blob: c452a4b398ffd29597fb8a3fa21664707f48a3f7 [file] [log] [blame]
/*
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(nxp_s32_eth);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/mbox.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/phy.h>
#include <ethernet/eth_stats.h>
#include <S32Z2.h>
#include <Netc_Eth_Ip.h>
#include <Netc_Eth_Ip_Irq.h>
#include <Netc_EthSwt_Ip.h>
#include "eth.h"
#include "eth_nxp_s32_netc_priv.h"
/* Global MAC filter hash table required for the baremetal driver */
Netc_Eth_Ip_MACFilterHashTableEntryType * MACFilterHashTableAddrs[FEATURE_NETC_ETH_NUMBER_OF_CTRLS];
static void nxp_s32_eth_rx_thread(void *arg1, void *unused1, void *unused2);
static void nxp_s32_eth_msix_wrapper(const struct device *dev, uint32_t channel,
void *user_data, struct mbox_msg *msg)
{
const struct nxp_s32_eth_msix *msix = (const struct nxp_s32_eth_msix *)user_data;
ARG_UNUSED(dev);
ARG_UNUSED(msg);
/* Handler doesn't require any data to be passed, used only for signalling */
msix->handler(channel, NULL, 0);
}
static inline struct net_if *get_iface(struct nxp_s32_eth_data *ctx, uint16_t vlan_tag)
{
#if defined(CONFIG_NET_VLAN)
struct net_if *iface;
iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag);
if (!iface) {
return ctx->iface;
}
return iface;
#else
ARG_UNUSED(vlan_tag);
return ctx->iface;
#endif
}
int nxp_s32_eth_initialize_common(const struct device *dev)
{
const struct nxp_s32_eth_config *cfg = dev->config;
struct nxp_s32_eth_data *ctx = dev->data;
Netc_Eth_Ip_StatusType status;
const struct nxp_s32_eth_msix *msix;
int err;
/* Populate the MAC filter hash table addresses for this SI */
__ASSERT_NO_MSG(cfg->si_idx < FEATURE_NETC_ETH_NUMBER_OF_CTRLS);
MACFilterHashTableAddrs[cfg->si_idx] = cfg->mac_filter_hash_table;
status = Netc_Eth_Ip_Init(cfg->si_idx, &cfg->netc_cfg);
if (status != NETC_ETH_IP_STATUS_SUCCESS) {
LOG_ERR("Failed to initialize SI%d (%d)", cfg->si_idx, status);
return -EIO;
}
for (int i = 0; i < NETC_MSIX_EVENTS_COUNT; i++) {
msix = &cfg->msix[i];
if (msix->mbox_channel.dev != NULL) {
err = mbox_register_callback(&msix->mbox_channel,
nxp_s32_eth_msix_wrapper,
(void *)msix);
if (err != 0) {
LOG_ERR("Failed to register MRU callback on channel %u",
msix->mbox_channel.id);
return err;
}
}
}
k_mutex_init(&ctx->tx_mutex);
k_sem_init(&ctx->rx_sem, 0, 1);
k_thread_create(&ctx->rx_thread, ctx->rx_thread_stack,
K_KERNEL_STACK_SIZEOF(ctx->rx_thread_stack),
nxp_s32_eth_rx_thread, (void *)dev, NULL, NULL,
K_PRIO_COOP(CONFIG_ETH_NXP_S32_RX_THREAD_PRIO),
0, K_NO_WAIT);
k_thread_name_set(&ctx->rx_thread, "nxp_s32_eth_rx");
status = Netc_Eth_Ip_EnableController(cfg->si_idx);
if (status != NETC_ETH_IP_STATUS_SUCCESS) {
LOG_ERR("Failed to enable ENETC SI%d (%d)", cfg->si_idx, status);
return -EIO;
}
if (cfg->generate_mac) {
cfg->generate_mac(&ctx->mac_addr[0]);
}
return 0;
}
#if defined(CONFIG_NET_IPV6)
void nxp_s32_eth_mcast_cb(struct net_if *iface, const struct net_addr *addr, bool is_joined)
{
const struct device *dev = net_if_get_device(iface);
const struct nxp_s32_eth_config *cfg = dev->config;
struct net_eth_addr mac_addr;
Netc_Eth_Ip_StatusType status;
if (addr->family != AF_INET6) {
return;
}
net_eth_ipv6_mcast_to_mac_addr(&addr->in6_addr, &mac_addr);
if (is_joined) {
status = Netc_Eth_Ip_AddMulticastDstAddrToHashFilter(cfg->si_idx,
mac_addr.addr);
} else {
status = Netc_Eth_Ip_RemoveMulticastDstAddrFromHashFilter(cfg->si_idx,
mac_addr.addr);
}
if (status != NETC_ETH_IP_STATUS_SUCCESS) {
LOG_ERR("Failed to update multicast hash table: %d", status);
}
}
#endif /* CONFIG_NET_IPV6 */
int nxp_s32_eth_tx(const struct device *dev, struct net_pkt *pkt)
{
struct nxp_s32_eth_data *ctx = dev->data;
const struct nxp_s32_eth_config *cfg = dev->config;
size_t pkt_len = net_pkt_get_len(pkt);
int res = 0;
Netc_Eth_Ip_StatusType status;
Netc_Eth_Ip_BufferType buf;
__ASSERT(pkt, "Packet pointer is NULL");
k_mutex_lock(&ctx->tx_mutex, K_FOREVER);
buf.length = (uint16_t)pkt_len;
buf.data = NULL;
status = Netc_Eth_Ip_GetTxBuff(cfg->si_idx, cfg->tx_ring_idx, &buf, NULL);
if (status == NETC_ETH_IP_STATUS_TX_BUFF_BUSY) {
/* Reclaim the buffers already transmitted and try again */
Netc_Eth_Ip_ReleaseTxBuffers(cfg->si_idx, cfg->tx_ring_idx);
status = Netc_Eth_Ip_GetTxBuff(cfg->si_idx, cfg->tx_ring_idx, &buf, NULL);
}
if (status != NETC_ETH_IP_STATUS_SUCCESS) {
LOG_ERR("Failed to get tx buffer: %d", status);
res = -ENOBUFS;
goto error;
}
buf.length = (uint16_t)pkt_len;
res = net_pkt_read(pkt, buf.data, pkt_len);
if (res) {
LOG_ERR("Failed to copy packet to tx buffer: %d", res);
res = -ENOBUFS;
goto error;
}
status = Netc_Eth_Ip_SendFrame(cfg->si_idx, cfg->tx_ring_idx, &buf, NULL);
if (status != NETC_ETH_IP_STATUS_SUCCESS) {
LOG_ERR("Failed to tx frame: %d", status);
res = -EIO;
goto error;
}
error:
k_mutex_unlock(&ctx->tx_mutex);
if (res != 0) {
eth_stats_update_errors_tx(ctx->iface);
}
return res;
}
static struct net_pkt *nxp_s32_eth_get_pkt(const struct device *dev,
Netc_Eth_Ip_BufferType *buf,
uint16_t *vlan_tag)
{
struct nxp_s32_eth_data *ctx = dev->data;
struct net_pkt *pkt = NULL;
int res = 0;
#if defined(CONFIG_NET_VLAN)
struct net_eth_hdr *hdr;
struct net_eth_vlan_hdr *hdr_vlan;
#if CONFIG_NET_TC_RX_COUNT > 1
enum net_priority prio;
#endif
#endif /* CONFIG_NET_VLAN */
/* Use root iface, it will be updated later in net_recv_data() */
pkt = net_pkt_rx_alloc_with_buffer(ctx->iface, buf->length,
AF_UNSPEC, 0, NETC_TIMEOUT);
if (!pkt) {
goto exit;
}
res = net_pkt_write(pkt, buf->data, buf->length);
if (res) {
net_pkt_unref(pkt);
pkt = NULL;
goto exit;
}
#if defined(CONFIG_NET_VLAN)
hdr = NET_ETH_HDR(pkt);
if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) {
hdr_vlan = (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);
net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci));
*vlan_tag = net_pkt_vlan_tag(pkt);
#if CONFIG_NET_TC_RX_COUNT > 1
prio = net_vlan2priority(net_pkt_vlan_priority(pkt));
net_pkt_set_priority(pkt, prio);
#endif
}
#endif /* CONFIG_NET_VLAN */
exit:
if (!pkt) {
eth_stats_update_errors_rx(get_iface(ctx, *vlan_tag));
}
return pkt;
}
static int nxp_s32_eth_rx(const struct device *dev)
{
struct nxp_s32_eth_data *ctx = dev->data;
const struct nxp_s32_eth_config *cfg = dev->config;
Netc_Eth_Ip_BufferType buf;
Netc_Eth_Ip_RxInfoType info;
Netc_Eth_Ip_StatusType status;
uint16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
struct net_pkt *pkt;
int key;
int res = 0;
key = irq_lock();
status = Netc_Eth_Ip_ReadFrame(cfg->si_idx, cfg->rx_ring_idx, &buf, &info);
if (status == NETC_ETH_IP_STATUS_RX_QUEUE_EMPTY) {
res = -ENOBUFS;
} else if (status != NETC_ETH_IP_STATUS_SUCCESS) {
LOG_ERR("Error on received frame: %d (0x%X)", status, info.rxStatus);
res = -EIO;
} else {
pkt = nxp_s32_eth_get_pkt(dev, &buf, &vlan_tag);
Netc_Eth_Ip_ProvideRxBuff(cfg->si_idx, cfg->rx_ring_idx, &buf);
if (pkt != NULL) {
res = net_recv_data(get_iface(ctx, vlan_tag), pkt);
if (res < 0) {
eth_stats_update_errors_rx(get_iface(ctx, vlan_tag));
net_pkt_unref(pkt);
LOG_ERR("Failed to enqueue frame into rx queue: %d", res);
}
}
}
irq_unlock(key);
return res;
}
static void nxp_s32_eth_rx_thread(void *arg1, void *unused1, void *unused2)
{
const struct device *dev = (const struct device *)arg1;
struct nxp_s32_eth_data *ctx = dev->data;
int res;
int work;
ARG_UNUSED(unused1);
ARG_UNUSED(unused2);
__ASSERT_NO_MSG(arg1 != NULL);
__ASSERT_NO_MSG(ctx != NULL);
while (1) {
res = k_sem_take(&ctx->rx_sem, K_FOREVER);
__ASSERT_NO_MSG(res == 0);
work = 0;
while (nxp_s32_eth_rx(dev) != -ENOBUFS) {
if (++work == CONFIG_ETH_NXP_S32_RX_BUDGET) {
/* more work to do, reschedule */
work = 0;
k_yield();
}
}
}
}
enum ethernet_hw_caps nxp_s32_eth_get_capabilities(const struct device *dev)
{
ARG_UNUSED(dev);
return (ETHERNET_LINK_10BASE_T
| ETHERNET_LINK_100BASE_T
| ETHERNET_LINK_1000BASE_T
| ETHERNET_HW_RX_CHKSUM_OFFLOAD
#if defined(CONFIG_NET_VLAN)
| ETHERNET_HW_VLAN
#endif
#if defined(CONFIG_NET_PROMISCUOUS_MODE)
| ETHERNET_PROMISC_MODE
#endif
);
}
int nxp_s32_eth_set_config(const struct device *dev, enum ethernet_config_type type,
const struct ethernet_config *config)
{
struct nxp_s32_eth_data *ctx = dev->data;
const struct nxp_s32_eth_config *cfg = dev->config;
int res = 0;
switch (type) {
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
/* Set new Ethernet MAC address and register it with the upper layer */
memcpy(ctx->mac_addr, config->mac_address.addr, sizeof(ctx->mac_addr));
Netc_Eth_Ip_SetMacAddr(cfg->si_idx, (const uint8_t *)ctx->mac_addr);
net_if_set_link_addr(ctx->iface, ctx->mac_addr, sizeof(ctx->mac_addr),
NET_LINK_ETHERNET);
LOG_INF("SI%d MAC set to: %02x:%02x:%02x:%02x:%02x:%02x", cfg->si_idx,
ctx->mac_addr[0], ctx->mac_addr[1], ctx->mac_addr[2],
ctx->mac_addr[3], ctx->mac_addr[4], ctx->mac_addr[5]);
break;
default:
res = -ENOTSUP;
break;
}
return res;
}
BUILD_ASSERT((CONFIG_ETH_NXP_S32_RX_RING_LEN % 8) == 0,
"Rx ring length must be multiple of 8");
BUILD_ASSERT((CONFIG_ETH_NXP_S32_TX_RING_LEN % 8) == 0,
"Tx ring length must be multiple of 8");
BUILD_ASSERT((CONFIG_ETH_NXP_S32_RX_RING_BUF_SIZE % 8) == 0,
"Rx ring data buffer size must be multiple of 8");
BUILD_ASSERT((CONFIG_ETH_NXP_S32_TX_RING_BUF_SIZE % 8) == 0,
"Tx ring data buffer size must be multiple of 8");