blob: 05938748d29a0e1c068a77970dc96307e36412c9 [file] [log] [blame]
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <net/dns_client.h>
#include "dns_pack.h"
#include <drivers/rand32.h>
#include <net/buf.h>
#include <net/nbuf.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
/* RFC 1035, 3.1. Name space definitions
* To simplify implementations, the total length of a domain name (i.e.,
* label octets and label length octets) is restricted to 255 octets or
* less.
*/
#define DNS_MAX_NAME_LEN 255
#define DNS_QUERY_MAX_SIZE (DNS_MSG_HEADER_SIZE + DNS_MAX_NAME_LEN + \
DNS_QTYPE_LEN + DNS_QCLASS_LEN)
/* This value is recommended by RFC 1035 */
#define DNS_RESOLVER_MAX_BUF_SIZE 512
#define DNS_RESOLVER_MIN_BUF 1
#define DNS_RESOLVER_BUF_CTR (DNS_RESOLVER_MIN_BUF + \
CONFIG_DNS_RESOLVER_ADDITIONAL_BUF_CTR)
#define DNS_RESOLVER_QUERIES (1 + CONFIG_DNS_RESOLVER_ADDITIONAL_QUERIES)
/* Compressed RR uses a pointer to another RR. So, min size is 12 bytes without
* considering RR payload.
* See https://tools.ietf.org/html/rfc1035#section-4.1.4
*/
#define DNS_ANSWER_PTR_LEN 12
/* See dns_unpack_answer, and also see:
* https://tools.ietf.org/html/rfc1035#section-4.1.2
*/
#define DNS_QUERY_POS 0x0c
#define DNS_IPV4_LEN 4
#define DNS_IPV6_LEN 16
NET_BUF_POOL_DEFINE(dns_msg_pool, DNS_RESOLVER_BUF_CTR,
DNS_RESOLVER_MAX_BUF_SIZE, 0, NULL);
NET_BUF_POOL_DEFINE(dns_qname_pool, DNS_RESOLVER_BUF_CTR, DNS_MAX_NAME_LEN,
0, NULL);
int dns_init(struct dns_context *ctx)
{
k_sem_init(&ctx->rx_sem, 0, UINT_MAX);
return 0;
}
static int dns_write(struct dns_context *ctx, struct net_buf *dns_data,
uint16_t dns_id, struct net_buf *dns_qname);
static int dns_read(struct dns_context *ctx, struct net_buf *dns_data,
uint16_t dns_id, struct net_buf *cname);
/* net_context_recv callback */
static void cb_recv(struct net_context *net_ctx, struct net_buf *buf,
int status, void *data);
/*
* Note about the DNS transaction identifier:
* The transaction identifier is randomized according to:
* http://www.cisco.com/c/en/us/about/security-center/dns-best-practices.html#3
* Here we assume that even after the cast, dns_id = sys_rand32_get(), there is
* enough entropy :)
*/
int dns_resolve(struct dns_context *ctx)
{
struct net_buf *dns_data = NULL;
struct net_buf *dns_qname = NULL;
uint16_t dns_id;
int rc;
int i;
k_sem_reset(&ctx->rx_sem);
dns_id = sys_rand32_get();
net_context_recv(ctx->net_ctx, cb_recv, K_NO_WAIT, ctx);
dns_data = net_buf_alloc(&dns_msg_pool, ctx->timeout);
if (dns_data == NULL) {
rc = -ENOMEM;
goto exit_resolve;
}
dns_qname = net_buf_alloc(&dns_qname_pool, ctx->timeout);
if (dns_qname == NULL) {
rc = -ENOMEM;
goto exit_resolve;
}
rc = dns_msg_pack_qname(&dns_qname->len, dns_qname->data,
DNS_MAX_NAME_LEN, ctx->name);
if (rc != 0) {
rc = -EINVAL;
goto exit_resolve;
}
i = 0;
do {
rc = dns_write(ctx, dns_data, dns_id, dns_qname);
if (rc != 0) {
goto exit_resolve;
}
rc = dns_read(ctx, dns_data, dns_id, dns_qname);
if (rc != 0) {
goto exit_resolve;
}
/* Server response includes at least one IP address */
if (ctx->items > 0) {
break;
}
} while (++i < DNS_RESOLVER_QUERIES);
if (ctx->items > 0) {
rc = 0;
} else {
rc = -EINVAL;
}
exit_resolve:
/* dns_data may be NULL, however net_nbuf_unref supports that */
net_nbuf_unref(dns_data);
net_nbuf_unref(dns_qname);
/* uninstall the callback */
net_context_recv(ctx->net_ctx, NULL, 0, NULL);
return rc;
}
static int dns_write(struct dns_context *ctx, struct net_buf *dns_data,
uint16_t dns_id, struct net_buf *dns_qname)
{
struct net_buf *tx;
int server_addr_len;
int rc;
rc = dns_msg_pack_query(dns_data->data, &dns_data->len, dns_data->size,
dns_qname->data, dns_qname->len, dns_id,
(enum dns_rr_type)ctx->query_type);
if (rc != 0) {
rc = -EINVAL;
goto exit_write;
}
tx = net_nbuf_get_tx(ctx->net_ctx, K_FOREVER);
if (tx == NULL) {
rc = -ENOMEM;
goto exit_write;
}
rc = net_nbuf_append(tx, dns_data->len, dns_data->data, K_FOREVER);
if (rc != true) {
rc = -ENOMEM;
goto exit_write;
}
if (ctx->dns_server->family == AF_INET) {
server_addr_len = sizeof(struct sockaddr_in);
} else {
server_addr_len = sizeof(struct sockaddr_in6);
}
/* tx and dns_data buffers will be dereferenced after this call */
rc = net_context_sendto(tx, ctx->dns_server, server_addr_len, NULL,
ctx->timeout, NULL, NULL);
if (rc != 0) {
rc = -EIO;
goto exit_write;
}
rc = 0;
exit_write:
return rc;
}
static void cb_recv(struct net_context *net_ctx, struct net_buf *buf,
int status, void *data)
{
struct dns_context *ctx = (struct dns_context *)data;
ARG_UNUSED(net_ctx);
if (status != 0) {
return;
}
ctx->rx_buf = buf;
k_sem_give(&ctx->rx_sem);
}
static int dns_read(struct dns_context *ctx, struct net_buf *dns_data,
uint16_t dns_id, struct net_buf *cname)
{
/* helper struct to track the dns msg received from the server */
struct dns_msg_t dns_msg;
uint8_t *addresses;
/* RR ttl, so far it is not passed to caller */
uint32_t ttl;
uint8_t *src;
uint8_t *dst;
int address_size;
/* index that points to the current answer being analyzed */
int answer_ptr;
int data_len;
int offset;
int rc;
int i;
/* The cast is applied on address.ipv4, however we can also apply it on
* address.ipv6 and we will get the same result.
*/
addresses = (uint8_t *)ctx->address.ipv4;
if (ctx->elements <= 0) {
rc = -EINVAL;
goto exit_error;
}
ctx->rx_buf = NULL;
/* Block until timeout or data is received, see the 'cb_recv' routine */
k_sem_take(&ctx->rx_sem, ctx->timeout);
/* If data is received, rx_buf is set inside 'cb_recv'. Otherwise,
* k_sem_take will expire while ctx->rx_buf is still NULL
*/
if (!ctx->rx_buf) {
rc = -EIO;
goto exit_error;
}
data_len = min(net_nbuf_appdatalen(ctx->rx_buf),
DNS_RESOLVER_MAX_BUF_SIZE);
offset = net_buf_frags_len(ctx->rx_buf) - data_len;
rc = net_nbuf_linear_copy(dns_data, ctx->rx_buf, offset, data_len);
if (rc != 0) {
rc = -ENOMEM;
goto exit_error;
}
k_sem_give(&ctx->rx_sem);
dns_msg.msg = dns_data->data;
dns_msg.msg_size = data_len;
rc = dns_unpack_response_header(&dns_msg, dns_id);
if (rc != 0) {
rc = -EINVAL;
goto exit_error;
}
if (dns_header_qdcount(dns_msg.msg) != 1) {
rc = -EINVAL;
goto exit_error;
}
rc = dns_unpack_response_query(&dns_msg);
if (rc != 0) {
rc = -EINVAL;
goto exit_error;
}
if (ctx->query_type == DNS_QUERY_TYPE_A) {
address_size = DNS_IPV4_LEN;
} else {
address_size = DNS_IPV6_LEN;
}
/* while loop to traverse the response */
answer_ptr = DNS_QUERY_POS;
ctx->items = 0;
i = 0;
while (i < dns_header_ancount(dns_msg.msg)) {
rc = dns_unpack_answer(&dns_msg, answer_ptr, &ttl);
if (rc != 0) {
rc = -EINVAL;
goto exit_error;
}
switch (dns_msg.response_type) {
case DNS_RESPONSE_IP:
if (dns_msg.response_length < address_size) {
/* it seems this is a malformed message */
rc = -EINVAL;
goto exit_error;
}
src = dns_msg.msg + dns_msg.response_position;
dst = addresses + ctx->items * address_size;
memcpy(dst, src, address_size);
ctx->items += 1;
if (ctx->items >= ctx->elements) {
/* elements is always >= 1, so it is assumed
* that at least one address was returned.
*/
goto exit_ok;
}
break;
case DNS_RESPONSE_CNAME_NO_IP:
/* Instead of using the QNAME at DNS_QUERY_POS,
* we will use this CNAME
*/
answer_ptr = dns_msg.response_position;
break;
default:
rc = -EINVAL;
goto exit_error;
}
/* Update the answer offset to point to the next RR (answer) */
dns_msg.answer_offset += DNS_ANSWER_PTR_LEN;
dns_msg.answer_offset += dns_msg.response_length;
++i;
}
/* No IP addresses were found, so we take the last CNAME to generate
* another query. Number of additional queries is controlled via Kconfig
*/
if (ctx->items == 0) {
if (dns_msg.response_type == DNS_RESPONSE_CNAME_NO_IP) {
uint16_t pos = dns_msg.response_position;
rc = dns_copy_qname(cname->data, &cname->len,
cname->size, &dns_msg, pos);
if (rc != 0) {
goto exit_error;
}
}
}
exit_ok:
rc = 0;
exit_error:
net_nbuf_unref(ctx->rx_buf);
return rc;
}