blob: 2a1a79b4bb406f4f2153626c1eacccf5e57a5479 [file] [log] [blame]
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dcdc.h"
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for DCDC module.
*
* @param base DCDC peripheral base address
*/
static uint32_t DCDC_GetInstance(DCDC_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to DCDC bases for each instance. */
static DCDC_Type *const s_dcdcBases[] = DCDC_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to DCDC clocks for each instance. */
static const clock_ip_name_t s_dcdcClocks[] = DCDC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t DCDC_GetInstance(DCDC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dcdcBases); instance++)
{
if (s_dcdcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dcdcBases));
return instance;
}
void DCDC_Init(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void DCDC_Deinit(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
uint32_t DCDC_GetStatusFlags(DCDC_Type *base)
{
uint32_t tmp32 = 0U;
/* kDCDC_LockedOKStatus. */
if (0U != (DCDC_REG0_DCDC_STS_DC_OK_MASK & base->REG0))
{
tmp32 |= kDCDC_LockedOKStatus;
}
/* kDCDC_PSwitchStatus. */
if (0U != (DCDC_REG0_PSWITCH_STATUS_MASK & base->REG0))
{
tmp32 |= kDCDC_PSwitchStatus;
}
/* kDCDC_PSwitchInterruptStatus. */
if (0U != (DCDC_REG6_PSWITCH_INT_STS_MASK & base->REG6))
{
tmp32 |= kDCDC_PSwitchInterruptStatus;
}
return tmp32;
}
void DCDC_ClearStatusFlags(DCDC_Type *base, uint32_t mask) /* Clear flags indicated by mask. */
{
if (0U != (kDCDC_PSwitchInterruptStatus & mask))
{
/* Write 1 to clear interrupt. Set to 0 after clear. */
base->REG6 |= DCDC_REG6_PSWITCH_INT_CLEAR_MASK;
base->REG6 &= ~DCDC_REG6_PSWITCH_INT_CLEAR_MASK;
}
}
void DCDC_SetPSwitchInterruptConfig(DCDC_Type *base, uint32_t mask)
{
assert(0U == (mask & ~(DCDC_REG6_PSWITCH_INT_RISE_EN_MASK | DCDC_REG6_PSWITCH_INT_FALL_EN_MASK)));
uint32_t tmp32 = base->REG6 & ~(DCDC_REG6_PSWITCH_INT_RISE_EN_MASK | DCDC_REG6_PSWITCH_INT_FALL_EN_MASK);
tmp32 |= mask;
base->REG6 = tmp32;
}
void DCDC_GetDefaultLowPowerConfig(dcdc_low_power_config_t *config)
{
assert(NULL != config);
config->workModeInVLPRW = kDCDC_WorkInPulsedMode;
config->workModeInVLPS = kDCDC_WorkInPulsedMode;
config->enableHysteresisVoltageSense = true;
config->enableAdjustHystereticValueSense = false;
config->enableHystersisComparator = true;
config->enableAdjustHystereticValueComparator = false;
config->hystereticUpperThresholdValue = kDCDC_HystereticThresholdOffset75mV;
config->hystereticLowerThresholdValue = kDCDC_HystereticThresholdOffset0mV;
config->enableDiffComparators = false;
}
void DCDC_SetLowPowerConfig(DCDC_Type *base, const dcdc_low_power_config_t *config)
{
uint32_t tmp32;
tmp32 =
base->REG0 &
~(DCDC_REG0_VLPR_VLPW_CONFIG_DCDC_HP_MASK | DCDC_REG0_VLPS_CONFIG_DCDC_HP_MASK |
DCDC_REG0_OFFSET_RSNS_LP_DISABLE_MASK | DCDC_REG0_OFFSET_RSNS_LP_ADJ_MASK |
DCDC_REG0_HYST_LP_CMP_DISABLE_MASK | DCDC_REG0_HYST_LP_COMP_ADJ_MASK | DCDC_REG0_DCDC_LP_STATE_HYS_H_MASK |
DCDC_REG0_DCDC_LP_STATE_HYS_L_MASK | DCDC_REG0_DCDC_LP_DF_CMP_ENABLE_MASK);
if (kDCDC_WorkInContinuousMode == config->workModeInVLPRW)
{
tmp32 |= DCDC_REG0_VLPR_VLPW_CONFIG_DCDC_HP_MASK;
}
if (kDCDC_WorkInContinuousMode == config->workModeInVLPS)
{
tmp32 |= DCDC_REG0_VLPS_CONFIG_DCDC_HP_MASK;
}
if (!config->enableHysteresisVoltageSense)
{
tmp32 |= DCDC_REG0_OFFSET_RSNS_LP_DISABLE_MASK;
}
if (config->enableAdjustHystereticValueSense)
{
tmp32 |= DCDC_REG0_OFFSET_RSNS_LP_ADJ_MASK;
}
if (!config->enableHystersisComparator)
{
tmp32 |= DCDC_REG0_HYST_LP_CMP_DISABLE_MASK;
}
if (config->enableAdjustHystereticValueComparator)
{
tmp32 |= DCDC_REG0_HYST_LP_COMP_ADJ_MASK;
}
tmp32 |= DCDC_REG0_DCDC_LP_STATE_HYS_H(config->hystereticUpperThresholdValue) |
DCDC_REG0_DCDC_LP_STATE_HYS_L(config->hystereticLowerThresholdValue);
/* true - DCDC compare the lower supply(relative to target value) with DCDC_LP_STATE_HYS_L. When it is lower than
* DCDC_LP_STATE_HYS_L, re-charge output.
* false - DCDC compare the common mode sense of supply(relative to target value) with DCDC_LP_STATE_HYS_L. When it
* is lower than DCDC_LP_STATE_HYS_L, re-charge output.
*/
if (config->enableDiffComparators)
{
tmp32 |= DCDC_REG0_DCDC_LP_DF_CMP_ENABLE_MASK;
}
base->REG0 = tmp32;
}
void DCDC_GetDefaultLoopControlConfig(dcdc_loop_control_config_t *config)
{
assert(NULL != config);
config->enableDiffHysteresis = false;
config->enableCommonHysteresis = false;
config->enableDiffHysteresisThresh = false;
config->enableCommonHysteresisThresh = false;
config->enableInvertHysteresisSign = false;
}
void DCDC_SetLoopControlConfig(DCDC_Type *base, const dcdc_loop_control_config_t *config)
{
uint32_t tmp32;
/* DCDC_REG1. */
tmp32 = base->REG1 &
~(DCDC_REG1_DCDC_LOOPCTRL_EN_DF_HYST_MASK | DCDC_REG1_DCDC_LOOPCTRL_EN_CM_HYST_MASK |
DCDC_REG1_DCDC_LOOPCTRL_DF_HST_THRESH_MASK | DCDC_REG1_DCDC_LOOPCTRL_CM_HST_THRESH_MASK);
if (config->enableDiffHysteresis)
{
tmp32 |= DCDC_REG1_DCDC_LOOPCTRL_EN_DF_HYST_MASK;
}
if (config->enableCommonHysteresis)
{
tmp32 |= DCDC_REG1_DCDC_LOOPCTRL_EN_CM_HYST_MASK;
}
if (config->enableDiffHysteresisThresh)
{
tmp32 |= DCDC_REG1_DCDC_LOOPCTRL_DF_HST_THRESH_MASK;
}
if (config->enableCommonHysteresisThresh)
{
tmp32 |= DCDC_REG1_DCDC_LOOPCTRL_CM_HST_THRESH_MASK;
}
base->REG1 = tmp32;
/* DCDC_REG2. */
if (config->enableInvertHysteresisSign)
{
base->REG2 |= DCDC_REG2_DCDC_LOOPCTRL_HYST_SIGN_MASK;
}
else
{
base->REG2 &= ~DCDC_REG2_DCDC_LOOPCTRL_HYST_SIGN_MASK;
}
}
void DCDC_SetClockSource(DCDC_Type *base, dcdc_clock_source_t clockSource)
{
uint32_t tmp32;
tmp32 =
base->REG0 &
~(DCDC_REG0_DCDC_PWD_OSC_INT_MASK | DCDC_REG0_DCDC_SEL_CLK_MASK | DCDC_REG0_DCDC_DISABLE_AUTO_CLK_SWITCH_MASK);
switch (clockSource)
{
case kDCDC_ClockInternalOsc:
tmp32 |= DCDC_REG0_DCDC_DISABLE_AUTO_CLK_SWITCH_MASK;
break;
case kDCDC_ClockExternalOsc:
/* Choose the external clock and disable the internal clock. */
tmp32 |= DCDC_REG0_DCDC_DISABLE_AUTO_CLK_SWITCH_MASK | DCDC_REG0_DCDC_SEL_CLK_MASK |
DCDC_REG0_DCDC_PWD_OSC_INT_MASK;
break;
default:
break;
}
base->REG0 = tmp32;
}
void DCDC_AdjustTargetVoltage(DCDC_Type *base, uint32_t vdd1p5xBoost, uint32_t vdd1p5xBuck, uint32_t vdd1p8)
{
uint32_t tmp32;
/* Unlock the limitation of setting target voltage. */
base->REG3 &= ~(DCDC_REG3_DCDC_VDD1P8CTRL_DISABLE_STEP_MASK | DCDC_REG3_DCDC_VDD1P5XCTRL_DISABLE_STEP_MASK);
/* Change the target voltage value. */
tmp32 = base->REG3 &
~(DCDC_REG3_DCDC_VDD1P5XCTRL_TRG_BOOST_MASK | DCDC_REG3_DCDC_VDD1P5XCTRL_TRG_BUCK_MASK |
DCDC_REG3_DCDC_VDD1P8CTRL_TRG_MASK);
tmp32 |= DCDC_REG3_DCDC_VDD1P5XCTRL_TRG_BOOST(vdd1p5xBoost) | DCDC_REG3_DCDC_VDD1P5XCTRL_TRG_BUCK(vdd1p5xBuck) |
DCDC_REG3_DCDC_VDD1P8CTRL_TRG(vdd1p8);
base->REG3 = tmp32;
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage settling to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (0U != (DCDC_REG0_DCDC_STS_DC_OK_MASK & base->REG0))
{
}
}
void DCDC_SetBatteryMonitorValue(DCDC_Type *base, uint32_t battValue)
{
uint32_t tmp32;
/* Disable the monitor before setting the new value */
base->REG2 &= ~DCDC_REG2_DCDC_BATTMONITOR_EN_BATADJ_MASK;
if (0U != battValue)
{
tmp32 = base->REG2 & ~DCDC_REG2_DCDC_BATTMONITOR_BATT_VAL_MASK;
/* Enable the monitor with setting value. */
tmp32 |= (DCDC_REG2_DCDC_BATTMONITOR_EN_BATADJ_MASK | DCDC_REG2_DCDC_BATTMONITOR_BATT_VAL(battValue));
base->REG2 = tmp32;
}
}
void DCDC_SetMinPowerConfig(DCDC_Type *base, const dcdc_min_power_config_t *config)
{
uint32_t tmp32 = base->REG3 &
~(DCDC_REG3_DCDC_MINPWR_HALF_FETS_MASK | DCDC_REG3_DCDC_MINPWR_DOUBLE_FETS_MASK |
DCDC_REG3_DCDC_MINPWR_DC_HALFCLK_MASK | DCDC_REG3_DCDC_MINPWR_HALF_FETS_PULSED_MASK |
DCDC_REG3_DCDC_MINPWR_DOUBLE_FETS_PULSED_MASK | DCDC_REG3_DCDC_MINPWR_DC_HALFCLK_PULSED_MASK);
/* For Continuous mode. */
if (config->enableUseHalfFetForContinuous)
{
tmp32 |= DCDC_REG3_DCDC_MINPWR_HALF_FETS_MASK;
}
if (config->enableUseDoubleFetForContinuous)
{
tmp32 |= DCDC_REG3_DCDC_MINPWR_DOUBLE_FETS_MASK;
}
if (config->enableUseHalfFreqForContinuous)
{
tmp32 |= DCDC_REG3_DCDC_MINPWR_DC_HALFCLK_MASK;
}
/* For Pulsed mode. */
if (config->enableUseHalfFetForPulsed)
{
tmp32 |= DCDC_REG3_DCDC_MINPWR_HALF_FETS_PULSED_MASK;
}
if (config->enableUseDoubleFetForPulsed)
{
tmp32 |= DCDC_REG3_DCDC_MINPWR_DOUBLE_FETS_PULSED_MASK;
}
if (config->enableUseHalfFreqForPulsed)
{
tmp32 |= DCDC_REG3_DCDC_MINPWR_DC_HALFCLK_PULSED_MASK;
}
base->REG3 = tmp32;
}
void DCDC_GetDefaultMinPowerDefault(dcdc_min_power_config_t *config)
{
assert(NULL != config);
/* For Continuous mode. */
config->enableUseHalfFetForContinuous = false;
config->enableUseDoubleFetForContinuous = false;
config->enableUseHalfFreqForContinuous = false;
/* For Pulsed mode. */
config->enableUseHalfFetForPulsed = false;
config->enableUseDoubleFetForPulsed = false;
config->enableUseHalfFreqForPulsed = false;
}
void DCDC_SetPulsedIntegratorConfig(DCDC_Type *base, const dcdc_pulsed_integrator_config_t *config)
{
if (config->enableUseUserIntegratorValue) /* Enable to use the user integrator value. */
{
base->REG7 = (base->REG7 & ~DCDC_REG7_INTEGRATOR_VALUE_MASK) | DCDC_REG7_INTEGRATOR_VALUE_SEL_MASK |
DCDC_REG7_INTEGRATOR_VALUE(config->userIntegratorValue);
if (config->enablePulseRunSpeedup)
{
base->REG7 |= DCDC_REG7_PULSE_RUN_SPEEDUP_MASK;
}
}
else
{
base->REG7 = 0U;
}
}
void DCDC_GetDefaultPulsedIntegratorConfig(dcdc_pulsed_integrator_config_t *config)
{
assert(NULL != config);
config->enableUseUserIntegratorValue = false;
config->userIntegratorValue = 0U;
config->enablePulseRunSpeedup = false;
}