((i2s_cfg->options & I2S_OPT_LOOPBACK) ||
(i2s_cfg->options & I2S_OPT_PINGPONG)) {
LOG_ERR("Unsupported options: 0x%02x", i2s_cfg->options);
return -EINVAL;
}
if (dir == I2S_DIR_TX || dir == I2S_DIR_BOTH) {
drv_data->tx.cfg = *i2s_cfg;
drv_data->tx.nrfx_cfg = nrfx_cfg;
drv_data->tx_configured = true;
}
if (dir == I2S_DIR_RX || dir == I2S_DIR_BOTH) {
drv_data->rx.cfg = *i2s_cfg;
drv_data->rx.nrfx_cfg = nrfx_cfg;
drv_data->rx_configured = true;
}
return 0;
}
static const struct i2s_config *i2s_nrfx_config_get(const struct device *dev,
enum i2s_dir dir)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
if (dir == I2S_DIR_TX && drv_data->tx_configured) {
return &drv_data->tx.cfg;
}
if (dir == I2S_DIR_RX && drv_data->rx_configured) {
return &drv_data->rx.cfg;
}
return NULL;
}
static int i2s_nrfx_read(const struct device *dev,
void **mem_block, size_t *size)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
int ret;
if (!drv_data->rx_configured) {
LOG_ERR("Device is not configured");
return -EIO;
}
ret = k_msgq_get(&drv_data->rx_queue,
mem_block,
(drv_data->state == I2S_STATE_ERROR)
? K_NO_WAIT
: SYS_TIMEOUT_MS(drv_data->rx.cfg.timeout));
if (ret == -ENOMSG) {
return -EIO;
}
LOG_DBG("Released RX %p", *mem_block);
if (ret == 0) {
*size = drv_data->rx.cfg.block_size;
}
return ret;
}
static int i2s_nrfx_write(const struct device *dev,
void *mem_block, size_t size)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
if (!drv_data->tx_configured) {
LOG_ERR("Device is not configured");
return -EIO;
}
if (drv_data->state != I2S_STATE_RUNNING &&
drv_data->state != I2S_STATE_READY) {
LOG_ERR("Cannot write in state: %d", drv_data->state);
return -EIO;
}
if (size != drv_data->tx.cfg.block_size) {
LOG_ERR("This device can only write blocks of %u bytes",
drv_data->tx.cfg.block_size);
return -EIO;
}
if (drv_data->state == I2S_STATE_RUNNING &&
drv_data->next_tx_buffer_needed) {
nrfx_i2s_buffers_t next = { .p_tx_buffer = mem_block };
drv_data->next_tx_buffer_needed = false;
LOG_DBG("Next TX %p", mem_block);
if (!supply_next_buffers(drv_data, &next)) {
return -EIO;
}
} else {
int ret = k_msgq_put(&drv_data->tx_queue,
&mem_block,
SYS_TIMEOUT_MS(drv_data->tx.cfg.timeout));
if (ret < 0) {
return ret;
}
LOG_DBG("Queued TX %p", mem_block);
}
return 0;
}
static int start_transfer(struct i2s_nrfx_drv_data *drv_data)
{
nrfx_i2s_buffers_t initial_buffers = { 0 };
int ret;
if (drv_data->active_dir != I2S_DIR_RX && /* -> TX to be started */
!get_next_tx_buffer(drv_data, &initial_buffers)) {
LOG_ERR("No TX buffer available");
ret = -ENOMEM;
} else if (drv_data->active_dir != I2S_DIR_TX && /* -> RX to be started */
!get_next_rx_buffer(drv_data, &initial_buffers)) {
/* Failed to allocate next RX buffer */
ret = -ENOMEM;
} else {
uint32_t block_size = (drv_data->active_dir == I2S_DIR_TX)
? drv_data->tx.cfg.block_size
: drv_data->rx.cfg.block_size;
nrfx_err_t err;
drv_data->last_tx_buffer = initial_buffers.p_tx_buffer;
err = nrfx_i2s_start(&initial_buffers,
block_size / sizeof(uint32_t), 0);
if (err == NRFX_SUCCESS) {
return 0;
}
LOG_ERR("Failed to start I2S transfer: 0x%08x", err);
ret = -EIO;
}
nrfx_i2s_uninit();
if (drv_data->request_clock) {
(void)onoff_release(drv_data->clk_mgr);
}
if (initial_buffers.p_tx_buffer) {
free_tx_buffer(drv_data, initial_buffers.p_tx_buffer);
}
if (initial_buffers.p_rx_buffer) {
free_rx_buffer(drv_data, initial_buffers.p_rx_buffer);
}
drv_data->state = I2S_STATE_ERROR;
return ret;
}
static void clock_started_callback(struct onoff_manager *mgr,
struct onoff_client *cli,
uint32_t state,
int res)
{
struct i2s_nrfx_drv_data *drv_data =
CONTAINER_OF(cli, struct i2s_nrfx_drv_data, clk_cli);
/* The driver state can be set back to READY at this point if the DROP
* command was triggered before the clock has started. Do not start
* the actual transfer in such case.
*/
if (drv_data->state == I2S_STATE_READY) {
nrfx_i2s_uninit();
(void)onoff_release(drv_data->clk_mgr);
} else {
(void)start_transfer(drv_data);
}
}
static int trigger_start(const struct device *dev)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
const struct i2s_nrfx_drv_cfg *drv_cfg = dev->config;
nrfx_err_t err;
int ret;
const nrfx_i2s_config_t *nrfx_cfg = (drv_data->active_dir == I2S_DIR_TX)
? &drv_data->tx.nrfx_cfg
: &drv_data->rx.nrfx_cfg;
err = nrfx_i2s_init(nrfx_cfg, drv_cfg->data_handler);
if (err != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize I2S: 0x%08x", err);
return -EIO;
}
drv_data->state = I2S_STATE_RUNNING;
#if NRF_I2S_HAS_CLKCONFIG
nrf_i2s_clk_configure(NRF_I2S0,
drv_cfg->clk_src == ACLK ? NRF_I2S_CLKSRC_ACLK
: NRF_I2S_CLKSRC_PCLK32M,
false);
#endif
/* If it is required to use certain HF clock, request it to be running
* first. If not, start the transfer directly.
*/
if (drv_data->request_clock) {
sys_notify_init_callback(&drv_data->clk_cli.notify,
clock_started_callback);
ret = onoff_request(drv_data->clk_mgr, &drv_data->clk_cli);
if (ret < 0) {
nrfx_i2s_uninit();
drv_data->state = I2S_STATE_READY;
LOG_ERR("Failed to request clock: %d", ret);
return -EIO;
}
} else {
ret = start_transfer(drv_data);
if (ret < 0) {
return ret;
}
}
return 0;
}
static int i2s_nrfx_trigger(const struct device *dev,
enum i2s_dir dir, enum i2s_trigger_cmd cmd)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
bool configured = false;
bool cmd_allowed;
/* This driver does not use the I2S_STATE_NOT_READY value.
* Instead, if a given stream is not configured, the respective
* flag (tx_configured or rx_configured) is cleared.
*/
if (dir == I2S_DIR_BOTH) {
configured = drv_data->tx_configured && drv_data->rx_configured;
} else if (dir == I2S_DIR_TX) {
configured = drv_data->tx_configured;
} else if (dir == I2S_DIR_RX) {
configured = drv_data->rx_configured;
}
if (!configured) {
LOG_ERR("Device is not configured");
return -EIO;
}
if (dir == I2S_DIR_BOTH &&
(memcmp(&drv_data->tx.nrfx_cfg,
&drv_data->rx.nrfx_cfg,
sizeof(drv_data->rx.nrfx_cfg)) != 0
||
(drv_data->tx.cfg.block_size != drv_data->rx.cfg.block_size))) {
LOG_ERR("TX and RX configurations are different");
return -EIO;
}
switch (cmd) {
case I2S_TRIGGER_START:
cmd_allowed = (drv_data->state == I2S_STATE_READY);
break;
case I2S_TRIGGER_STOP:
case I2S_TRIGGER_DRAIN:
cmd_allowed = (drv_data->state == I2S_STATE_RUNNING);
break;
case I2S_TRIGGER_DROP:
cmd_allowed = configured;
break;
case I2S_TRIGGER_PREPARE:
cmd_allowed = (drv_data->state == I2S_STATE_ERROR);
break;
default:
LOG_ERR("Invalid trigger: %d", cmd);
return -EINVAL;
}
if (!cmd_allowed) {
return -EIO;
}
/* For triggers applicable to the RUNNING state (i.e. STOP, DRAIN,
* and DROP), ensure that the command is applied to the streams
* that are currently active (this device cannot e.g. stop only TX
* without stopping RX).
*/
if (drv_data->state == I2S_STATE_RUNNING &&
drv_data->active_dir != dir) {
LOG_ERR("Inappropriate trigger (%d/%d), active stream(s): %d",
cmd, dir, drv_data->active_dir);
return -EINVAL;
}
switch (cmd) {
case I2S_TRIGGER_START:
drv_data->stop = false;
drv_data->discard_rx = false;
drv_data->active_dir = dir;
drv_data->next_tx_buffer_needed = false;
return trigger_start(dev);
case I2S_TRIGGER_STOP:
drv_data->state = I2S_STATE_STOPPING;
drv_data->stop = true;
return 0;
case I2S_TRIGGER_DRAIN:
drv_data->state = I2S_STATE_STOPPING;
/* If only RX is active, DRAIN is equivalent to STOP. */
drv_data->stop = (drv_data->active_dir == I2S_DIR_RX);
return 0;
case I2S_TRIGGER_DROP:
if (drv_data->state != I2S_STATE_READY) {
drv_data->discard_rx = true;
nrfx_i2s_stop();
}
purge_queue(dev, dir);
drv_data->state = I2S_STATE_READY;
return 0;
case I2S_TRIGGER_PREPARE:
purge_queue(dev, dir);
drv_data->state = I2S_STATE_READY;
return 0;
default:
LOG_ERR("Invalid trigger: %d", cmd);
return -EINVAL;
}
}
static void init_clock_manager(const struct device *dev)
{
struct i2s_nrfx_drv_data *drv_data = dev->data;
clock_control_subsys_t subsys;
#if NRF_CLOCK_HAS_HFCLKAUDIO
const struct i2s_nrfx_drv_cfg *drv_cfg = dev->config;
if (drv_cfg->clk_src == ACLK) {
subsys = CLOCK_CONTROL_NRF_SUBSYS_HFAUDIO;
} else
#endif
{
subsys = CLOCK_CONTROL_NRF_SUBSYS_HF;
}
drv_data->clk_mgr = z_nrf_clock_control_get_onoff(subsys);
__ASSERT_NO_MSG(drv_data->clk_mgr != NULL);
}
static const struct i2s_driver_api i2s_nrf_drv_api = {
.configure = i2s_nrfx_configure,
.config_get = i2s_nrfx_config_get,
.read = i2s_nrfx_read,
.write = i2s_nrfx_write,
.trigger = i2s_nrfx_trigger,
};
#define I2S(idx) DT_NODELABEL(i2s##idx)
#define I2S_PIN(idx, name) \
COND_CODE_1(DT_NODE_HAS_PROP(I2S(idx), name##_pin), \
(DT_PROP(I2S(idx), name##_pin)), \
(NRFX_I2S_PIN_NOT_USED))
#define I2S_CLK_SRC(idx) DT_STRING_TOKEN(I2S(idx), clock_source)
#define I2S_NRFX_DEVICE(idx) \
static void *tx_msgs[CONFIG_I2S_NRFX_TX_BLOCK_COUNT]; \
static void *rx_msgs[CONFIG_I2S_NRFX_RX_BLOCK_COUNT]; \
static struct i2s_nrfx_drv_data i2s_nrfx_data##idx = { \
.state = I2S_STATE_READY, \
}; \
static int i2s_nrfx_init##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(I2S(idx)), DT_IRQ(I2S(idx), priority), \
nrfx_isr, nrfx_i2s_irq_handler, 0); \
irq_enable(DT_IRQN(I2S(idx))); \
k_msgq_init(&i2s_nrfx_data##idx.tx_queue, \
(char *)tx_msgs, sizeof(void *), \
CONFIG_I2S_NRFX_TX_BLOCK_COUNT); \
k_msgq_init(&i2s_nrfx_data##idx.rx_queue, \
(char *)rx_msgs, sizeof(void *), \
CONFIG_I2S_NRFX_RX_BLOCK_COUNT); \
init_clock_manager(dev); \
return 0; \
} \
static void data_handler##idx(nrfx_i2s_buffers_t const *p_released, \
uint32_t status) \
{ \
data_handler(DEVICE_DT_GET(I2S(idx)), p_released, status); \
} \
static const struct i2s_nrfx_drv_cfg i2s_nrfx_cfg##idx = { \
.data_handler = data_handler##idx, \
.nrfx_def_cfg = NRFX_I2S_DEFAULT_CONFIG(I2S_PIN(idx, sck), \
I2S_PIN(idx, lrck), \
I2S_PIN(idx, mck), \
I2S_PIN(idx, sdout), \
I2S_PIN(idx, sdin)), \
.clk_src = I2S_CLK_SRC(idx), \
}; \
BUILD_ASSERT(I2S_CLK_SRC(idx) != ACLK || NRF_I2S_HAS_CLKCONFIG, \
"Clock source ACLK is not available."); \
BUILD_ASSERT(I2S_CLK_SRC(idx) != ACLK || \
DT_NODE_HAS_PROP(DT_NODELABEL(clock), \
hfclkaudio_frequency), \
"Clock source ACLK requires the hfclkaudio-frequency " \
"property to be defined in the nordic,nrf-clock node."); \
DEVICE_DT_DEFINE(I2S(idx), i2s_nrfx_init##idx, NULL, \
&i2s_nrfx_data##idx, &i2s_nrfx_cfg##idx, \
POST_KERNEL, CONFIG_I2S_INIT_PRIORITY, \
&i2s_nrf_drv_api);
/* Existing SoCs only have one I2S instance. */
I2S_NRFX_DEVICE(0);