blob: 761ab26639f2b7d6e1ada9e7a83ac8b791e3d7f8 [file] [log] [blame]
/***************************************************************************//**
* @file em_dac.c
* @brief Digital to Analog Converter (DAC) Peripheral API
* @version 5.1.2
*******************************************************************************
* @section License
* <b>Copyright 2016 Silicon Laboratories, Inc. http://www.silabs.com</b>
*******************************************************************************
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
* obligation to support this Software. Silicon Labs is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Silicon Labs will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "em_dac.h"
#if defined(DAC_COUNT) && (DAC_COUNT > 0)
#include "em_cmu.h"
#include "em_assert.h"
#include "em_bus.h"
/***************************************************************************//**
* @addtogroup emlib
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup DAC
* @brief Digital to Analog Converter (DAC) Peripheral API
* @details
* This module contains functions to control the DAC peripheral of Silicon
* Labs 32-bit MCUs and SoCs. The DAC converts digital values to analog signals
* at up to 500 ksps with 12-bit accuracy. The DAC is designed for low energy
* consumption, but can also provide very good performance.
* @{
******************************************************************************/
/*******************************************************************************
******************************* DEFINES ***********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/** Validation of DAC channel for assert statements. */
#define DAC_CH_VALID(ch) ((ch) <= 1)
/** Max DAC clock */
#define DAC_MAX_CLOCK 1000000
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
/***************************************************************************//**
* @brief
* Enable/disable DAC channel.
*
* @param[in] dac
* Pointer to DAC peripheral register block.
*
* @param[in] ch
* Channel to enable/disable.
*
* @param[in] enable
* true to enable DAC channel, false to disable.
******************************************************************************/
void DAC_Enable(DAC_TypeDef *dac, unsigned int ch, bool enable)
{
volatile uint32_t *reg;
EFM_ASSERT(DAC_REF_VALID(dac));
EFM_ASSERT(DAC_CH_VALID(ch));
if (!ch)
{
reg = &(dac->CH0CTRL);
}
else
{
reg = &(dac->CH1CTRL);
}
BUS_RegBitWrite(reg, _DAC_CH0CTRL_EN_SHIFT, enable);
}
/***************************************************************************//**
* @brief
* Initialize DAC.
*
* @details
* Initializes common parts for both channels. In addition, channel control
* configuration must be done, please refer to DAC_InitChannel().
*
* @note
* This function will disable both channels prior to configuration.
*
* @param[in] dac
* Pointer to DAC peripheral register block.
*
* @param[in] init
* Pointer to DAC initialization structure.
******************************************************************************/
void DAC_Init(DAC_TypeDef *dac, const DAC_Init_TypeDef *init)
{
uint32_t tmp;
EFM_ASSERT(DAC_REF_VALID(dac));
/* Make sure both channels are disabled. */
BUS_RegBitWrite(&(dac->CH0CTRL), _DAC_CH0CTRL_EN_SHIFT, 0);
BUS_RegBitWrite(&(dac->CH1CTRL), _DAC_CH0CTRL_EN_SHIFT, 0);
/* Load proper calibration data depending on selected reference */
switch (init->reference)
{
case dacRef2V5:
dac->CAL = DEVINFO->DAC0CAL1;
break;
case dacRefVDD:
dac->CAL = DEVINFO->DAC0CAL2;
break;
default: /* 1.25V */
dac->CAL = DEVINFO->DAC0CAL0;
break;
}
tmp = ((uint32_t)(init->refresh) << _DAC_CTRL_REFRSEL_SHIFT)
| (((uint32_t)(init->prescale) << _DAC_CTRL_PRESC_SHIFT)
& _DAC_CTRL_PRESC_MASK)
| ((uint32_t)(init->reference) << _DAC_CTRL_REFSEL_SHIFT)
| ((uint32_t)(init->outMode) << _DAC_CTRL_OUTMODE_SHIFT)
| ((uint32_t)(init->convMode) << _DAC_CTRL_CONVMODE_SHIFT);
if (init->ch0ResetPre)
{
tmp |= DAC_CTRL_CH0PRESCRST;
}
if (init->outEnablePRS)
{
tmp |= DAC_CTRL_OUTENPRS;
}
if (init->sineEnable)
{
tmp |= DAC_CTRL_SINEMODE;
}
if (init->diff)
{
tmp |= DAC_CTRL_DIFF;
}
dac->CTRL = tmp;
}
/***************************************************************************//**
* @brief
* Initialize DAC channel.
*
* @param[in] dac
* Pointer to DAC peripheral register block.
*
* @param[in] init
* Pointer to DAC initialization structure.
*
* @param[in] ch
* Channel number to initialize.
******************************************************************************/
void DAC_InitChannel(DAC_TypeDef *dac,
const DAC_InitChannel_TypeDef *init,
unsigned int ch)
{
uint32_t tmp;
EFM_ASSERT(DAC_REF_VALID(dac));
EFM_ASSERT(DAC_CH_VALID(ch));
tmp = (uint32_t)(init->prsSel) << _DAC_CH0CTRL_PRSSEL_SHIFT;
if (init->enable)
{
tmp |= DAC_CH0CTRL_EN;
}
if (init->prsEnable)
{
tmp |= DAC_CH0CTRL_PRSEN;
}
if (init->refreshEnable)
{
tmp |= DAC_CH0CTRL_REFREN;
}
if (ch)
{
dac->CH1CTRL = tmp;
}
else
{
dac->CH0CTRL = tmp;
}
}
/***************************************************************************//**
* @brief
* Set the output signal of a DAC channel to a given value.
*
* @details
* This function sets the output signal of a DAC channel by writing @p value
* to the corresponding CHnDATA register.
*
* @param[in] dac
* Pointer to DAC peripheral register block.
*
* @param[in] channel
* Channel number to set output of.
*
* @param[in] value
* Value to write to the channel output register CHnDATA.
******************************************************************************/
void DAC_ChannelOutputSet( DAC_TypeDef *dac,
unsigned int channel,
uint32_t value )
{
switch(channel)
{
case 0:
DAC_Channel0OutputSet(dac, value);
break;
case 1:
DAC_Channel1OutputSet(dac, value);
break;
default:
EFM_ASSERT(0);
break;
}
}
/***************************************************************************//**
* @brief
* Calculate prescaler value used to determine DAC clock.
*
* @details
* The DAC clock is given by: HFPERCLK / (prescale ^ 2). If the requested
* DAC frequency is low and the max prescaler value can not adjust the
* actual DAC frequency lower than the requested DAC frequency, then the
* max prescaler value is returned, resulting in a higher DAC frequency
* than requested.
*
* @param[in] dacFreq DAC frequency wanted. The frequency will automatically
* be adjusted to be below max allowed DAC clock.
*
* @param[in] hfperFreq Frequency in Hz of reference HFPER clock. Set to 0 to
* use currently defined HFPER clock setting.
*
* @return
* Prescaler value to use for DAC in order to achieve a clock value
* <= @p dacFreq.
******************************************************************************/
uint8_t DAC_PrescaleCalc(uint32_t dacFreq, uint32_t hfperFreq)
{
uint32_t ret;
/* Make sure selected DAC clock is below max value */
if (dacFreq > DAC_MAX_CLOCK)
{
dacFreq = DAC_MAX_CLOCK;
}
/* Use current HFPER frequency? */
if (!hfperFreq)
{
hfperFreq = CMU_ClockFreqGet(cmuClock_HFPER);
}
/* Iterate in order to determine best prescale value. Only a few possible */
/* values. We start with lowest prescaler value in order to get first */
/* equal or below wanted DAC frequency value. */
for (ret = 0; ret <= (_DAC_CTRL_PRESC_MASK >> _DAC_CTRL_PRESC_SHIFT); ret++)
{
if ((hfperFreq >> ret) <= dacFreq)
break;
}
/* If ret is higher than the max prescaler value, make sure to return
the max value. */
if (ret > (_DAC_CTRL_PRESC_MASK >> _DAC_CTRL_PRESC_SHIFT))
{
ret = _DAC_CTRL_PRESC_MASK >> _DAC_CTRL_PRESC_SHIFT;
}
return (uint8_t)ret;
}
/***************************************************************************//**
* @brief
* Reset DAC to same state as after a HW reset.
*
* @param[in] dac
* Pointer to ADC peripheral register block.
******************************************************************************/
void DAC_Reset(DAC_TypeDef *dac)
{
/* Disable channels, before resetting other registers. */
dac->CH0CTRL = _DAC_CH0CTRL_RESETVALUE;
dac->CH1CTRL = _DAC_CH1CTRL_RESETVALUE;
dac->CTRL = _DAC_CTRL_RESETVALUE;
dac->IEN = _DAC_IEN_RESETVALUE;
dac->IFC = _DAC_IFC_MASK;
dac->CAL = DEVINFO->DAC0CAL0;
dac->BIASPROG = _DAC_BIASPROG_RESETVALUE;
/* Do not reset route register, setting should be done independently */
}
/** @} (end addtogroup DAC) */
/** @} (end addtogroup emlib) */
#endif /* defined(DAC_COUNT) && (DAC_COUNT > 0) */