blob: 4004b90373f0cc392c105ade1de41ca7892ee2d9 [file] [log] [blame]
/***************************************************************************//**
* @file em_cmu.c
* @brief Clock management unit (CMU) Peripheral API
* @version 5.1.2
*******************************************************************************
* @section License
* <b>Copyright 2016 Silicon Laboratories, Inc. http://www.silabs.com</b>
*******************************************************************************
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
* obligation to support this Software. Silicon Labs is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Silicon Labs will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "em_cmu.h"
#if defined( CMU_PRESENT )
#include <stddef.h>
#include <limits.h>
#include "em_assert.h"
#include "em_bus.h"
#include "em_emu.h"
#include "em_cmu.h"
#include "em_system.h"
#include "em_common.h"
/***************************************************************************//**
* @addtogroup emlib
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup CMU
* @brief Clock management unit (CMU) Peripheral API
* @details
* This module contains functions to control the CMU peripheral of Silicon
* Labs 32-bit MCUs and SoCs. The CMU controls oscillators and clocks.
* @{
******************************************************************************/
/*******************************************************************************
****************************** DEFINES ************************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
#if defined( _SILICON_LABS_32B_SERIES_1 )
/** Maximum allowed core frequency when using 0 wait-states on flash access. */
#define CMU_MAX_FREQ_0WS 26000000
/** Maximum allowed core frequency when using 1 wait-states on flash access */
#define CMU_MAX_FREQ_1WS 40000000
#elif defined( _SILICON_LABS_32B_SERIES_0 )
/** Maximum allowed core frequency when using 0 wait-states on flash access. */
#define CMU_MAX_FREQ_0WS 16000000
/** Maximum allowed core frequency when using 1 wait-states on flash access */
#define CMU_MAX_FREQ_1WS 32000000
#else
#error "Max Flash wait-state frequencies are not defined for this platform."
#endif
/** Maximum frequency for HFLE interface */
#if defined( CMU_CTRL_HFLE )
/** Maximum HFLE frequency for series 0 EFM32 and EZR32 Wonder Gecko. */
#if defined( _SILICON_LABS_32B_SERIES_0 ) \
&& (defined( _EFM32_WONDER_FAMILY ) \
|| defined( _EZR32_WONDER_FAMILY ))
#define CMU_MAX_FREQ_HFLE 24000000
/** Maximum HFLE frequency for other series 0 parts with maximum core clock
higher than 32MHz. */
#elif defined( _SILICON_LABS_32B_SERIES_0 ) \
&& (defined( _EFM32_GIANT_FAMILY ) \
|| defined( _EFM32_LEOPARD_FAMILY ) \
|| defined( _EZR32_LEOPARD_FAMILY ))
#define CMU_MAX_FREQ_HFLE maxFreqHfle()
#endif
#elif defined( CMU_CTRL_WSHFLE )
/** Maximum HFLE frequency for series 1 parts */
#define CMU_MAX_FREQ_HFLE 32000000
#endif
/*******************************************************************************
************************** LOCAL VARIABLES ********************************
******************************************************************************/
#if defined( _CMU_AUXHFRCOCTRL_FREQRANGE_MASK )
static CMU_AUXHFRCOFreq_TypeDef auxHfrcoFreq = cmuAUXHFRCOFreq_19M0Hz;
#endif
#if defined( _CMU_STATUS_HFXOSHUNTOPTRDY_MASK )
#define HFXO_INVALID_TRIM (~_CMU_HFXOTRIMSTATUS_MASK)
#endif
/** @endcond */
/*******************************************************************************
************************** LOCAL FUNCTIONS ********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
#if defined( _SILICON_LABS_32B_SERIES_0 ) \
&& (defined( _EFM32_GIANT_FAMILY ) \
|| defined( _EFM32_LEOPARD_FAMILY ) \
|| defined( _EZR32_LEOPARD_FAMILY ))
/***************************************************************************//**
* @brief
* Return max allowed frequency for low energy peripherals.
******************************************************************************/
static uint32_t maxFreqHfle(void)
{
uint16_t majorMinorRev;
switch (SYSTEM_GetFamily())
{
case systemPartFamilyEfm32Leopard:
case systemPartFamilyEzr32Leopard:
/* CHIP MAJOR bit [5:0] */
majorMinorRev = (((ROMTABLE->PID0 & _ROMTABLE_PID0_REVMAJOR_MASK)
>> _ROMTABLE_PID0_REVMAJOR_SHIFT) << 8);
/* CHIP MINOR bit [7:4] */
majorMinorRev |= (((ROMTABLE->PID2 & _ROMTABLE_PID2_REVMINORMSB_MASK)
>> _ROMTABLE_PID2_REVMINORMSB_SHIFT) << 4);
/* CHIP MINOR bit [3:0] */
majorMinorRev |= ((ROMTABLE->PID3 & _ROMTABLE_PID3_REVMINORLSB_MASK)
>> _ROMTABLE_PID3_REVMINORLSB_SHIFT);
if (majorMinorRev >= 0x0204)
{
return 24000000;
}
else
{
return 32000000;
}
case systemPartFamilyEfm32Giant:
return 32000000;
default:
/* Invalid device family. */
EFM_ASSERT(false);
return 0;
}
}
#endif
#if defined( CMU_MAX_FREQ_HFLE )
/* Unified definitions for HFLE wait-state and prescaler fields. */
#if defined( CMU_CTRL_HFLE )
#define CMU_HFLE_WS_MASK _CMU_CTRL_HFLE_MASK
#define CMU_HFLE_WS_SHIFT _CMU_CTRL_HFLE_SHIFT
#define CMU_HFLE_PRESC_REG CMU->HFCORECLKDIV
#define CMU_HFLE_PRESC_MASK _CMU_HFCORECLKDIV_HFCORECLKLEDIV_MASK
#define CMU_HFLE_PRESC_SHIFT _CMU_HFCORECLKDIV_HFCORECLKLEDIV_SHIFT
#elif defined( CMU_CTRL_WSHFLE )
#define CMU_HFLE_WS_MASK _CMU_CTRL_WSHFLE_MASK
#define CMU_HFLE_WS_SHIFT _CMU_CTRL_WSHFLE_SHIFT
#define CMU_HFLE_PRESC_REG CMU->HFPRESC
#define CMU_HFLE_PRESC_MASK _CMU_HFPRESC_HFCLKLEPRESC_MASK
#define CMU_HFLE_PRESC_SHIFT _CMU_HFPRESC_HFCLKLEPRESC_SHIFT
#endif
/***************************************************************************//**
* @brief
* Set HFLE wait-states and HFCLKLE prescaler.
*
* @param[in] maxLeFreq
* Max LE frequency
*
* @param[in] maxFreq
* Max LE frequency
******************************************************************************/
static void setHfLeConfig(uint32_t hfFreq, uint32_t maxLeFreq)
{
/* Check for 1 bit fields. BUS_RegBitWrite() below are going to fail if the
fields are changed to more than 1 bit. */
EFM_ASSERT((CMU_HFLE_WS_MASK >> CMU_HFLE_WS_SHIFT) == 0x1);
EFM_ASSERT((CMU_HFLE_PRESC_MASK >> CMU_HFLE_PRESC_SHIFT) == 0x1);
/* 0: set 0 wait-states and DIV2
1: set 1 wait-states and DIV4 */
unsigned int val = (hfFreq <= maxLeFreq) ? 0 : 1;
BUS_RegBitWrite(&CMU->CTRL, CMU_HFLE_WS_SHIFT, val);
BUS_RegBitWrite(&CMU_HFLE_PRESC_REG, CMU_HFLE_PRESC_SHIFT, val);
}
/***************************************************************************//**
* @brief
* Get HFLE wait-state configuration.
*
* @return
* Current wait-state configuration.
******************************************************************************/
static uint32_t getHfLeConfig(void)
{
uint32_t ws = BUS_RegBitRead(&CMU->CTRL, CMU_HFLE_WS_SHIFT);
uint32_t presc = BUS_RegBitRead(&CMU_HFLE_PRESC_REG, CMU_HFLE_PRESC_SHIFT);
/* HFLE wait-state and DIV2(0) / DIV4(1) should
always be set to the same value. */
EFM_ASSERT(ws == presc);
return ws;
}
#endif
/***************************************************************************//**
* @brief
* Get the AUX clock frequency. Used by MSC flash programming and LESENSE,
* by default also as debug clock.
*
* @return
* AUX Frequency in Hz
******************************************************************************/
static uint32_t auxClkGet(void)
{
uint32_t ret;
#if defined( _CMU_AUXHFRCOCTRL_FREQRANGE_MASK )
ret = auxHfrcoFreq;
#elif defined( _CMU_AUXHFRCOCTRL_BAND_MASK )
/* All series 0 families except EFM32G */
switch(CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_BAND_MASK)
{
case CMU_AUXHFRCOCTRL_BAND_1MHZ:
if ( SYSTEM_GetProdRev() >= 19 )
{
ret = 1200000;
}
else
{
ret = 1000000;
}
break;
case CMU_AUXHFRCOCTRL_BAND_7MHZ:
if ( SYSTEM_GetProdRev() >= 19 )
{
ret = 6600000;
}
else
{
ret = 7000000;
}
break;
case CMU_AUXHFRCOCTRL_BAND_11MHZ:
ret = 11000000;
break;
case CMU_AUXHFRCOCTRL_BAND_14MHZ:
ret = 14000000;
break;
case CMU_AUXHFRCOCTRL_BAND_21MHZ:
ret = 21000000;
break;
#if defined( _CMU_AUXHFRCOCTRL_BAND_28MHZ )
case CMU_AUXHFRCOCTRL_BAND_28MHZ:
ret = 28000000;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0;
break;
}
#else
/* Gecko has a fixed 14Mhz AUXHFRCO clock */
ret = 14000000;
#endif
return ret;
}
/***************************************************************************//**
* @brief
* Get the Debug Trace clock frequency
*
* @return
* Debug Trace frequency in Hz
******************************************************************************/
static uint32_t dbgClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_DBG);
switch(clk)
{
case cmuSelect_HFCLK:
ret = SystemHFClockGet();
break;
case cmuSelect_AUXHFRCO:
ret = auxClkGet();
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Configure flash access wait states in order to support given core clock
* frequency.
*
* @param[in] coreFreq
* Core clock frequency to configure flash wait-states for
******************************************************************************/
static void flashWaitStateControl(uint32_t coreFreq)
{
uint32_t mode;
bool mscLocked;
#if defined( MSC_READCTRL_MODE_WS0SCBTP )
bool scbtpEn; /* Suppressed Conditional Branch Target Prefetch setting. */
#endif
/* Make sure the MSC is unlocked */
mscLocked = MSC->LOCK;
MSC->LOCK = MSC_UNLOCK_CODE;
/* Get mode and SCBTP enable */
mode = MSC->READCTRL & _MSC_READCTRL_MODE_MASK;
#if defined( MSC_READCTRL_MODE_WS0SCBTP )
switch(mode)
{
case MSC_READCTRL_MODE_WS0:
case MSC_READCTRL_MODE_WS1:
#if defined( MSC_READCTRL_MODE_WS2 )
case MSC_READCTRL_MODE_WS2:
#endif
scbtpEn = false;
break;
default: /* WSxSCBTP */
scbtpEn = true;
break;
}
#endif
/* Set mode based on the core clock frequency and SCBTP enable */
#if defined( MSC_READCTRL_MODE_WS0SCBTP )
if (false)
{
}
#if defined( MSC_READCTRL_MODE_WS2 )
else if (coreFreq > CMU_MAX_FREQ_1WS)
{
mode = (scbtpEn ? MSC_READCTRL_MODE_WS2SCBTP : MSC_READCTRL_MODE_WS2);
}
#endif
else if ((coreFreq <= CMU_MAX_FREQ_1WS) && (coreFreq > CMU_MAX_FREQ_0WS))
{
mode = (scbtpEn ? MSC_READCTRL_MODE_WS1SCBTP : MSC_READCTRL_MODE_WS1);
}
else
{
mode = (scbtpEn ? MSC_READCTRL_MODE_WS0SCBTP : MSC_READCTRL_MODE_WS0);
}
#else /* If MODE and SCBTP is in separate register fields */
if (false)
{
}
#if defined( MSC_READCTRL_MODE_WS2 )
else if (coreFreq > CMU_MAX_FREQ_1WS)
{
mode = MSC_READCTRL_MODE_WS2;
}
#endif
else if ((coreFreq <= CMU_MAX_FREQ_1WS) && (coreFreq > CMU_MAX_FREQ_0WS))
{
mode = MSC_READCTRL_MODE_WS1;
}
else
{
mode = MSC_READCTRL_MODE_WS0;
}
#endif
/* BUS_RegMaskedWrite cannot be used here as it would temporarely set the
mode field to WS0 */
MSC->READCTRL = (MSC->READCTRL &~_MSC_READCTRL_MODE_MASK) | mode;
if (mscLocked)
{
MSC->LOCK = 0;
}
}
/***************************************************************************//**
* @brief
* Configure flash access wait states to most conservative setting for
* this target. Retain SCBTP (Suppressed Conditional Branch Target Prefetch)
* setting.
******************************************************************************/
static void flashWaitStateMax(void)
{
flashWaitStateControl(SystemMaxCoreClockGet());
}
#if defined(_CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK)
/***************************************************************************//**
* @brief
* Return upper value for CMU_HFXOSTEADYSTATECTRL_REGISH
******************************************************************************/
static uint32_t getRegIshUpperVal(uint32_t steadyStateRegIsh)
{
uint32_t regIshUpper;
const uint32_t upperMax = _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK
>> _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_SHIFT;
/* Add 3 as specified in register description for CMU_HFXOSTEADYSTATECTRL_REGISHUPPER. */
regIshUpper = SL_MIN(steadyStateRegIsh + 3, upperMax);
regIshUpper <<= _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_SHIFT;
return regIshUpper;
}
#endif
/***************************************************************************//**
* @brief
* Get the LFnCLK frequency based on current configuration.
*
* @param[in] lfClkBranch
* Selected LF branch
*
* @return
* The LFnCLK frequency in Hz. If no LFnCLK is selected (disabled), 0 is
* returned.
******************************************************************************/
static uint32_t lfClkGet(CMU_Clock_TypeDef lfClkBranch)
{
uint32_t sel;
uint32_t ret = 0;
switch (lfClkBranch)
{
case cmuClock_LFA:
case cmuClock_LFB:
#if defined( _CMU_LFCCLKEN0_MASK )
case cmuClock_LFC:
#endif
#if defined( _CMU_LFECLKSEL_MASK )
case cmuClock_LFE:
#endif
break;
default:
EFM_ASSERT(0);
break;
}
sel = CMU_ClockSelectGet(lfClkBranch);
/* Get clock select field */
switch (lfClkBranch)
{
case cmuClock_LFA:
#if defined( _CMU_LFCLKSEL_MASK )
sel = (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFA_MASK) >> _CMU_LFCLKSEL_LFA_SHIFT;
#elif defined( _CMU_LFACLKSEL_MASK )
sel = (CMU->LFACLKSEL & _CMU_LFACLKSEL_LFA_MASK) >> _CMU_LFACLKSEL_LFA_SHIFT;
#else
EFM_ASSERT(0);
#endif
break;
case cmuClock_LFB:
#if defined( _CMU_LFCLKSEL_MASK )
sel = (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFB_MASK) >> _CMU_LFCLKSEL_LFB_SHIFT;
#elif defined( _CMU_LFBCLKSEL_MASK )
sel = (CMU->LFBCLKSEL & _CMU_LFBCLKSEL_LFB_MASK) >> _CMU_LFBCLKSEL_LFB_SHIFT;
#else
EFM_ASSERT(0);
#endif
break;
#if defined( _CMU_LFCCLKEN0_MASK )
case cmuClock_LFC:
sel = (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFC_MASK) >> _CMU_LFCLKSEL_LFC_SHIFT;
break;
#endif
#if defined( _CMU_LFECLKSEL_MASK )
case cmuClock_LFE:
sel = (CMU->LFECLKSEL & _CMU_LFECLKSEL_LFE_MASK) >> _CMU_LFECLKSEL_LFE_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
break;
}
/* Get clock frequency */
#if defined( _CMU_LFCLKSEL_MASK )
switch (sel)
{
case _CMU_LFCLKSEL_LFA_LFRCO:
ret = SystemLFRCOClockGet();
break;
case _CMU_LFCLKSEL_LFA_LFXO:
ret = SystemLFXOClockGet();
break;
#if defined( _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2 )
case _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2:
#if defined( CMU_MAX_FREQ_HFLE )
ret = SystemCoreClockGet() / (1U << (getHfLeConfig() + 1));
#else
ret = SystemCoreClockGet() / 2U;
#endif
break;
#endif
case _CMU_LFCLKSEL_LFA_DISABLED:
ret = 0;
#if defined( CMU_LFCLKSEL_LFAE )
/* Check LF Extended bit setting for LFA or LFB ULFRCO clock */
if ((lfClkBranch == cmuClock_LFA) || (lfClkBranch == cmuClock_LFB))
{
if (CMU->LFCLKSEL >> (lfClkBranch == cmuClock_LFA
? _CMU_LFCLKSEL_LFAE_SHIFT
: _CMU_LFCLKSEL_LFBE_SHIFT))
{
ret = SystemULFRCOClockGet();
}
}
#endif
break;
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
#endif /* _CMU_LFCLKSEL_MASK */
#if defined( _CMU_LFACLKSEL_MASK )
switch (sel)
{
case _CMU_LFACLKSEL_LFA_LFRCO:
ret = SystemLFRCOClockGet();
break;
case _CMU_LFACLKSEL_LFA_LFXO:
ret = SystemLFXOClockGet();
break;
case _CMU_LFACLKSEL_LFA_ULFRCO:
ret = SystemULFRCOClockGet();
break;
#if defined( CMU_LFACLKSEL_LFA_PLFRCO )
case _CMU_LFACLKSEL_LFA_PLFRCO:
ret = SystemLFRCOClockGet();
break;
#endif
#if defined( _CMU_LFACLKSEL_LFA_HFCLKLE )
case _CMU_LFACLKSEL_LFA_HFCLKLE:
ret = ((CMU->HFPRESC & _CMU_HFPRESC_HFCLKLEPRESC_MASK)
== CMU_HFPRESC_HFCLKLEPRESC_DIV4)
? SystemCoreClockGet() / 4U
: SystemCoreClockGet() / 2U;
break;
#elif defined( _CMU_LFBCLKSEL_LFB_HFCLKLE )
case _CMU_LFBCLKSEL_LFB_HFCLKLE:
ret = ((CMU->HFPRESC & _CMU_HFPRESC_HFCLKLEPRESC_MASK)
== CMU_HFPRESC_HFCLKLEPRESC_DIV4)
? SystemCoreClockGet() / 4U
: SystemCoreClockGet() / 2U;
break;
#endif
case _CMU_LFACLKSEL_LFA_DISABLED:
ret = 0;
break;
}
#endif
return ret;
}
/***************************************************************************//**
* @brief
* Wait for ongoing sync of register(s) to low frequency domain to complete.
*
* @param[in] mask
* Bitmask corresponding to SYNCBUSY register defined bits, indicating
* registers that must complete any ongoing synchronization.
******************************************************************************/
__STATIC_INLINE void syncReg(uint32_t mask)
{
/* Avoid deadlock if modifying the same register twice when freeze mode is */
/* activated. */
if (CMU->FREEZE & CMU_FREEZE_REGFREEZE)
return;
/* Wait for any pending previous write operation to have been completed */
/* in low frequency domain */
while (CMU->SYNCBUSY & mask)
{
}
}
#if defined(USB_PRESENT)
/***************************************************************************//**
* @brief
* Get the USBC frequency
*
* @return
* USBC frequency in Hz
******************************************************************************/
static uint32_t usbCClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_USBC);
switch(clk)
{
case cmuSelect_LFXO:
ret = SystemLFXOClockGet();
break;
case cmuSelect_LFRCO:
ret = SystemLFRCOClockGet();
break;
case cmuSelect_HFCLK:
ret = SystemHFClockGet();
break;
default:
/* Clock is not enabled */
ret = 0;
break;
}
return ret;
}
#endif
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
#if defined( _CMU_AUXHFRCOCTRL_BAND_MASK )
/***************************************************************************//**
* @brief
* Get AUXHFRCO band in use.
*
* @return
* AUXHFRCO band in use.
******************************************************************************/
CMU_AUXHFRCOBand_TypeDef CMU_AUXHFRCOBandGet(void)
{
return (CMU_AUXHFRCOBand_TypeDef)((CMU->AUXHFRCOCTRL
& _CMU_AUXHFRCOCTRL_BAND_MASK)
>> _CMU_AUXHFRCOCTRL_BAND_SHIFT);
}
#endif /* _CMU_AUXHFRCOCTRL_BAND_MASK */
#if defined( _CMU_AUXHFRCOCTRL_BAND_MASK )
/***************************************************************************//**
* @brief
* Set AUXHFRCO band and the tuning value based on the value in the
* calibration table made during production.
*
* @param[in] band
* AUXHFRCO band to activate.
******************************************************************************/
void CMU_AUXHFRCOBandSet(CMU_AUXHFRCOBand_TypeDef band)
{
uint32_t tuning;
/* Read tuning value from calibration table */
switch (band)
{
case cmuAUXHFRCOBand_1MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND1_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND1_SHIFT;
break;
case cmuAUXHFRCOBand_7MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND7_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND7_SHIFT;
break;
case cmuAUXHFRCOBand_11MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND11_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND11_SHIFT;
break;
case cmuAUXHFRCOBand_14MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND14_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND14_SHIFT;
break;
case cmuAUXHFRCOBand_21MHz:
tuning = (DEVINFO->AUXHFRCOCAL1 & _DEVINFO_AUXHFRCOCAL1_BAND21_MASK)
>> _DEVINFO_AUXHFRCOCAL1_BAND21_SHIFT;
break;
#if defined( _CMU_AUXHFRCOCTRL_BAND_28MHZ )
case cmuAUXHFRCOBand_28MHz:
tuning = (DEVINFO->AUXHFRCOCAL1 & _DEVINFO_AUXHFRCOCAL1_BAND28_MASK)
>> _DEVINFO_AUXHFRCOCAL1_BAND28_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
return;
}
/* Set band/tuning */
CMU->AUXHFRCOCTRL = (CMU->AUXHFRCOCTRL &
~(_CMU_AUXHFRCOCTRL_BAND_MASK
| _CMU_AUXHFRCOCTRL_TUNING_MASK))
| (band << _CMU_AUXHFRCOCTRL_BAND_SHIFT)
| (tuning << _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
}
#endif /* _CMU_AUXHFRCOCTRL_BAND_MASK */
#if defined( _CMU_AUXHFRCOCTRL_FREQRANGE_MASK )
/**************************************************************************//**
* @brief
* Get a pointer to the AUXHFRCO frequency calibration word in DEVINFO
*
* @param[in] freq
* Frequency in Hz
*
* @return
* AUXHFRCO calibration word for a given frequency
*****************************************************************************/
static uint32_t CMU_AUXHFRCODevinfoGet(CMU_AUXHFRCOFreq_TypeDef freq)
{
switch (freq)
{
/* 1, 2 and 4MHz share the same calibration word */
case cmuAUXHFRCOFreq_1M0Hz:
case cmuAUXHFRCOFreq_2M0Hz:
case cmuAUXHFRCOFreq_4M0Hz:
return DEVINFO->AUXHFRCOCAL0;
case cmuAUXHFRCOFreq_7M0Hz:
return DEVINFO->AUXHFRCOCAL3;
case cmuAUXHFRCOFreq_13M0Hz:
return DEVINFO->AUXHFRCOCAL6;
case cmuAUXHFRCOFreq_16M0Hz:
return DEVINFO->AUXHFRCOCAL7;
case cmuAUXHFRCOFreq_19M0Hz:
return DEVINFO->AUXHFRCOCAL8;
case cmuAUXHFRCOFreq_26M0Hz:
return DEVINFO->AUXHFRCOCAL10;
case cmuAUXHFRCOFreq_32M0Hz:
return DEVINFO->AUXHFRCOCAL11;
case cmuAUXHFRCOFreq_38M0Hz:
return DEVINFO->AUXHFRCOCAL12;
default: /* cmuAUXHFRCOFreq_UserDefined */
return 0;
}
}
#endif /* _CMU_AUXHFRCOCTRL_FREQRANGE_MASK */
#if defined( _CMU_AUXHFRCOCTRL_FREQRANGE_MASK )
/***************************************************************************//**
* @brief
* Get current AUXHFRCO frequency.
*
* @return
* AUXHFRCO frequency
******************************************************************************/
CMU_AUXHFRCOFreq_TypeDef CMU_AUXHFRCOBandGet(void)
{
return auxHfrcoFreq;
}
#endif /* _CMU_AUXHFRCOCTRL_FREQRANGE_MASK */
#if defined( _CMU_AUXHFRCOCTRL_FREQRANGE_MASK )
/***************************************************************************//**
* @brief
* Set AUXHFRCO calibration for the selected target frequency.
*
* @param[in] setFreq
* AUXHFRCO frequency to set
******************************************************************************/
void CMU_AUXHFRCOBandSet(CMU_AUXHFRCOFreq_TypeDef setFreq)
{
uint32_t freqCal;
/* Get DEVINFO index, set global auxHfrcoFreq */
freqCal = CMU_AUXHFRCODevinfoGet(setFreq);
EFM_ASSERT((freqCal != 0) && (freqCal != UINT_MAX));
auxHfrcoFreq = setFreq;
/* Wait for any previous sync to complete, and then set calibration data
for the selected frequency. */
while(BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_AUXHFRCOBSY_SHIFT));
/* Set divider in AUXHFRCOCTRL for 1, 2 and 4MHz */
switch(setFreq)
{
case cmuAUXHFRCOFreq_1M0Hz:
freqCal = (freqCal & ~_CMU_AUXHFRCOCTRL_CLKDIV_MASK)
| CMU_AUXHFRCOCTRL_CLKDIV_DIV4;
break;
case cmuAUXHFRCOFreq_2M0Hz:
freqCal = (freqCal & ~_CMU_AUXHFRCOCTRL_CLKDIV_MASK)
| CMU_AUXHFRCOCTRL_CLKDIV_DIV2;
break;
case cmuAUXHFRCOFreq_4M0Hz:
freqCal = (freqCal & ~_CMU_AUXHFRCOCTRL_CLKDIV_MASK)
| CMU_AUXHFRCOCTRL_CLKDIV_DIV1;
break;
default:
break;
}
CMU->AUXHFRCOCTRL = freqCal;
}
#endif /* _CMU_AUXHFRCOCTRL_FREQRANGE_MASK */
/***************************************************************************//**
* @brief
* Calibrate clock.
*
* @details
* Run a calibration for HFCLK against a selectable reference clock. Please
* refer to the reference manual, CMU chapter, for further details.
*
* @note
* This function will not return until calibration measurement is completed.
*
* @param[in] HFCycles
* The number of HFCLK cycles to run calibration. Increasing this number
* increases precision, but the calibration will take more time.
*
* @param[in] ref
* The reference clock used to compare HFCLK with.
*
* @return
* The number of ticks the reference clock after HFCycles ticks on the HF
* clock.
******************************************************************************/
uint32_t CMU_Calibrate(uint32_t HFCycles, CMU_Osc_TypeDef ref)
{
EFM_ASSERT(HFCycles <= (_CMU_CALCNT_CALCNT_MASK >> _CMU_CALCNT_CALCNT_SHIFT));
/* Set reference clock source */
switch (ref)
{
case cmuOsc_LFXO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_LFXO;
break;
case cmuOsc_LFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_LFRCO;
break;
case cmuOsc_HFXO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_HFXO;
break;
case cmuOsc_HFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_AUXHFRCO;
break;
default:
EFM_ASSERT(0);
return 0;
}
/* Set top value */
CMU->CALCNT = HFCycles;
/* Start calibration */
CMU->CMD = CMU_CMD_CALSTART;
#if defined( CMU_STATUS_CALRDY )
/* Wait until calibration completes */
while (!BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALRDY_SHIFT))
{
}
#else
/* Wait until calibration completes */
while (BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALBSY_SHIFT))
{
}
#endif
return CMU->CALCNT;
}
#if defined( _CMU_CALCTRL_UPSEL_MASK ) && defined( _CMU_CALCTRL_DOWNSEL_MASK )
/***************************************************************************//**
* @brief
* Configure clock calibration
*
* @details
* Configure a calibration for a selectable clock source against another
* selectable reference clock.
* Refer to the reference manual, CMU chapter, for further details.
*
* @note
* After configuration, a call to CMU_CalibrateStart() is required, and
* the resulting calibration value can be read out with the
* CMU_CalibrateCountGet() function call.
*
* @param[in] downCycles
* The number of downSel clock cycles to run calibration. Increasing this
* number increases precision, but the calibration will take more time.
*
* @param[in] downSel
* The clock which will be counted down downCycles
*
* @param[in] upSel
* The reference clock, the number of cycles generated by this clock will
* be counted and added up, the result can be given with the
* CMU_CalibrateCountGet() function call.
******************************************************************************/
void CMU_CalibrateConfig(uint32_t downCycles, CMU_Osc_TypeDef downSel,
CMU_Osc_TypeDef upSel)
{
/* Keep untouched configuration settings */
uint32_t calCtrl = CMU->CALCTRL
& ~(_CMU_CALCTRL_UPSEL_MASK | _CMU_CALCTRL_DOWNSEL_MASK);
/* 20 bits of precision to calibration count register */
EFM_ASSERT(downCycles <= (_CMU_CALCNT_CALCNT_MASK >> _CMU_CALCNT_CALCNT_SHIFT));
/* Set down counting clock source - down counter */
switch (downSel)
{
case cmuOsc_LFXO:
calCtrl |= CMU_CALCTRL_DOWNSEL_LFXO;
break;
case cmuOsc_LFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_LFRCO;
break;
case cmuOsc_HFXO:
calCtrl |= CMU_CALCTRL_DOWNSEL_HFXO;
break;
case cmuOsc_HFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_AUXHFRCO;
break;
default:
EFM_ASSERT(0);
break;
}
/* Set top value to be counted down by the downSel clock */
CMU->CALCNT = downCycles;
/* Set reference clock source - up counter */
switch (upSel)
{
case cmuOsc_LFXO:
calCtrl |= CMU_CALCTRL_UPSEL_LFXO;
break;
case cmuOsc_LFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_LFRCO;
break;
case cmuOsc_HFXO:
calCtrl |= CMU_CALCTRL_UPSEL_HFXO;
break;
case cmuOsc_HFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_AUXHFRCO;
break;
default:
EFM_ASSERT(0);
break;
}
CMU->CALCTRL = calCtrl;
}
#endif
/***************************************************************************//**
* @brief
* Get calibration count register
* @note
* If continuous calibrartion mode is active, calibration busy will almost
* always be off, and we just need to read the value, where the normal case
* would be that this function call has been triggered by the CALRDY
* interrupt flag.
* @return
* Calibration count, the number of UPSEL clocks (see CMU_CalibrateConfig)
* in the period of DOWNSEL oscillator clock cycles configured by a previous
* write operation to CMU->CALCNT
******************************************************************************/
uint32_t CMU_CalibrateCountGet(void)
{
/* Wait until calibration completes, UNLESS continuous calibration mode is */
/* active */
#if defined( CMU_CALCTRL_CONT )
if (!BUS_RegBitRead(&CMU->CALCTRL, _CMU_CALCTRL_CONT_SHIFT))
{
#if defined( CMU_STATUS_CALRDY )
/* Wait until calibration completes */
while (!BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALRDY_SHIFT))
{
}
#else
/* Wait until calibration completes */
while (BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALBSY_SHIFT))
{
}
#endif
}
#else
while (BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALBSY_SHIFT))
{
}
#endif
return CMU->CALCNT;
}
/***************************************************************************//**
* @brief
* Get clock divisor/prescaler.
*
* @param[in] clock
* Clock point to get divisor/prescaler for. Notice that not all clock points
* have a divisor/prescaler. Please refer to CMU overview in reference manual.
*
* @return
* The current clock point divisor/prescaler. 1 is returned
* if @p clock specifies a clock point without a divisor/prescaler.
******************************************************************************/
CMU_ClkDiv_TypeDef CMU_ClockDivGet(CMU_Clock_TypeDef clock)
{
#if defined( _SILICON_LABS_32B_SERIES_1 )
return 1 + (uint32_t)CMU_ClockPrescGet(clock);
#elif defined( _SILICON_LABS_32B_SERIES_0 )
uint32_t divReg;
CMU_ClkDiv_TypeDef ret;
/* Get divisor reg id */
divReg = (clock >> CMU_DIV_REG_POS) & CMU_DIV_REG_MASK;
switch (divReg)
{
#if defined( _CMU_CTRL_HFCLKDIV_MASK )
case CMU_HFCLKDIV_REG:
ret = 1 + ((CMU->CTRL & _CMU_CTRL_HFCLKDIV_MASK)
>> _CMU_CTRL_HFCLKDIV_SHIFT);
break;
#endif
case CMU_HFPERCLKDIV_REG:
ret = (CMU_ClkDiv_TypeDef)((CMU->HFPERCLKDIV
& _CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
>> _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
case CMU_HFCORECLKDIV_REG:
ret = (CMU_ClkDiv_TypeDef)((CMU->HFCORECLKDIV
& _CMU_HFCORECLKDIV_HFCORECLKDIV_MASK)
>> _CMU_HFCORECLKDIV_HFCORECLKDIV_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
case CMU_LFAPRESC0_REG:
switch (clock)
{
case cmuClock_RTC:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK)
>> _CMU_LFAPRESC0_RTC_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFAPRESC0_LCD_MASK)
case cmuClock_LCDpre:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT)
+ CMU_DivToLog2(cmuClkDiv_16));
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFAPRESC0_LESENSE_MASK)
case cmuClock_LESENSE:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK)
>> _CMU_LFAPRESC0_LESENSE_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock)
{
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
break;
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
return ret;
#endif
}
/***************************************************************************//**
* @brief
* Set clock divisor/prescaler.
*
* @note
* If setting a LF clock prescaler, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* Clock point to set divisor/prescaler for. Notice that not all clock points
* have a divisor/prescaler, please refer to CMU overview in the reference
* manual.
*
* @param[in] div
* The clock divisor to use (<= cmuClkDiv_512).
******************************************************************************/
void CMU_ClockDivSet(CMU_Clock_TypeDef clock, CMU_ClkDiv_TypeDef div)
{
#if defined( _SILICON_LABS_32B_SERIES_1 )
CMU_ClockPrescSet(clock, (CMU_ClkPresc_TypeDef)(div - 1));
#elif defined( _SILICON_LABS_32B_SERIES_0 )
uint32_t freq;
uint32_t divReg;
/* Get divisor reg id */
divReg = (clock >> CMU_DIV_REG_POS) & CMU_DIV_REG_MASK;
switch (divReg)
{
#if defined( _CMU_CTRL_HFCLKDIV_MASK )
case CMU_HFCLKDIV_REG:
EFM_ASSERT((div>=cmuClkDiv_1) && (div<=cmuClkDiv_8));
/* Configure worst case wait states for flash access before setting divisor */
flashWaitStateMax();
/* Set divider */
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFCLKDIV_MASK)
| ((div-1) << _CMU_CTRL_HFCLKDIV_SHIFT);
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for current core clk */
flashWaitStateControl(freq);
break;
#endif
case CMU_HFPERCLKDIV_REG:
EFM_ASSERT((div >= cmuClkDiv_1) && (div <= cmuClkDiv_512));
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->HFPERCLKDIV = (CMU->HFPERCLKDIV & ~_CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
| (div << _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT);
break;
case CMU_HFCORECLKDIV_REG:
EFM_ASSERT((div >= cmuClkDiv_1) && (div <= cmuClkDiv_512));
/* Configure worst case wait states for flash access before setting divisor */
flashWaitStateMax();
#if defined( CMU_MAX_FREQ_HFLE )
setHfLeConfig(SystemHFClockGet() / div, CMU_MAX_FREQ_HFLE);
#endif
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->HFCORECLKDIV = (CMU->HFCORECLKDIV
& ~_CMU_HFCORECLKDIV_HFCORECLKDIV_MASK)
| (div << _CMU_HFCORECLKDIV_HFCORECLKDIV_SHIFT);
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for current core clk */
flashWaitStateControl(freq);
break;
case CMU_LFAPRESC0_REG:
switch (clock)
{
case cmuClock_RTC:
EFM_ASSERT(div <= cmuClkDiv_32768);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTC_MASK)
| (div << _CMU_LFAPRESC0_RTC_SHIFT);
break;
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
EFM_ASSERT(div <= cmuClkDiv_32768);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LETIMER0_MASK)
| (div << _CMU_LFAPRESC0_LETIMER0_SHIFT);
break;
#endif
#if defined(LCD_PRESENT)
case cmuClock_LCDpre:
EFM_ASSERT((div >= cmuClkDiv_16) && (div <= cmuClkDiv_128));
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LCD_MASK)
| ((div - CMU_DivToLog2(cmuClkDiv_16))
<< _CMU_LFAPRESC0_LCD_SHIFT);
break;
#endif /* defined(LCD_PRESENT) */
#if defined(LESENSE_PRESENT)
case cmuClock_LESENSE:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LESENSE_MASK)
| (div << _CMU_LFAPRESC0_LESENSE_SHIFT);
break;
#endif /* defined(LESENSE_PRESENT) */
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock)
{
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART0_MASK)
| (((uint32_t)div) << _CMU_LFBPRESC0_LEUART0_SHIFT);
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART1_MASK)
| (((uint32_t)div) << _CMU_LFBPRESC0_LEUART1_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
default:
EFM_ASSERT(0);
break;
}
#endif
}
/***************************************************************************//**
* @brief
* Enable/disable a clock.
*
* @details
* In general, module clocking is disabled after a reset. If a module
* clock is disabled, the registers of that module are not accessible and
* reading from such registers may return undefined values. Writing to
* registers of clock disabled modules have no effect. One should normally
* avoid accessing module registers of a module with a disabled clock.
*
* @note
* If enabling/disabling a LF clock, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* The clock to enable/disable. Notice that not all defined clock
* points have separate enable/disable control, please refer to CMU overview
* in reference manual.
*
* @param[in] enable
* @li true - enable specified clock.
* @li false - disable specified clock.
******************************************************************************/
void CMU_ClockEnable(CMU_Clock_TypeDef clock, bool enable)
{
volatile uint32_t *reg;
uint32_t bit;
uint32_t sync = 0;
/* Identify enable register */
switch ((clock >> CMU_EN_REG_POS) & CMU_EN_REG_MASK)
{
#if defined( _CMU_CTRL_HFPERCLKEN_MASK )
case CMU_CTRL_EN_REG:
reg = &CMU->CTRL;
break;
#endif
#if defined( _CMU_HFCORECLKEN0_MASK )
case CMU_HFCORECLKEN0_EN_REG:
reg = &CMU->HFCORECLKEN0;
#if defined( CMU_MAX_FREQ_HFLE )
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE), CMU_MAX_FREQ_HFLE);
#endif
break;
#endif
#if defined( _CMU_HFBUSCLKEN0_MASK )
case CMU_HFBUSCLKEN0_EN_REG:
reg = &CMU->HFBUSCLKEN0;
break;
#endif
#if defined( _CMU_HFPERCLKDIV_MASK )
case CMU_HFPERCLKDIV_EN_REG:
reg = &CMU->HFPERCLKDIV;
break;
#endif
case CMU_HFPERCLKEN0_EN_REG:
reg = &CMU->HFPERCLKEN0;
break;
case CMU_LFACLKEN0_EN_REG:
reg = &CMU->LFACLKEN0;
sync = CMU_SYNCBUSY_LFACLKEN0;
break;
case CMU_LFBCLKEN0_EN_REG:
reg = &CMU->LFBCLKEN0;
sync = CMU_SYNCBUSY_LFBCLKEN0;
break;
#if defined( _CMU_LFCCLKEN0_MASK )
case CMU_LFCCLKEN0_EN_REG:
reg = &CMU->LFCCLKEN0;
sync = CMU_SYNCBUSY_LFCCLKEN0;
break;
#endif
#if defined( _CMU_LFECLKEN0_MASK )
case CMU_LFECLKEN0_EN_REG:
reg = &CMU->LFECLKEN0;
sync = CMU_SYNCBUSY_LFECLKEN0;
break;
#endif
case CMU_PCNT_EN_REG:
reg = &CMU->PCNTCTRL;
break;
default: /* Cannot enable/disable clock point */
EFM_ASSERT(0);
return;
}
/* Get bit position used to enable/disable */
bit = (clock >> CMU_EN_BIT_POS) & CMU_EN_BIT_MASK;
/* LF synchronization required? */
if (sync)
{
syncReg(sync);
}
/* Set/clear bit as requested */
BUS_RegBitWrite(reg, bit, enable);
}
/***************************************************************************//**
* @brief
* Get clock frequency for a clock point.
*
* @param[in] clock
* Clock point to fetch frequency for.
*
* @return
* The current frequency in Hz.
******************************************************************************/
uint32_t CMU_ClockFreqGet(CMU_Clock_TypeDef clock)
{
uint32_t ret;
switch(clock & (CMU_CLK_BRANCH_MASK << CMU_CLK_BRANCH_POS))
{
case (CMU_HF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
break;
case (CMU_HFPER_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
/* Calculate frequency after HFPER divider. */
#if defined( _CMU_HFPERCLKDIV_HFPERCLKDIV_MASK )
ret >>= (CMU->HFPERCLKDIV & _CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
>> _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT;
#endif
#if defined( _CMU_HFPERPRESC_PRESC_MASK )
ret /= 1U + ((CMU->HFPERPRESC & _CMU_HFPERPRESC_PRESC_MASK)
>> _CMU_HFPERPRESC_PRESC_SHIFT);
#endif
break;
#if defined( _SILICON_LABS_32B_SERIES_1 )
#if defined( CRYPTO_PRESENT ) \
|| defined( LDMA_PRESENT ) \
|| defined( GPCRC_PRESENT ) \
|| defined( PRS_PRESENT ) \
|| defined( GPIO_PRESENT )
case (CMU_HFBUS_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
break;
#endif
case (CMU_HFCORE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
ret /= 1U + ((CMU->HFCOREPRESC & _CMU_HFCOREPRESC_PRESC_MASK)
>> _CMU_HFCOREPRESC_PRESC_SHIFT);
break;
case (CMU_HFEXP_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
ret /= 1U + ((CMU->HFEXPPRESC & _CMU_HFEXPPRESC_PRESC_MASK)
>> _CMU_HFEXPPRESC_PRESC_SHIFT);
break;
#endif
#if defined( _SILICON_LABS_32B_SERIES_0 )
#if defined( AES_PRESENT ) \
|| defined( DMA_PRESENT ) \
|| defined( EBI_PRESENT ) \
|| defined( USB_PRESENT )
case (CMU_HFCORE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = SystemCoreClockGet();
} break;
#endif
#endif
case (CMU_LFA_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
break;
#if defined( _CMU_LFACLKEN0_RTC_MASK )
case (CMU_RTC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK)
>> _CMU_LFAPRESC0_RTC_SHIFT;
break;
#endif
#if defined( _CMU_LFECLKEN0_RTCC_MASK )
case (CMU_RTCC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFE);
break;
#endif
#if defined( _CMU_LFACLKEN0_LETIMER0_MASK )
case (CMU_LETIMER0_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
#if defined( _SILICON_LABS_32B_SERIES_0 )
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT;
#elif defined( _SILICON_LABS_32B_SERIES_1 )
ret /= CMU_Log2ToDiv((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT);
#endif
break;
#endif
#if defined( _CMU_LFACLKEN0_LCD_MASK )
case (CMU_LCDPRE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= ((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT)
+ CMU_DivToLog2(cmuClkDiv_16);
break;
case (CMU_LCD_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT;
ret /= 1U + ((CMU->LCDCTRL & _CMU_LCDCTRL_FDIV_MASK)
>> _CMU_LCDCTRL_FDIV_SHIFT);
break;
#endif
#if defined( _CMU_LFACLKEN0_LESENSE_MASK )
case (CMU_LESENSE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK)
>> _CMU_LFAPRESC0_LESENSE_SHIFT;
break;
#endif
case (CMU_LFB_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
break;
#if defined( _CMU_LFBCLKEN0_LEUART0_MASK )
case (CMU_LEUART0_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
#if defined( _SILICON_LABS_32B_SERIES_0 )
ret >>= (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT;
#elif defined( _SILICON_LABS_32B_SERIES_1 )
ret /= CMU_Log2ToDiv((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT);
#endif
break;
#endif
#if defined( _CMU_LFBCLKEN0_LEUART1_MASK )
case (CMU_LEUART1_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
#if defined( _SILICON_LABS_32B_SERIES_0 )
ret >>= (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT;
#elif defined( _SILICON_LABS_32B_SERIES_1 )
ret /= CMU_Log2ToDiv((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT);
#endif
break;
#endif
#if defined( _CMU_LFBCLKEN0_CSEN_MASK )
case (CMU_CSEN_LF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
ret /= CMU_Log2ToDiv(((CMU->LFBPRESC0 & _CMU_LFBPRESC0_CSEN_MASK)
>> _CMU_LFBPRESC0_CSEN_SHIFT) + 4);
break;
#endif
#if defined( _SILICON_LABS_32B_SERIES_1 )
case (CMU_LFE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFE);
break;
#endif
case (CMU_DBG_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = dbgClkGet();
break;
case (CMU_AUX_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = auxClkGet();
break;
#if defined(USB_PRESENT)
case (CMU_USBC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = usbCClkGet();
break;
#endif
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#if defined( _SILICON_LABS_32B_SERIES_1 )
/***************************************************************************//**
* @brief
* Get clock prescaler.
*
* @param[in] clock
* Clock point to get the prescaler for. Notice that not all clock points
* have a prescaler. Please refer to CMU overview in reference manual.
*
* @return
* The prescaler value of the current clock point. 0 is returned
* if @p clock specifies a clock point without a prescaler.
******************************************************************************/
uint32_t CMU_ClockPrescGet(CMU_Clock_TypeDef clock)
{
uint32_t prescReg;
uint32_t ret;
/* Get prescaler register id. */
prescReg = (clock >> CMU_PRESC_REG_POS) & CMU_PRESC_REG_MASK;
switch (prescReg)
{
case CMU_HFPRESC_REG:
ret = ((CMU->HFPRESC & _CMU_HFPRESC_PRESC_MASK)
>> _CMU_HFPRESC_PRESC_SHIFT);
break;
case CMU_HFEXPPRESC_REG:
ret = ((CMU->HFEXPPRESC & _CMU_HFEXPPRESC_PRESC_MASK)
>> _CMU_HFEXPPRESC_PRESC_SHIFT);
break;
case CMU_HFCLKLEPRESC_REG:
ret = ((CMU->HFPRESC & _CMU_HFPRESC_HFCLKLEPRESC_MASK)
>> _CMU_HFPRESC_HFCLKLEPRESC_SHIFT);
break;
case CMU_HFPERPRESC_REG:
ret = ((CMU->HFPERPRESC & _CMU_HFPERPRESC_PRESC_MASK)
>> _CMU_HFPERPRESC_PRESC_SHIFT);
break;
case CMU_HFCOREPRESC_REG:
ret = ((CMU->HFCOREPRESC & _CMU_HFCOREPRESC_PRESC_MASK)
>> _CMU_HFCOREPRESC_PRESC_SHIFT);
break;
case CMU_LFAPRESC0_REG:
switch (clock)
{
#if defined( _CMU_LFAPRESC0_LETIMER0_MASK )
case cmuClock_LETIMER0:
ret = (((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT));
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined( _CMU_LFAPRESC0_LESENSE_MASK )
case cmuClock_LESENSE:
ret = (((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK)
>> _CMU_LFAPRESC0_LESENSE_SHIFT));
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock)
{
#if defined( _CMU_LFBPRESC0_LEUART0_MASK )
case cmuClock_LEUART0:
ret = (((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT));
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined( _CMU_LFBPRESC0_LEUART1_MASK )
case cmuClock_LEUART1:
ret = (((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT));
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined( _CMU_LFBPRESC0_CSEN_MASK )
case cmuClock_CSEN_LF:
ret = (((CMU->LFBPRESC0 & _CMU_LFBPRESC0_CSEN_MASK)
>> _CMU_LFBPRESC0_CSEN_SHIFT));
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret + 4) - 1U;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
break;
case CMU_LFEPRESC0_REG:
switch (clock)
{
#if defined( RTCC_PRESENT )
case cmuClock_RTCC:
/* No need to compute with LFEPRESC0_RTCC - DIV1 is the only */
/* allowed value. Convert the exponent to prescaler value. */
ret = _CMU_LFEPRESC0_RTCC_DIV1;
break;
default:
EFM_ASSERT(0);
ret = 0U;
break;
#endif
}
break;
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
return ret;
}
#endif
#if defined( _SILICON_LABS_32B_SERIES_1 )
/***************************************************************************//**
* @brief
* Set clock prescaler.
*
* @note
* If setting a LF clock prescaler, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* Clock point to set prescaler for. Notice that not all clock points
* have a prescaler, please refer to CMU overview in the reference manual.
*
* @param[in] presc
* The clock prescaler to use.
******************************************************************************/
void CMU_ClockPrescSet(CMU_Clock_TypeDef clock, CMU_ClkPresc_TypeDef presc)
{
uint32_t freq;
uint32_t prescReg;
/* Get divisor reg id */
prescReg = (clock >> CMU_PRESC_REG_POS) & CMU_PRESC_REG_MASK;
switch (prescReg)
{
case CMU_HFPRESC_REG:
EFM_ASSERT(presc < 32U);
/* Configure worst case wait-states for flash and HFLE. */
flashWaitStateMax();
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1, CMU_MAX_FREQ_HFLE);
CMU->HFPRESC = (CMU->HFPRESC & ~_CMU_HFPRESC_PRESC_MASK)
| (presc << _CMU_HFPRESC_PRESC_SHIFT);
/* Update CMSIS core clock variable (this function updates the global variable).
Optimize flash and HFLE wait states. */
freq = SystemCoreClockGet();
flashWaitStateControl(freq);
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE) ,CMU_MAX_FREQ_HFLE);
break;
case CMU_HFEXPPRESC_REG:
EFM_ASSERT(presc < 32U);
CMU->HFEXPPRESC = (CMU->HFEXPPRESC & ~_CMU_HFEXPPRESC_PRESC_MASK)
| (presc << _CMU_HFEXPPRESC_PRESC_SHIFT);
break;
case CMU_HFCLKLEPRESC_REG:
EFM_ASSERT(presc < 2U);
/* Specifies the clock divider for HFCLKLE. When running at frequencies
* higher than 32 MHz, this must be set to DIV4. */
CMU->HFPRESC = (CMU->HFPRESC & ~_CMU_HFPRESC_HFCLKLEPRESC_MASK)
| (presc << _CMU_HFPRESC_HFCLKLEPRESC_SHIFT);
break;
case CMU_HFPERPRESC_REG:
EFM_ASSERT(presc < 512U);
CMU->HFPERPRESC = (CMU->HFPERPRESC & ~_CMU_HFPERPRESC_PRESC_MASK)
| (presc << _CMU_HFPERPRESC_PRESC_SHIFT);
break;
case CMU_HFCOREPRESC_REG:
EFM_ASSERT(presc < 512U);
/* Configure worst case wait-states for flash and HFLE. */
flashWaitStateMax();
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1, CMU_MAX_FREQ_HFLE);
CMU->HFCOREPRESC = (CMU->HFCOREPRESC & ~_CMU_HFCOREPRESC_PRESC_MASK)
| (presc << _CMU_HFCOREPRESC_PRESC_SHIFT);
/* Update CMSIS core clock variable (this function updates the global variable).
Optimize flash and HFLE wait states. */
freq = SystemCoreClockGet();
flashWaitStateControl(freq);
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE) ,CMU_MAX_FREQ_HFLE);
break;
case CMU_LFAPRESC0_REG:
switch (clock)
{
#if defined( RTC_PRESENT )
case cmuClock_RTC:
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTC_MASK)
| (presc << _CMU_LFAPRESC0_RTC_SHIFT);
break;
#endif
#if defined( RTCC_PRESENT )
case cmuClock_RTCC:
#if defined( _CMU_LFEPRESC0_RTCC_MASK )
/* DIV1 is the only accepted value. */
EFM_ASSERT(presc <= 0U);
/* LF register about to be modified require sync. Busy check.. */
syncReg(CMU_SYNCBUSY_LFEPRESC0);
CMU->LFEPRESC0 = (CMU->LFEPRESC0 & ~_CMU_LFEPRESC0_RTCC_MASK)
| (presc << _CMU_LFEPRESC0_RTCC_SHIFT);
#else
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTCC_MASK)
| (presc << _CMU_LFAPRESC0_RTCC_SHIFT);
#endif
break;
#endif
#if defined( _CMU_LFAPRESC0_LETIMER0_MASK )
case cmuClock_LETIMER0:
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LETIMER0_MASK)
| (presc << _CMU_LFAPRESC0_LETIMER0_SHIFT);
break;
#endif
#if defined( _CMU_LFAPRESC0_LESENSE_MASK )
case cmuClock_LESENSE:
EFM_ASSERT(presc <= 8);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LESENSE_MASK)
| (presc << _CMU_LFAPRESC0_LESENSE_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock)
{
#if defined( _CMU_LFBPRESC0_LEUART0_MASK )
case cmuClock_LEUART0:
EFM_ASSERT(presc <= 8U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART0_MASK)
| (presc << _CMU_LFBPRESC0_LEUART0_SHIFT);
break;
#endif
#if defined( _CMU_LFBPRESC0_LEUART1_MASK )
case cmuClock_LEUART1:
EFM_ASSERT(presc <= 8U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART1_MASK)
| (presc << _CMU_LFBPRESC0_LEUART1_SHIFT);
break;
#endif
#if defined( _CMU_LFBPRESC0_CSEN_MASK )
case cmuClock_CSEN_LF:
EFM_ASSERT((presc <= 127U) && (presc >= 15U));
/* Convert prescaler value to DIV exponent scale.
* DIV16 is the lowest supported prescaler. */
presc = CMU_PrescToLog2(presc) - 4;
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_CSEN_MASK)
| (presc << _CMU_LFBPRESC0_CSEN_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFEPRESC0_REG:
switch (clock)
{
#if defined( _CMU_LFEPRESC0_RTCC_MASK )
case cmuClock_RTCC:
EFM_ASSERT(presc <= 0U);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFEPRESC0);
CMU->LFEPRESC0 = (CMU->LFEPRESC0 & ~_CMU_LFEPRESC0_RTCC_MASK)
| (presc << _CMU_LFEPRESC0_RTCC_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
default:
EFM_ASSERT(0);
break;
}
}
#endif
/***************************************************************************//**
* @brief
* Get currently selected reference clock used for a clock branch.
*
* @param[in] clock
* Clock branch to fetch selected ref. clock for. One of:
* @li #cmuClock_HF
* @li #cmuClock_LFA
* @li #cmuClock_LFB @if _CMU_LFCLKSEL_LFAE_ULFRCO
* @li #cmuClock_LFC
* @endif @if _SILICON_LABS_32B_SERIES_1
* @li #cmuClock_LFE
* @endif
* @li #cmuClock_DBG @if DOXYDOC_USB_PRESENT
* @li #cmuClock_USBC
* @endif
*
* @return
* Reference clock used for clocking selected branch, #cmuSelect_Error if
* invalid @p clock provided.
******************************************************************************/
CMU_Select_TypeDef CMU_ClockSelectGet(CMU_Clock_TypeDef clock)
{
CMU_Select_TypeDef ret = cmuSelect_Disabled;
uint32_t selReg;
selReg = (clock >> CMU_SEL_REG_POS) & CMU_SEL_REG_MASK;
switch (selReg)
{
case CMU_HFCLKSEL_REG:
#if defined( _CMU_HFCLKSTATUS_MASK )
switch (CMU->HFCLKSTATUS & _CMU_HFCLKSTATUS_SELECTED_MASK)
{
case CMU_HFCLKSTATUS_SELECTED_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_HFCLKSTATUS_SELECTED_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_HFCLKSTATUS_SELECTED_HFXO:
ret = cmuSelect_HFXO;
break;
default:
ret = cmuSelect_HFRCO;
break;
}
#else
switch (CMU->STATUS
& (CMU_STATUS_HFRCOSEL
| CMU_STATUS_HFXOSEL
| CMU_STATUS_LFRCOSEL
#if defined( CMU_STATUS_USHFRCODIV2SEL )
| CMU_STATUS_USHFRCODIV2SEL
#endif
| CMU_STATUS_LFXOSEL))
{
case CMU_STATUS_LFXOSEL:
ret = cmuSelect_LFXO;
break;
case CMU_STATUS_LFRCOSEL:
ret = cmuSelect_LFRCO;
break;
case CMU_STATUS_HFXOSEL:
ret = cmuSelect_HFXO;
break;
#if defined( CMU_STATUS_USHFRCODIV2SEL )
case CMU_STATUS_USHFRCODIV2SEL:
ret = cmuSelect_USHFRCODIV2;
break;
#endif
default:
ret = cmuSelect_HFRCO;
break;
}
#endif
break;
#if defined( _CMU_LFCLKSEL_MASK ) || defined( _CMU_LFACLKSEL_MASK )
case CMU_LFACLKSEL_REG:
#if defined( _CMU_LFCLKSEL_MASK )
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFA_MASK)
{
case CMU_LFCLKSEL_LFA_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFCLKSEL_LFA_LFXO:
ret = cmuSelect_LFXO;
break;
#if defined( CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2 )
case CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2:
ret = cmuSelect_HFCLKLE;
break;
#endif
default:
#if defined( CMU_LFCLKSEL_LFAE )
if (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFAE_MASK)
{
ret = cmuSelect_ULFRCO;
break;
}
#else
ret = cmuSelect_Disabled;
#endif
break;
}
#elif defined( _CMU_LFACLKSEL_MASK )
switch (CMU->LFACLKSEL & _CMU_LFACLKSEL_LFA_MASK)
{
case CMU_LFACLKSEL_LFA_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFACLKSEL_LFA_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_LFACLKSEL_LFA_ULFRCO:
ret = cmuSelect_ULFRCO;
break;
#if defined( _CMU_LFACLKSEL_LFA_HFCLKLE )
case CMU_LFACLKSEL_LFA_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#endif
#if defined( CMU_LFACLKSEL_LFA_PLFRCO )
case CMU_LFACLKSEL_LFA_PLFRCO:
ret = cmuSelect_PLFRCO;
break;
#endif
default:
ret = cmuSelect_Disabled;
break;
}
#endif
break;
#endif /* _CMU_LFCLKSEL_MASK || _CMU_LFACLKSEL_MASK */
#if defined( _CMU_LFCLKSEL_MASK ) || defined( _CMU_LFBCLKSEL_MASK )
case CMU_LFBCLKSEL_REG:
#if defined( _CMU_LFCLKSEL_MASK )
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFB_MASK)
{
case CMU_LFCLKSEL_LFB_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFCLKSEL_LFB_LFXO:
ret = cmuSelect_LFXO;
break;
#if defined( CMU_LFCLKSEL_LFB_HFCORECLKLEDIV2 )
case CMU_LFCLKSEL_LFB_HFCORECLKLEDIV2:
ret = cmuSelect_HFCLKLE;
break;
#endif
#if defined( CMU_LFCLKSEL_LFB_HFCLKLE )
case CMU_LFCLKSEL_LFB_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#endif
default:
#if defined( CMU_LFCLKSEL_LFBE )
if (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFBE_MASK)
{
ret = cmuSelect_ULFRCO;
break;
}
#else
ret = cmuSelect_Disabled;
#endif
break;
}
#elif defined( _CMU_LFBCLKSEL_MASK )
switch (CMU->LFBCLKSEL & _CMU_LFBCLKSEL_LFB_MASK)
{
case CMU_LFBCLKSEL_LFB_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFBCLKSEL_LFB_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_LFBCLKSEL_LFB_ULFRCO:
ret = cmuSelect_ULFRCO;
break;
case CMU_LFBCLKSEL_LFB_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#if defined( CMU_LFBCLKSEL_LFB_PLFRCO )
case CMU_LFBCLKSEL_LFB_PLFRCO:
ret = cmuSelect_PLFRCO;
break;
#endif
default:
ret = cmuSelect_Disabled;
break;
}
#endif
break;
#endif /* _CMU_LFCLKSEL_MASK || _CMU_LFBCLKSEL_MASK */
#if defined( _CMU_LFCLKSEL_LFC_MASK )
case CMU_LFCCLKSEL_REG:
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFC_MASK)
{
case CMU_LFCLKSEL_LFC_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFCLKSEL_LFC_LFXO:
ret = cmuSelect_LFXO;
break;
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif
#if defined( _CMU_LFECLKSEL_LFE_MASK )
case CMU_LFECLKSEL_REG:
switch (CMU->LFECLKSEL & _CMU_LFECLKSEL_LFE_MASK)
{
case CMU_LFECLKSEL_LFE_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFECLKSEL_LFE_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_LFECLKSEL_LFE_ULFRCO:
ret = cmuSelect_ULFRCO;
break;
#if defined ( _CMU_LFECLKSEL_LFE_HFCLKLE )
case CMU_LFECLKSEL_LFE_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#endif
#if defined( CMU_LFECLKSEL_LFE_PLFRCO )
case CMU_LFECLKSEL_LFE_PLFRCO:
ret = cmuSelect_PLFRCO;
break;
#endif
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif /* CMU_LFECLKSEL_REG */
case CMU_DBGCLKSEL_REG:
#if defined( _CMU_DBGCLKSEL_DBG_MASK )
switch (CMU->DBGCLKSEL & _CMU_DBGCLKSEL_DBG_MASK)
{
case CMU_DBGCLKSEL_DBG_HFCLK:
ret = cmuSelect_HFCLK;
break;
case CMU_DBGCLKSEL_DBG_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
}
#elif defined( _CMU_CTRL_DBGCLK_MASK )
switch(CMU->CTRL & _CMU_CTRL_DBGCLK_MASK)
{
case CMU_CTRL_DBGCLK_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_CTRL_DBGCLK_HFCLK:
ret = cmuSelect_HFCLK;
break;
}
#else
ret = cmuSelect_AUXHFRCO;
#endif
break;
#if defined( USB_PRESENT )
case CMU_USBCCLKSEL_REG:
switch (CMU->STATUS
& (CMU_STATUS_USBCLFXOSEL
#if defined(_CMU_STATUS_USBCHFCLKSEL_MASK)
| CMU_STATUS_USBCHFCLKSEL
#endif
#if defined(_CMU_STATUS_USBCUSHFRCOSEL_MASK)
| CMU_STATUS_USBCUSHFRCOSEL
#endif
| CMU_STATUS_USBCLFRCOSEL))
{
#if defined(_CMU_STATUS_USBCHFCLKSEL_MASK)
case CMU_STATUS_USBCHFCLKSEL:
ret = cmuSelect_HFCLK;
break;
#endif
#if defined(_CMU_STATUS_USBCUSHFRCOSEL_MASK)
case CMU_STATUS_USBCUSHFRCOSEL:
ret = cmuSelect_USHFRCO;
break;
#endif
case CMU_STATUS_USBCLFXOSEL:
ret = cmuSelect_LFXO;
break;
case CMU_STATUS_USBCLFRCOSEL:
ret = cmuSelect_LFRCO;
break;
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuSelect_Error;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Select reference clock/oscillator used for a clock branch.
*
* @details
* Notice that if a selected reference is not enabled prior to selecting its
* use, it will be enabled, and this function will wait for the selected
* oscillator to be stable. It will however NOT be disabled if another
* reference clock is selected later.
*
* This feature is particularly important if selecting a new reference
* clock for the clock branch clocking the core, otherwise the system
* may halt.
*
* @param[in] clock
* Clock branch to select reference clock for. One of:
* @li #cmuClock_HF
* @li #cmuClock_LFA
* @li #cmuClock_LFB @if _CMU_LFCLKSEL_LFAE_ULFRCO
* @li #cmuClock_LFC
* @endif @if _SILICON_LABS_32B_SERIES_1
* @li #cmuClock_LFE
* @endif
* @li #cmuClock_DBG @if DOXYDOC_USB_PRESENT
* @li #cmuClock_USBC
* @endif
*
* @param[in] ref
* Reference selected for clocking, please refer to reference manual for
* for details on which reference is available for a specific clock branch.
* @li #cmuSelect_HFRCO
* @li #cmuSelect_LFRCO
* @li #cmuSelect_HFXO
* @li #cmuSelect_LFXO
* @li #cmuSelect_HFCLKLE
* @li #cmuSelect_AUXHFRCO
* @li #cmuSelect_HFCLK @ifnot DOXYDOC_EFM32_GECKO_FAMILY
* @li #cmuSelect_ULFRCO
* @li #cmuSelect_PLFRCO
* @endif
******************************************************************************/
void CMU_ClockSelectSet(CMU_Clock_TypeDef clock, CMU_Select_TypeDef ref)
{
uint32_t select = cmuOsc_HFRCO;
CMU_Osc_TypeDef osc = cmuOsc_HFRCO;
uint32_t freq;
uint32_t tmp;
uint32_t selRegId;
#if defined( _SILICON_LABS_32B_SERIES_1 )
volatile uint32_t *selReg = NULL;
#endif
#if defined( CMU_LFCLKSEL_LFAE_ULFRCO )
uint32_t lfExtended = 0;
#endif
#if defined( _EMU_CMD_EM01VSCALE0_MASK )
uint32_t vScaleFrequency = 0; /* Use default */
/* Start voltage upscaling before clock is set. */
if (clock == cmuClock_HF)
{
if (ref == cmuSelect_HFXO)
{
vScaleFrequency = SystemHFXOClockGet();
}
else if ((ref == cmuSelect_HFRCO)
&& (CMU_HFRCOBandGet() > CMU_VSCALEEM01_LOWPOWER_VOLTAGE_CLOCK_MAX))
{
vScaleFrequency = CMU_HFRCOBandGet();
}
if (vScaleFrequency != 0)
{
EMU_VScaleEM01ByClock(vScaleFrequency, false);
}
}
#endif
selRegId = (clock >> CMU_SEL_REG_POS) & CMU_SEL_REG_MASK;
switch (selRegId)
{
case CMU_HFCLKSEL_REG:
switch (ref)
{
case cmuSelect_LFXO:
#if defined( _SILICON_LABS_32B_SERIES_1 )
select = CMU_HFCLKSEL_HF_LFXO;
#elif defined( _SILICON_LABS_32B_SERIES_0 )
select = CMU_CMD_HFCLKSEL_LFXO;
#endif
osc = cmuOsc_LFXO;
break;
case cmuSelect_LFRCO:
#if defined( _SILICON_LABS_32B_SERIES_1 )
select = CMU_HFCLKSEL_HF_LFRCO;
#elif defined( _SILICON_LABS_32B_SERIES_0 )
select = CMU_CMD_HFCLKSEL_LFRCO;
#endif
osc = cmuOsc_LFRCO;
break;
case cmuSelect_HFXO:
#if defined( CMU_HFCLKSEL_HF_HFXO )
select = CMU_HFCLKSEL_HF_HFXO;
#elif defined( CMU_CMD_HFCLKSEL_HFXO )
select = CMU_CMD_HFCLKSEL_HFXO;
#endif
osc = cmuOsc_HFXO;
#if defined( CMU_MAX_FREQ_HFLE )
/* Set 1 HFLE wait-state until the new HFCLKLE frequency is known.
This is known after 'select' is written below. */
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1, CMU_MAX_FREQ_HFLE);
#endif
#if defined( CMU_CTRL_HFXOBUFCUR_BOOSTABOVE32MHZ )
/* Adjust HFXO buffer current for frequencies above 32MHz */
if (SystemHFXOClockGet() > 32000000)
{
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFXOBUFCUR_MASK)
| CMU_CTRL_HFXOBUFCUR_BOOSTABOVE32MHZ;
}
else
{
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFXOBUFCUR_MASK)
| CMU_CTRL_HFXOBUFCUR_BOOSTUPTO32MHZ;
}
#endif
break;
case cmuSelect_HFRCO:
#if defined( _SILICON_LABS_32B_SERIES_1 )
select = CMU_HFCLKSEL_HF_HFRCO;
#elif defined( _SILICON_LABS_32B_SERIES_0 )
select = CMU_CMD_HFCLKSEL_HFRCO;
#endif
osc = cmuOsc_HFRCO;
#if defined( CMU_MAX_FREQ_HFLE )
/* Set 1 HFLE wait-state until the new HFCLKLE frequency is known.
This is known after 'select' is written below. */
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1, CMU_MAX_FREQ_HFLE);
#endif
break;
#if defined( CMU_CMD_HFCLKSEL_USHFRCODIV2 )
case cmuSelect_USHFRCODIV2:
select = CMU_CMD_HFCLKSEL_USHFRCODIV2;
osc = cmuOsc_USHFRCO;
break;
#endif
#if defined( CMU_LFCLKSEL_LFAE_ULFRCO ) || defined( CMU_LFACLKSEL_LFA_ULFRCO )
case cmuSelect_ULFRCO:
/* ULFRCO cannot be used as HFCLK */
EFM_ASSERT(0);
return;
#endif
default:
EFM_ASSERT(0);
return;
}
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(osc, true, true);
/* Configure worst case wait states for flash access before selecting */
flashWaitStateMax();
#if defined( _EMU_CMD_EM01VSCALE0_MASK )
/* Wait for voltage upscaling to complete before clock is set. */
if (vScaleFrequency != 0)
{
EMU_VScaleWait();
}
#endif
/* Switch to selected oscillator */
#if defined( _CMU_HFCLKSEL_MASK )
CMU->HFCLKSEL = select;
#else
CMU->CMD = select;
#endif
#if defined( CMU_MAX_FREQ_HFLE )
/* Update HFLE configuration after 'select' is set.
Note that the HFCLKLE clock is connected differently on planform 1 and 2 */
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE), CMU_MAX_FREQ_HFLE);
#endif
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for currently selected core clk */
flashWaitStateControl(freq);
#if defined( _EMU_CMD_EM01VSCALE0_MASK )
/* Keep EMU module informed on source HF clock frequency. This will apply voltage
downscaling after clock is set if downscaling is configured. */
if (vScaleFrequency == 0)
{
EMU_VScaleEM01ByClock(0, true);
}
#endif
break;
#if defined( _SILICON_LABS_32B_SERIES_1 )
case CMU_LFACLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFACLKSEL : selReg;
#if !defined( _CMU_LFACLKSEL_LFA_HFCLKLE )
/* HFCLKCLE can not be used as LFACLK */
EFM_ASSERT(ref != cmuSelect_HFCLKLE);
#endif
/* Fall through and select clock source */
case CMU_LFECLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFECLKSEL : selReg;
#if !defined( _CMU_LFECLKSEL_LFE_HFCLKLE )
/* HFCLKCLE can not be used as LFECLK */
EFM_ASSERT(ref != cmuSelect_HFCLKLE);
#endif
/* Fall through and select clock source */
case CMU_LFBCLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFBCLKSEL : selReg;
switch (ref)
{
case cmuSelect_Disabled:
tmp = _CMU_LFACLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFACLKSEL_LFA_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFACLKSEL_LFA_LFRCO;
break;
case cmuSelect_HFCLKLE:
/* Ensure correct HFLE wait-states and enable HFCLK to LE */
setHfLeConfig(SystemCoreClockGet(), CMU_MAX_FREQ_HFLE);
BUS_RegBitWrite(&CMU->HFBUSCLKEN0, _CMU_HFBUSCLKEN0_LE_SHIFT, 1);
tmp = _CMU_LFBCLKSEL_LFB_HFCLKLE;
break;
case cmuSelect_ULFRCO:
/* ULFRCO is always on, there is no need to enable it. */
tmp = _CMU_LFACLKSEL_LFA_ULFRCO;
break;
#if defined( _CMU_STATUS_PLFRCOENS_MASK )
case cmuSelect_PLFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_PLFRCO, true, true);
tmp = _CMU_LFACLKSEL_LFA_PLFRCO;
break;
#endif
default:
EFM_ASSERT(0);
return;
}
*selReg = tmp;
break;
#elif defined( _SILICON_LABS_32B_SERIES_0 )
case CMU_LFACLKSEL_REG:
case CMU_LFBCLKSEL_REG:
switch (ref)
{
case cmuSelect_Disabled:
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFCLKSEL_LFA_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFCLKSEL_LFA_LFRCO;
break;
case cmuSelect_HFCLKLE:
#if defined( CMU_MAX_FREQ_HFLE )
/* Set HFLE wait-state and divider */
freq = SystemCoreClockGet();
setHfLeConfig(freq, CMU_MAX_FREQ_HFLE);
#endif
/* Ensure HFCORE to LE clocking is enabled */
BUS_RegBitWrite(&CMU->HFCORECLKEN0, _CMU_HFCORECLKEN0_LE_SHIFT, 1);
tmp = _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2;
break;
#if defined( CMU_LFCLKSEL_LFAE_ULFRCO )
case cmuSelect_ULFRCO:
/* ULFRCO is always enabled */
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
lfExtended = 1;
break;
#endif
default:
/* Illegal clock source for LFA/LFB selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
if (selRegId == CMU_LFACLKSEL_REG)
{
#if defined( _CMU_LFCLKSEL_LFAE_MASK )
CMU->LFCLKSEL = (CMU->LFCLKSEL
& ~(_CMU_LFCLKSEL_LFA_MASK | _CMU_LFCLKSEL_LFAE_MASK))
| (tmp << _CMU_LFCLKSEL_LFA_SHIFT)
| (lfExtended << _CMU_LFCLKSEL_LFAE_SHIFT);
#else
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~_CMU_LFCLKSEL_LFA_MASK)
| (tmp << _CMU_LFCLKSEL_LFA_SHIFT);
#endif
}
else
{
#if defined( _CMU_LFCLKSEL_LFBE_MASK )
CMU->LFCLKSEL = (CMU->LFCLKSEL
& ~(_CMU_LFCLKSEL_LFB_MASK | _CMU_LFCLKSEL_LFBE_MASK))
| (tmp << _CMU_LFCLKSEL_LFB_SHIFT)
| (lfExtended << _CMU_LFCLKSEL_LFBE_SHIFT);
#else
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~_CMU_LFCLKSEL_LFB_MASK)
| (tmp << _CMU_LFCLKSEL_LFB_SHIFT);
#endif
}
break;
#if defined( _CMU_LFCLKSEL_LFC_MASK )
case CMU_LFCCLKSEL_REG:
switch(ref)
{
case cmuSelect_Disabled:
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFCLKSEL_LFC_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFCLKSEL_LFC_LFRCO;
break;
default:
/* Illegal clock source for LFC selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~_CMU_LFCLKSEL_LFC_MASK)
| (tmp << _CMU_LFCLKSEL_LFC_SHIFT);
break;
#endif
#endif
#if defined( CMU_DBGCLKSEL_DBG ) || defined( CMU_CTRL_DBGCLK )
case CMU_DBGCLKSEL_REG:
switch(ref)
{
#if defined( CMU_DBGCLKSEL_DBG )
case cmuSelect_AUXHFRCO:
/* Select AUXHFRCO as debug clock */
CMU->DBGCLKSEL = CMU_DBGCLKSEL_DBG_AUXHFRCO;
break;
case cmuSelect_HFCLK:
/* Select divided HFCLK as debug clock */
CMU->DBGCLKSEL = CMU_DBGCLKSEL_DBG_HFCLK;
break;
#endif
#if defined( CMU_CTRL_DBGCLK )
case cmuSelect_AUXHFRCO:
/* Select AUXHFRCO as debug clock */
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_DBGCLK_MASK))
| CMU_CTRL_DBGCLK_AUXHFRCO;
break;
case cmuSelect_HFCLK:
/* Select divided HFCLK as debug clock */
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_DBGCLK_MASK))
| CMU_CTRL_DBGCLK_HFCLK;
break;
#endif
default:
/* Illegal clock source for debug selected */
EFM_ASSERT(0);
return;
}
break;
#endif
#if defined( USB_PRESENT )
case CMU_USBCCLKSEL_REG:
switch(ref)
{
case cmuSelect_LFXO:
/* Select LFXO as clock source for USB, can only be used in sleep mode */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_LFXO;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCLFXOSEL)==0)
{
}
break;
case cmuSelect_LFRCO:
/* Select LFRCO as clock source for USB, can only be used in sleep mode */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_LFRCO;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCLFRCOSEL)==0)
{
}
break;
#if defined( CMU_STATUS_USBCHFCLKSEL )
case cmuSelect_HFCLK:
/* Select undivided HFCLK as clock source for USB */
/* Oscillator must already be enabled to avoid a core lockup */
CMU->CMD = CMU_CMD_USBCCLKSEL_HFCLKNODIV;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCHFCLKSEL)==0)
{
}
break;
#endif
#if defined( CMU_CMD_USBCCLKSEL_USHFRCO )
case cmuSelect_USHFRCO:
/* Select USHFRCO as clock source for USB */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_USHFRCO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_USHFRCO;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCUSHFRCOSEL)==0)
{
}
break;
#endif
default:
/* Illegal clock source for USB */
EFM_ASSERT(0);
return;
}
break;
#endif
default:
EFM_ASSERT(0);
break;
}
#if defined( CMU_MAX_FREQ_HFLE )
/* Get to assert wait-state config. */
getHfLeConfig();
#endif
}
/**************************************************************************//**
* @brief
* CMU low frequency register synchronization freeze control.
*
* @details
* Some CMU registers requires synchronization into the low frequency (LF)
* domain. The freeze feature allows for several such registers to be
* modified before passing them to the LF domain simultaneously (which
* takes place when the freeze mode is disabled).
*
* Another usage scenario of this feature, is when using an API (such
* as the CMU API) for modifying several bit fields consecutively in the
* same register. If freeze mode is enabled during this sequence, stalling
* can be avoided.
*
* @note
* When enabling freeze mode, this function will wait for all current
* ongoing CMU synchronization to LF domain to complete (Normally
* synchronization will not be in progress.) However for this reason, when
* using freeze mode, modifications of registers requiring LF synchronization
* should be done within one freeze enable/disable block to avoid unecessary
* stalling.
*
* @param[in] enable
* @li true - enable freeze, modified registers are not propagated to the
* LF domain
* @li false - disable freeze, modified registers are propagated to LF
* domain
*****************************************************************************/
void CMU_FreezeEnable(bool enable)
{
if (enable)
{
/* Wait for any ongoing LF synchronization to complete. This is just to */
/* protect against the rare case when a user */
/* - modifies a register requiring LF sync */
/* - then enables freeze before LF sync completed */
/* - then modifies the same register again */
/* since modifying a register while it is in sync progress should be */
/* avoided. */
while (CMU->SYNCBUSY)
{
}
CMU->FREEZE = CMU_FREEZE_REGFREEZE;
}
else
{
CMU->FREEZE = 0;
}
}
#if defined( _CMU_HFRCOCTRL_BAND_MASK )
/***************************************************************************//**
* @brief
* Get HFRCO band in use.
*
* @return
* HFRCO band in use.
******************************************************************************/
CMU_HFRCOBand_TypeDef CMU_HFRCOBandGet(void)
{
return (CMU_HFRCOBand_TypeDef)((CMU->HFRCOCTRL & _CMU_HFRCOCTRL_BAND_MASK)
>> _CMU_HFRCOCTRL_BAND_SHIFT);
}
#endif /* _CMU_HFRCOCTRL_BAND_MASK */
#if defined( _CMU_HFRCOCTRL_BAND_MASK )
/***************************************************************************//**
* @brief
* Set HFRCO band and the tuning value based on the value in the calibration
* table made during production.
*
* @param[in] band
* HFRCO band to activate.
******************************************************************************/
void CMU_HFRCOBandSet(CMU_HFRCOBand_TypeDef band)
{
uint32_t tuning;
uint32_t freq;
CMU_Select_TypeDef osc;
/* Read tuning value from calibration table */
switch (band)
{
case cmuHFRCOBand_1MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND1_MASK)
>> _DEVINFO_HFRCOCAL0_BAND1_SHIFT;
break;
case cmuHFRCOBand_7MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND7_MASK)
>> _DEVINFO_HFRCOCAL0_BAND7_SHIFT;
break;
case cmuHFRCOBand_11MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND11_MASK)
>> _DEVINFO_HFRCOCAL0_BAND11_SHIFT;
break;
case cmuHFRCOBand_14MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND14_MASK)
>> _DEVINFO_HFRCOCAL0_BAND14_SHIFT;
break;
case cmuHFRCOBand_21MHz:
tuning = (DEVINFO->HFRCOCAL1 & _DEVINFO_HFRCOCAL1_BAND21_MASK)
>> _DEVINFO_HFRCOCAL1_BAND21_SHIFT;
break;
#if defined( _CMU_HFRCOCTRL_BAND_28MHZ )
case cmuHFRCOBand_28MHz:
tuning = (DEVINFO->HFRCOCAL1 & _DEVINFO_HFRCOCAL1_BAND28_MASK)
>> _DEVINFO_HFRCOCAL1_BAND28_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
return;
}
/* If HFRCO is used for core clock, we have to consider flash access WS. */
osc = CMU_ClockSelectGet(cmuClock_HF);
if (osc == cmuSelect_HFRCO)
{
/* Configure worst case wait states for flash access before setting divider */
flashWaitStateMax();
}
/* Set band/tuning */
CMU->HFRCOCTRL = (CMU->HFRCOCTRL &
~(_CMU_HFRCOCTRL_BAND_MASK | _CMU_HFRCOCTRL_TUNING_MASK))
| (band << _CMU_HFRCOCTRL_BAND_SHIFT)
| (tuning << _CMU_HFRCOCTRL_TUNING_SHIFT);
/* If HFRCO is used for core clock, optimize flash WS */
if (osc == cmuSelect_HFRCO)
{
/* Call SystemCoreClockGet() to update CMSIS core clock variable. */
freq = SystemCoreClockGet();
flashWaitStateControl(freq);
}
#if defined(CMU_MAX_FREQ_HFLE)
/* Reduce HFLE frequency if possible. */
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE), CMU_MAX_FREQ_HFLE);
#endif
}
#endif /* _CMU_HFRCOCTRL_BAND_MASK */
#if defined( _CMU_HFRCOCTRL_FREQRANGE_MASK )
/**************************************************************************//**
* @brief
* Get a pointer to the HFRCO frequency calibration word in DEVINFO
*
* @param[in] freq
* Frequency in Hz
*
* @return
* HFRCO calibration word for a given frequency
*****************************************************************************/
static uint32_t CMU_HFRCODevinfoGet(CMU_HFRCOFreq_TypeDef freq)
{
switch (freq)
{
/* 1, 2 and 4MHz share the same calibration word */
case cmuHFRCOFreq_1M0Hz:
case cmuHFRCOFreq_2M0Hz:
case cmuHFRCOFreq_4M0Hz:
return DEVINFO->HFRCOCAL0;
case cmuHFRCOFreq_7M0Hz:
return DEVINFO->HFRCOCAL3;
case cmuHFRCOFreq_13M0Hz:
return DEVINFO->HFRCOCAL6;
case cmuHFRCOFreq_16M0Hz:
return DEVINFO->HFRCOCAL7;
case cmuHFRCOFreq_19M0Hz:
return DEVINFO->HFRCOCAL8;
case cmuHFRCOFreq_26M0Hz:
return DEVINFO->HFRCOCAL10;
case cmuHFRCOFreq_32M0Hz:
return DEVINFO->HFRCOCAL11;
case cmuHFRCOFreq_38M0Hz:
return DEVINFO->HFRCOCAL12;
default: /* cmuHFRCOFreq_UserDefined */
return 0;
}
}
/***************************************************************************//**
* @brief
* Get current HFRCO frequency.
*
* @return
* HFRCO frequency
******************************************************************************/
CMU_HFRCOFreq_TypeDef CMU_HFRCOBandGet(void)
{
return (CMU_HFRCOFreq_TypeDef)SystemHfrcoFreq;
}
/***************************************************************************//**
* @brief
* Set HFRCO calibration for the selected target frequency.
*
* @param[in] setFreq
* HFRCO frequency to set
******************************************************************************/
void CMU_HFRCOBandSet(CMU_HFRCOFreq_TypeDef setFreq)
{
uint32_t freqCal;
uint32_t sysFreq;
/* Get DEVINFO index, set CMSIS frequency SystemHfrcoFreq */
freqCal = CMU_HFRCODevinfoGet(setFreq);
EFM_ASSERT((freqCal != 0) && (freqCal != UINT_MAX));
SystemHfrcoFreq = (uint32_t)setFreq;
/* Set max wait-states while changing core clock */
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO)
{
flashWaitStateMax();
}
/* Wait for any previous sync to complete, and then set calibration data
for the selected frequency. */
while(BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_HFRCOBSY_SHIFT));
/* Check for valid calibration data */
EFM_ASSERT(freqCal != UINT_MAX);
/* Set divider in HFRCOCTRL for 1, 2 and 4MHz */
switch(setFreq)
{
case cmuHFRCOFreq_1M0Hz:
freqCal = (freqCal & ~_CMU_HFRCOCTRL_CLKDIV_MASK)
| CMU_HFRCOCTRL_CLKDIV_DIV4;
break;
case cmuHFRCOFreq_2M0Hz:
freqCal = (freqCal & ~_CMU_HFRCOCTRL_CLKDIV_MASK)
| CMU_HFRCOCTRL_CLKDIV_DIV2;
break;
case cmuHFRCOFreq_4M0Hz:
freqCal = (freqCal & ~_CMU_HFRCOCTRL_CLKDIV_MASK)
| CMU_HFRCOCTRL_CLKDIV_DIV1;
break;
default:
break;
}
/* Update HFLE configuration before updating HFRCO.
Use the new set frequency. */
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO)
{
/* setFreq is worst-case as dividers may reduce the HFLE frequency. */
setHfLeConfig(setFreq, CMU_MAX_FREQ_HFLE);
}
CMU->HFRCOCTRL = freqCal;
/* If HFRCO is selected as HF clock, optimize flash access wait-state configuration
for this frequency and update CMSIS core clock variable. */
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO)
{
/* Call SystemCoreClockGet() to update CMSIS core clock variable. */
sysFreq = SystemCoreClockGet();
EFM_ASSERT(sysFreq <= (uint32_t)setFreq);
EFM_ASSERT(sysFreq <= SystemHfrcoFreq);
EFM_ASSERT(setFreq == SystemHfrcoFreq);
flashWaitStateControl(sysFreq);
}
/* Reduce HFLE frequency if possible. */
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE), CMU_MAX_FREQ_HFLE);
/* Update voltage scaling */
#if defined( _EMU_CMD_EM01VSCALE0_MASK )
EMU_VScaleEM01ByClock(0, true);
#endif
}
#endif /* _CMU_HFRCOCTRL_FREQRANGE_MASK */
#if defined( _CMU_HFRCOCTRL_SUDELAY_MASK )
/***************************************************************************//**
* @brief
* Get the HFRCO startup delay.
*
* @details
* Please refer to the reference manual for further details.
*
* @return
* The startup delay in use.
******************************************************************************/
uint32_t CMU_HFRCOStartupDelayGet(void)
{
return (CMU->HFRCOCTRL & _CMU_HFRCOCTRL_SUDELAY_MASK)
>> _CMU_HFRCOCTRL_SUDELAY_SHIFT;
}
/***************************************************************************//**
* @brief
* Set the HFRCO startup delay.
*
* @details
* Please refer to the reference manual for further details.
*
* @param[in] delay
* The startup delay to set (<= 31).
******************************************************************************/
void CMU_HFRCOStartupDelaySet(uint32_t delay)
{
EFM_ASSERT(delay <= 31);
delay &= _CMU_HFRCOCTRL_SUDELAY_MASK >> _CMU_HFRCOCTRL_SUDELAY_SHIFT;
CMU->HFRCOCTRL = (CMU->HFRCOCTRL & ~(_CMU_HFRCOCTRL_SUDELAY_MASK))
| (delay << _CMU_HFRCOCTRL_SUDELAY_SHIFT);
}
#endif
#if defined( _CMU_HFXOCTRL_AUTOSTARTEM0EM1_MASK )
/***************************************************************************//**
* @brief
* Enable or disable HFXO autostart
*
* @param[in] userSel
* Additional user specified enable bit.
*
* @param[in] enEM0EM1Start
* If true, HFXO is automatically started upon entering EM0/EM1 entry from
* EM2/EM3. HFXO selection has to be handled by the user.
* If false, HFXO is not started automatically when entering EM0/EM1.
*
* @param[in] enEM0EM1StartSel
* If true, HFXO is automatically started and immediately selected upon
* entering EM0/EM1 entry from EM2/EM3. Note that this option stalls the use of
* HFSRCCLK until HFXO becomes ready.
* If false, HFXO is not started or selected automatically when entering
* EM0/EM1.
******************************************************************************/
void CMU_HFXOAutostartEnable(uint32_t userSel,
bool enEM0EM1Start,
bool enEM0EM1StartSel)
{
uint32_t hfxoFreq;
uint32_t hfxoCtrl;
/* Mask supported enable bits. */
#if defined( _CMU_HFXOCTRL_AUTOSTARTRDYSELRAC_MASK )
userSel &= _CMU_HFXOCTRL_AUTOSTARTRDYSELRAC_MASK;
#else
userSel = 0;
#endif
hfxoCtrl = CMU->HFXOCTRL & ~( userSel
| _CMU_HFXOCTRL_AUTOSTARTEM0EM1_MASK
| _CMU_HFXOCTRL_AUTOSTARTSELEM0EM1_MASK);
hfxoCtrl |= userSel
| (enEM0EM1Start ? CMU_HFXOCTRL_AUTOSTARTEM0EM1 : 0)
| (enEM0EM1StartSel ? CMU_HFXOCTRL_AUTOSTARTSELEM0EM1 : 0);
/* Set wait-states for HFXO if automatic start and select is configured. */
if (userSel || enEM0EM1StartSel)
{
hfxoFreq = SystemHFXOClockGet();
flashWaitStateControl(hfxoFreq);
setHfLeConfig(hfxoFreq, CMU_MAX_FREQ_HFLE);
}
/* Update HFXOCTRL after wait-states are updated as HF may automatically switch
to HFXO when automatic select is enabled . */
CMU->HFXOCTRL = hfxoCtrl;
}
#endif
/**************************************************************************//**
* @brief
* Set HFXO control registers
*
* @note
* HFXO configuration should be obtained from a configuration tool,
* app note or xtal datasheet. This function disables the HFXO to ensure
* a valid state before update.
*
* @param[in] hfxoInit
* HFXO setup parameters
*****************************************************************************/
void CMU_HFXOInit(const CMU_HFXOInit_TypeDef *hfxoInit)
{
/* Do not disable HFXO if it is currently selected as HF/Core clock */
EFM_ASSERT(CMU_ClockSelectGet(cmuClock_HF) != cmuSelect_HFXO);
/* REGPWRSEL must be set to DVDD before the HFXO can be enabled. */
#if defined( _EMU_PWRCTRL_REGPWRSEL_MASK )
EFM_ASSERT(EMU->PWRCTRL & EMU_PWRCTRL_REGPWRSEL_DVDD);
#endif
/* HFXO must be disabled before reconfiguration */
CMU_OscillatorEnable(cmuOsc_HFXO, false, true);
#if defined( _CMU_HFXOCTRL_MASK )
/* Verify that the deprecated autostart fields are not used,
* @ref CMU_HFXOAutostartEnable must be used instead. */
EFM_ASSERT(!(hfxoInit->autoStartEm01
|| hfxoInit->autoSelEm01
|| hfxoInit->autoStartSelOnRacWakeup));
uint32_t mode = CMU_HFXOCTRL_MODE_XTAL;
/* AC coupled external clock not supported */
EFM_ASSERT(hfxoInit->mode != cmuOscMode_AcCoupled);
if (hfxoInit->mode == cmuOscMode_External)
{
mode = CMU_HFXOCTRL_MODE_EXTCLK;
}
/* Apply control settings */
BUS_RegMaskedWrite(&CMU->HFXOCTRL,
_CMU_HFXOCTRL_LOWPOWER_MASK | _CMU_HFXOCTRL_MODE_MASK,
(hfxoInit->lowPowerMode ? CMU_HFXOCTRL_LOWPOWER : 0) | mode);
/* Set XTAL tuning parameters */
#if defined(_CMU_HFXOCTRL1_PEAKDETTHR_MASK)
/* Set peak detection threshold */
BUS_RegMaskedWrite(&CMU->HFXOCTRL1,
_CMU_HFXOCTRL1_PEAKDETTHR_MASK,
hfxoInit->thresholdPeakDetect);
#endif
/* Set tuning for startup and steady state */
BUS_RegMaskedWrite(&CMU->HFXOSTARTUPCTRL,
_CMU_HFXOSTARTUPCTRL_CTUNE_MASK
| _CMU_HFXOSTARTUPCTRL_IBTRIMXOCORE_MASK,
(hfxoInit->ctuneStartup
<< _CMU_HFXOSTARTUPCTRL_CTUNE_SHIFT)
| (hfxoInit->xoCoreBiasTrimStartup
<< _CMU_HFXOSTARTUPCTRL_IBTRIMXOCORE_SHIFT));
BUS_RegMaskedWrite(&CMU->HFXOSTEADYSTATECTRL,
_CMU_HFXOSTEADYSTATECTRL_CTUNE_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISH_MASK
| _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK,
(hfxoInit->ctuneSteadyState
<< _CMU_HFXOSTEADYSTATECTRL_CTUNE_SHIFT)
| (hfxoInit->regIshSteadyState
<< _CMU_HFXOSTEADYSTATECTRL_REGISH_SHIFT)
| (hfxoInit->xoCoreBiasTrimSteadyState
<< _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_SHIFT)
| getRegIshUpperVal(hfxoInit->regIshSteadyState));
/* Set timeouts */
BUS_RegMaskedWrite(&CMU->HFXOTIMEOUTCTRL,
_CMU_HFXOTIMEOUTCTRL_SHUNTOPTTIMEOUT_MASK
| _CMU_HFXOTIMEOUTCTRL_PEAKDETTIMEOUT_MASK
| _CMU_HFXOTIMEOUTCTRL_STEADYTIMEOUT_MASK
| _CMU_HFXOTIMEOUTCTRL_STARTUPTIMEOUT_MASK,
(hfxoInit->timeoutShuntOptimization
<< _CMU_HFXOTIMEOUTCTRL_SHUNTOPTTIMEOUT_SHIFT)
| (hfxoInit->timeoutPeakDetect
<< _CMU_HFXOTIMEOUTCTRL_PEAKDETTIMEOUT_SHIFT)
| (hfxoInit->timeoutSteady
<< _CMU_HFXOTIMEOUTCTRL_STEADYTIMEOUT_SHIFT)
| (hfxoInit->timeoutStartup
<< _CMU_HFXOTIMEOUTCTRL_STARTUPTIMEOUT_SHIFT));
#else
BUS_RegMaskedWrite(&CMU->CTRL,
_CMU_CTRL_HFXOTIMEOUT_MASK
| _CMU_CTRL_HFXOBOOST_MASK
| _CMU_CTRL_HFXOMODE_MASK
| _CMU_CTRL_HFXOGLITCHDETEN_MASK,
(hfxoInit->timeout << _CMU_CTRL_HFXOTIMEOUT_SHIFT)
| (hfxoInit->boost << _CMU_CTRL_HFXOBOOST_SHIFT)
| (hfxoInit->mode << _CMU_CTRL_HFXOMODE_SHIFT)
| (hfxoInit->glitchDetector ? CMU_CTRL_HFXOGLITCHDETEN : 0));
#endif
}
/***************************************************************************//**
* @brief
* Get the LCD framerate divisor (FDIV) setting.
*
* @return
* The LCD framerate divisor.
******************************************************************************/
uint32_t CMU_LCDClkFDIVGet(void)
{
#if defined( LCD_PRESENT )
return (CMU->LCDCTRL & _CMU_LCDCTRL_FDIV_MASK) >> _CMU_LCDCTRL_FDIV_SHIFT;
#else
return 0;
#endif /* defined(LCD_PRESENT) */
}
/***************************************************************************//**
* @brief
* Set the LCD framerate divisor (FDIV) setting.
*
* @note
* The FDIV field (CMU LCDCTRL register) should only be modified while the
* LCD module is clock disabled (CMU LFACLKEN0.LCD bit is 0). This function
* will NOT modify FDIV if the LCD module clock is enabled. Please refer to
* CMU_ClockEnable() for disabling/enabling LCD clock.
*
* @param[in] div
* The FDIV setting to use.
******************************************************************************/
void CMU_LCDClkFDIVSet(uint32_t div)
{
#if defined( LCD_PRESENT )
EFM_ASSERT(div <= cmuClkDiv_128);
/* Do not allow modification if LCD clock enabled */
if (CMU->LFACLKEN0 & CMU_LFACLKEN0_LCD)
{
return;
}
div <<= _CMU_LCDCTRL_FDIV_SHIFT;
div &= _CMU_LCDCTRL_FDIV_MASK;
CMU->LCDCTRL = (CMU->LCDCTRL & ~_CMU_LCDCTRL_FDIV_MASK) | div;
#else
(void)div; /* Unused parameter */
#endif /* defined(LCD_PRESENT) */
}
/**************************************************************************//**
* @brief
* Set LFXO control registers
*
* @note
* LFXO configuration should be obtained from a configuration tool,
* app note or xtal datasheet. This function disables the LFXO to ensure
* a valid state before update.
*
* @param[in] lfxoInit
* LFXO setup parameters
*****************************************************************************/
void CMU_LFXOInit(const CMU_LFXOInit_TypeDef *lfxoInit)
{
/* Do not disable LFXO if it is currently selected as HF/Core clock */
EFM_ASSERT(CMU_ClockSelectGet(cmuClock_HF) != cmuSelect_LFXO);
/* LFXO must be disabled before reconfiguration */
CMU_OscillatorEnable(cmuOsc_LFXO, false, false);
#if defined( _CMU_LFXOCTRL_MASK )
BUS_RegMaskedWrite(&CMU->LFXOCTRL,
_CMU_LFXOCTRL_TUNING_MASK
| _CMU_LFXOCTRL_GAIN_MASK
| _CMU_LFXOCTRL_TIMEOUT_MASK
| _CMU_LFXOCTRL_MODE_MASK,
(lfxoInit->ctune << _CMU_LFXOCTRL_TUNING_SHIFT)
| (lfxoInit->gain << _CMU_LFXOCTRL_GAIN_SHIFT)
| (lfxoInit->timeout << _CMU_LFXOCTRL_TIMEOUT_SHIFT)
| (lfxoInit->mode << _CMU_LFXOCTRL_MODE_SHIFT));
#else
bool cmuBoost = (lfxoInit->boost & 0x2);
BUS_RegMaskedWrite(&CMU->CTRL,
_CMU_CTRL_LFXOTIMEOUT_MASK
| _CMU_CTRL_LFXOBOOST_MASK
| _CMU_CTRL_LFXOMODE_MASK,
(lfxoInit->timeout << _CMU_CTRL_LFXOTIMEOUT_SHIFT)
| ((cmuBoost ? 1 : 0) << _CMU_CTRL_LFXOBOOST_SHIFT)
| (lfxoInit->mode << _CMU_CTRL_LFXOMODE_SHIFT));
#endif
#if defined( _EMU_AUXCTRL_REDLFXOBOOST_MASK )
bool emuReduce = (lfxoInit->boost & 0x1);
BUS_RegBitWrite(&EMU->AUXCTRL, _EMU_AUXCTRL_REDLFXOBOOST_SHIFT, emuReduce ? 1 : 0);
#endif
}
/***************************************************************************//**
* @brief
* Enable/disable oscillator.
*
* @note
* WARNING: When this function is called to disable either cmuOsc_LFXO or
* cmuOsc_HFXO the LFXOMODE or HFXOMODE fields of the CMU_CTRL register
* are reset to the reset value. I.e. if external clock sources are selected
* in either LFXOMODE or HFXOMODE fields, the configuration will be cleared
* and needs to be reconfigured if needed later.
*
* @param[in] osc
* The oscillator to enable/disable.
*
* @param[in] enable
* @li true - enable specified oscillator.
* @li false - disable specified oscillator.
*
* @param[in] wait
* Only used if @p enable is true.
* @li true - wait for oscillator start-up time to timeout before returning.
* @li false - do not wait for oscillator start-up time to timeout before
* returning.
******************************************************************************/
void CMU_OscillatorEnable(CMU_Osc_TypeDef osc, bool enable, bool wait)
{
uint32_t rdyBitPos;
#if defined( _SILICON_LABS_32B_SERIES_1 )
uint32_t ensBitPos;
#endif
#if defined( _CMU_STATUS_HFXOSHUNTOPTRDY_MASK )
uint32_t hfxoTrimStatus;
#endif
uint32_t enBit;
uint32_t disBit;
switch (osc)
{
case cmuOsc_HFRCO:
enBit = CMU_OSCENCMD_HFRCOEN;
disBit = CMU_OSCENCMD_HFRCODIS;
rdyBitPos = _CMU_STATUS_HFRCORDY_SHIFT;
#if defined( _SILICON_LABS_32B_SERIES_1 )
ensBitPos = _CMU_STATUS_HFRCOENS_SHIFT;
#endif
break;
case cmuOsc_HFXO:
enBit = CMU_OSCENCMD_HFXOEN;
disBit = CMU_OSCENCMD_HFXODIS;
rdyBitPos = _CMU_STATUS_HFXORDY_SHIFT;
#if defined( _SILICON_LABS_32B_SERIES_1 )
ensBitPos = _CMU_STATUS_HFXOENS_SHIFT;
#endif
break;
case cmuOsc_AUXHFRCO:
enBit = CMU_OSCENCMD_AUXHFRCOEN;
disBit = CMU_OSCENCMD_AUXHFRCODIS;
rdyBitPos = _CMU_STATUS_AUXHFRCORDY_SHIFT;
#if defined( _SILICON_LABS_32B_SERIES_1 )
ensBitPos = _CMU_STATUS_AUXHFRCOENS_SHIFT;
#endif
break;
case cmuOsc_LFRCO:
enBit = CMU_OSCENCMD_LFRCOEN;
disBit = CMU_OSCENCMD_LFRCODIS;
rdyBitPos = _CMU_STATUS_LFRCORDY_SHIFT;
#if defined( _SILICON_LABS_32B_SERIES_1 )
ensBitPos = _CMU_STATUS_LFRCOENS_SHIFT;
#endif
break;
case cmuOsc_LFXO:
enBit = CMU_OSCENCMD_LFXOEN;
disBit = CMU_OSCENCMD_LFXODIS;
rdyBitPos = _CMU_STATUS_LFXORDY_SHIFT;
#if defined( _SILICON_LABS_32B_SERIES_1 )
ensBitPos = _CMU_STATUS_LFXOENS_SHIFT;
#endif
break;
#if defined( _CMU_STATUS_USHFRCOENS_MASK )
case cmuOsc_USHFRCO:
enBit = CMU_OSCENCMD_USHFRCOEN;
disBit = CMU_OSCENCMD_USHFRCODIS;
rdyBitPos = _CMU_STATUS_USHFRCORDY_SHIFT;
#if defined( _SILICON_LABS_32B_SERIES_1 )
ensBitPos = _CMU_STATUS_USHFRCOENS_SHIFT;
#endif
break;
#endif
#if defined( _CMU_STATUS_PLFRCOENS_MASK )
case cmuOsc_PLFRCO:
enBit = CMU_OSCENCMD_PLFRCOEN;
disBit = CMU_OSCENCMD_PLFRCODIS;
rdyBitPos = _CMU_STATUS_PLFRCORDY_SHIFT;
ensBitPos = _CMU_STATUS_PLFRCOENS_SHIFT;
break;
#endif
default:
/* Undefined clock source or cmuOsc_ULFRCO. ULFRCO is always enabled,
and cannot be disabled. Ie. the definition of cmuOsc_ULFRCO is primarely
intended for information: the ULFRCO is always on. */
EFM_ASSERT(0);
return;
}
if (enable)
{
#if defined( _CMU_HFXOCTRL_MASK )
bool firstHfxoEnable = false;
/* Enabling the HFXO for the first time requires special handling. We use the
* PEAKDETSHUTOPTMODE field of the HFXOCTRL register to see if this is the
* first time the HFXO is enabled. */
if ((osc == cmuOsc_HFXO) &&
((CMU->HFXOCTRL & (_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK))
== CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_AUTOCMD))
{
firstHfxoEnable = true;
/* First time we enable an external clock we should switch to CMD mode to make sure that
* we only do SCO and not PDA tuning. */
if ((CMU->HFXOCTRL & (_CMU_HFXOCTRL_MODE_MASK)) == CMU_HFXOCTRL_MODE_EXTCLK)
{
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
| CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_CMD;
}
}
#endif
CMU->OSCENCMD = enBit;
#if defined( _SILICON_LABS_32B_SERIES_1 )
/* Always wait for ENS to go high */
while (!BUS_RegBitRead(&CMU->STATUS, ensBitPos))
{
}
#endif
/* Wait for clock to become ready after enable */
if (wait)
{
while (!BUS_RegBitRead(&CMU->STATUS, rdyBitPos));
#if defined( _CMU_STATUS_HFXOSHUNTOPTRDY_MASK )
if ((osc == cmuOsc_HFXO) && firstHfxoEnable)
{
if ((CMU->HFXOCTRL & _CMU_HFXOCTRL_MODE_MASK) == CMU_HFXOCTRL_MODE_EXTCLK)
{
/* External clock mode should only do shunt current optimization. */
CMU_OscillatorTuningOptimize(cmuOsc_HFXO, cmuHFXOTuningMode_ShuntCommand, true);
}
else
{
/* Wait for peak detection and shunt current optimization to complete. */
CMU_OscillatorTuningWait(cmuOsc_HFXO, cmuHFXOTuningMode_Auto);
}
/* Disable the HFXO again to apply the trims. Apply trim from HFXOTRIMSTATUS
when disabled. */
hfxoTrimStatus = CMU_OscillatorTuningGet(cmuOsc_HFXO);
CMU_OscillatorEnable(cmuOsc_HFXO, false, true);
CMU_OscillatorTuningSet(cmuOsc_HFXO, hfxoTrimStatus);
/* Restart in CMD mode. */
CMU->OSCENCMD = enBit;
while (!BUS_RegBitRead(&CMU->STATUS, rdyBitPos));
}
#endif
}
}
else
{
CMU->OSCENCMD = disBit;
#if defined( _SILICON_LABS_32B_SERIES_1 )
/* Always wait for ENS to go low */
while (BUS_RegBitRead(&CMU->STATUS, ensBitPos))
{
}
#endif
}
}
/***************************************************************************//**
* @brief
* Get oscillator frequency tuning setting.
*
* @param[in] osc
* Oscillator to get tuning value for, one of:
* @li #cmuOsc_LFRCO
* @li #cmuOsc_HFRCO
* @li #cmuOsc_AUXHFRCO
* @li #cmuOsc_HFXO if CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE is defined
*
* @return
* The oscillator frequency tuning setting in use.
******************************************************************************/
uint32_t CMU_OscillatorTuningGet(CMU_Osc_TypeDef osc)
{
uint32_t ret;
switch (osc)
{
case cmuOsc_LFRCO:
ret = (CMU->LFRCOCTRL & _CMU_LFRCOCTRL_TUNING_MASK)
>> _CMU_LFRCOCTRL_TUNING_SHIFT;
break;
case cmuOsc_HFRCO:
ret = (CMU->HFRCOCTRL & _CMU_HFRCOCTRL_TUNING_MASK)
>> _CMU_HFRCOCTRL_TUNING_SHIFT;
break;
case cmuOsc_AUXHFRCO:
ret = (CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_TUNING_MASK)
>> _CMU_AUXHFRCOCTRL_TUNING_SHIFT;
break;
#if defined( _CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK )
case cmuOsc_HFXO:
ret = CMU->HFXOTRIMSTATUS & ( _CMU_HFXOTRIMSTATUS_REGISH_MASK
| _CMU_HFXOTRIMSTATUS_IBTRIMXOCORE_MASK);
break;
#endif
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Set the oscillator frequency tuning control.
*
* @note
* Oscillator tuning is done during production, and the tuning value is
* automatically loaded after a reset. Changing the tuning value from the
* calibrated value is for more advanced use. Certain oscillators also have
* build-in tuning optimization.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_LFRCO
* @li #cmuOsc_HFRCO
* @li #cmuOsc_AUXHFRCO
* @li #cmuOsc_HFXO if PEAKDETSHUNTOPTMODE is available. Note that CMD mode is set.
*
* @param[in] val
* The oscillator frequency tuning setting to use.
******************************************************************************/
void CMU_OscillatorTuningSet(CMU_Osc_TypeDef osc, uint32_t val)
{
#if defined( _CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK )
uint32_t regIshUpper;
#endif
switch (osc)
{
case cmuOsc_LFRCO:
EFM_ASSERT(val <= (_CMU_LFRCOCTRL_TUNING_MASK
>> _CMU_LFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_LFRCOCTRL_TUNING_MASK >> _CMU_LFRCOCTRL_TUNING_SHIFT);
#if defined( _SILICON_LABS_32B_SERIES_1 )
while(BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_LFRCOBSY_SHIFT));
#endif
CMU->LFRCOCTRL = (CMU->LFRCOCTRL & ~(_CMU_LFRCOCTRL_TUNING_MASK))
| (val << _CMU_LFRCOCTRL_TUNING_SHIFT);
break;
case cmuOsc_HFRCO:
EFM_ASSERT(val <= (_CMU_HFRCOCTRL_TUNING_MASK
>> _CMU_HFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_HFRCOCTRL_TUNING_MASK >> _CMU_HFRCOCTRL_TUNING_SHIFT);
#if defined( _SILICON_LABS_32B_SERIES_1 )
while(BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_HFRCOBSY_SHIFT))
{
}
#endif
CMU->HFRCOCTRL = (CMU->HFRCOCTRL & ~(_CMU_HFRCOCTRL_TUNING_MASK))
| (val << _CMU_HFRCOCTRL_TUNING_SHIFT);
break;
case cmuOsc_AUXHFRCO:
EFM_ASSERT(val <= (_CMU_AUXHFRCOCTRL_TUNING_MASK
>> _CMU_AUXHFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_AUXHFRCOCTRL_TUNING_MASK >> _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
#if defined( _SILICON_LABS_32B_SERIES_1 )
while(BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_AUXHFRCOBSY_SHIFT))
{
}
#endif
CMU->AUXHFRCOCTRL = (CMU->AUXHFRCOCTRL & ~(_CMU_AUXHFRCOCTRL_TUNING_MASK))
| (val << _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
break;
#if defined( _CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK )
case cmuOsc_HFXO:
/* Do set PEAKDETSHUNTOPTMODE or HFXOSTEADYSTATECTRL if HFXO is enabled */
EFM_ASSERT(!(CMU->STATUS & CMU_STATUS_HFXOENS));
/* Switch to command mode. Automatic SCO and PDA calibration is not done
at the next enable. Set user REGISH, REGISHUPPER and IBTRIMXOCORE. */
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
| CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_CMD;
regIshUpper = getRegIshUpperVal((val & _CMU_HFXOSTEADYSTATECTRL_REGISH_MASK)
>> _CMU_HFXOSTEADYSTATECTRL_REGISH_SHIFT);
BUS_RegMaskedWrite(&CMU->HFXOSTEADYSTATECTRL,
_CMU_HFXOSTEADYSTATECTRL_REGISH_MASK
| _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK,
val | regIshUpper);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
}
#if defined( _CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK )
/***************************************************************************//**
* @brief
* Wait for oscillator tuning optimization.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_HFXO
*
* @param[in] mode
* Tuning optimization mode.
*
* @return
* Returns false on invalid parameters or oscillator error status.
******************************************************************************/
bool CMU_OscillatorTuningWait(CMU_Osc_TypeDef osc,
CMU_HFXOTuningMode_TypeDef mode)
{
EFM_ASSERT(osc == cmuOsc_HFXO);
uint32_t waitFlags;
/* Currently implemented for HFXO with PEAKDETSHUNTOPTMODE only */
(void)osc;
if (BUS_RegMaskedRead(&CMU->HFXOCTRL, _CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
== CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_AUTOCMD)
{
waitFlags = CMU_STATUS_HFXOSHUNTOPTRDY | CMU_STATUS_HFXOPEAKDETRDY;
}
else
{
/* Set wait flags for each command and wait */
switch (mode)
{
case cmuHFXOTuningMode_ShuntCommand:
waitFlags = CMU_STATUS_HFXOSHUNTOPTRDY;
break;
case cmuHFXOTuningMode_Auto:
/* Fall through */
case cmuHFXOTuningMode_PeakShuntCommand:
waitFlags = CMU_STATUS_HFXOSHUNTOPTRDY | CMU_STATUS_HFXOPEAKDETRDY;
break;
default:
waitFlags = _CMU_STATUS_MASK;
EFM_ASSERT(false);
}
}
while ((CMU->STATUS & waitFlags) != waitFlags);
/* Check error flags */
if (waitFlags & CMU_STATUS_HFXOPEAKDETRDY)
{
return (CMU->IF & CMU_IF_HFXOPEAKDETERR ? true : false);
}
return true;
}
/***************************************************************************//**
* @brief
* Start and optionally wait for oscillator tuning optimization.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_HFXO
*
* @param[in] mode
* Tuning optimization mode.
*
* @param[in] wait
* Wait for tuning optimization to complete.
* true - wait for tuning optimization to complete.
* false - return without waiting.
*
* @return
* Returns false on invalid parameters or oscillator error status.
******************************************************************************/
bool CMU_OscillatorTuningOptimize(CMU_Osc_TypeDef osc,
CMU_HFXOTuningMode_TypeDef mode,
bool wait)
{
switch (osc)
{
case cmuOsc_HFXO:
if (mode)
{
/* Clear error flag before command write */
CMU->IFC = CMU_IFC_HFXOPEAKDETERR;
CMU->CMD = mode;
}
if (wait)
{
return CMU_OscillatorTuningWait(osc, mode);
}
default:
EFM_ASSERT(false);
}
return true;
}
#endif
/**************************************************************************//**
* @brief
* Determine if currently selected PCNTn clock used is external or LFBCLK.
*
* @param[in] instance
* PCNT instance number to get currently selected clock source for.
*
* @return
* @li true - selected clock is external clock.
* @li false - selected clock is LFBCLK.
*****************************************************************************/
bool CMU_PCNTClockExternalGet(unsigned int instance)
{
uint32_t setting;
switch (instance)
{
#if defined( _CMU_PCNTCTRL_PCNT0CLKEN_MASK )
case 0:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT0CLKSEL_PCNT0S0;
break;
#if defined( _CMU_PCNTCTRL_PCNT1CLKEN_MASK )
case 1:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT1CLKSEL_PCNT1S0;
break;
#if defined( _CMU_PCNTCTRL_PCNT2CLKEN_MASK )
case 2:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT2CLKSEL_PCNT2S0;
break;
#endif
#endif
#endif
default:
setting = 0;
break;
}
return (setting ? true : false);
}
/**************************************************************************//**
* @brief
* Select PCNTn clock.
*
* @param[in] instance
* PCNT instance number to set selected clock source for.
*
* @param[in] external
* Set to true to select external clock, false to select LFBCLK.
*****************************************************************************/
void CMU_PCNTClockExternalSet(unsigned int instance, bool external)
{
#if defined( PCNT_PRESENT )
uint32_t setting = 0;
EFM_ASSERT(instance < PCNT_COUNT);
if (external)
{
setting = 1;
}
BUS_RegBitWrite(&(CMU->PCNTCTRL), (instance * 2) + 1, setting);
#else
(void)instance; /* Unused parameter */
(void)external; /* Unused parameter */
#endif
}
#if defined( _CMU_USHFRCOCONF_BAND_MASK )
/***************************************************************************//**
* @brief
* Get USHFRCO band in use.
*
* @return
* USHFRCO band in use.
******************************************************************************/
CMU_USHFRCOBand_TypeDef CMU_USHFRCOBandGet(void)
{
return (CMU_USHFRCOBand_TypeDef)((CMU->USHFRCOCONF
& _CMU_USHFRCOCONF_BAND_MASK)
>> _CMU_USHFRCOCONF_BAND_SHIFT);
}
#endif
#if defined( _CMU_USHFRCOCONF_BAND_MASK )
/***************************************************************************//**
* @brief
* Set USHFRCO band to use.
*
* @param[in] band
* USHFRCO band to activate.
******************************************************************************/
void CMU_USHFRCOBandSet(CMU_USHFRCOBand_TypeDef band)
{
uint32_t tuning;
uint32_t fineTuning;
CMU_Select_TypeDef osc;
/* Cannot switch band if USHFRCO is already selected as HF clock. */
osc = CMU_ClockSelectGet(cmuClock_HF);
EFM_ASSERT((CMU_USHFRCOBandGet() != band) && (osc != cmuSelect_USHFRCO));
/* Read tuning value from calibration table */
switch (band)
{
case cmuUSHFRCOBand_24MHz:
tuning = (DEVINFO->USHFRCOCAL0 & _DEVINFO_USHFRCOCAL0_BAND24_TUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND24_TUNING_SHIFT;
fineTuning = (DEVINFO->USHFRCOCAL0
& _DEVINFO_USHFRCOCAL0_BAND24_FINETUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND24_FINETUNING_SHIFT;
break;
case cmuUSHFRCOBand_48MHz:
tuning = (DEVINFO->USHFRCOCAL0 & _DEVINFO_USHFRCOCAL0_BAND48_TUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND48_TUNING_SHIFT;
fineTuning = (DEVINFO->USHFRCOCAL0
& _DEVINFO_USHFRCOCAL0_BAND48_FINETUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND48_FINETUNING_SHIFT;
/* Enable the clock divider before switching the band from 24 to 48MHz */
BUS_RegBitWrite(&CMU->USHFRCOCONF, _CMU_USHFRCOCONF_USHFRCODIV2DIS_SHIFT, 0);
break;
default:
EFM_ASSERT(0);
return;
}
/* Set band and tuning */
CMU->USHFRCOCONF = (CMU->USHFRCOCONF & ~_CMU_USHFRCOCONF_BAND_MASK)
| (band << _CMU_USHFRCOCONF_BAND_SHIFT);
CMU->USHFRCOCTRL = (CMU->USHFRCOCTRL & ~_CMU_USHFRCOCTRL_TUNING_MASK)
| (tuning << _CMU_USHFRCOCTRL_TUNING_SHIFT);
CMU->USHFRCOTUNE = (CMU->USHFRCOTUNE & ~_CMU_USHFRCOTUNE_FINETUNING_MASK)
| (fineTuning << _CMU_USHFRCOTUNE_FINETUNING_SHIFT);
/* Disable the clock divider after switching the band from 48 to 24MHz */
if (band == cmuUSHFRCOBand_24MHz)
{
BUS_RegBitWrite(&CMU->USHFRCOCONF, _CMU_USHFRCOCONF_USHFRCODIV2DIS_SHIFT, 1);
}
}
#endif
/** @} (end addtogroup CMU) */
/** @} (end addtogroup emlib) */
#endif /* __EM_CMU_H */