| /* |
| * Copyright (c) 2023 Prevas A/S |
| * Copyright (c) 2023 Syslinbit |
| * Copyright (c) 2024 STMicroelectronics |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_rtc |
| |
| #include <errno.h> |
| #include <zephyr/device.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/init.h> |
| #include <zephyr/devicetree.h> |
| #include <zephyr/drivers/rtc.h> |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/sys/util.h> |
| #include <soc.h> |
| #include <stm32_ll_pwr.h> |
| #include <stm32_ll_rcc.h> |
| #include <stm32_ll_rtc.h> |
| #include <stm32_hsem.h> |
| #ifdef CONFIG_RTC_ALARM |
| #include <stm32_ll_exti.h> |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| #include <zephyr/logging/log.h> |
| #ifdef CONFIG_RTC_ALARM |
| #include <zephyr/irq.h> |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| #include <stdbool.h> |
| #include "rtc_utils.h" |
| |
| #include "rtc_ll_stm32.h" |
| |
| LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL); |
| |
| #if (defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT)) \ |
| || defined(CONFIG_SOC_SERIES_STM32F2X) |
| /* subsecond counting is not supported by some STM32L1x MCUs (Cat.1) & by STM32F2x SoC series */ |
| #define HW_SUBSECOND_SUPPORT (0) |
| #else |
| #define HW_SUBSECOND_SUPPORT (1) |
| #endif |
| |
| /* RTC start time: 1st, Jan, 2000 */ |
| #define RTC_YEAR_REF 2000 |
| /* struct tm start time: 1st, Jan, 1900 */ |
| #define TM_YEAR_REF 1900 |
| |
| /* Convert part per billion calibration value to a number of clock pulses added or removed each |
| * 2^20 clock cycles so it is suitable for the CALR register fields |
| * |
| * nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125 |
| */ |
| #define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125) |
| |
| /* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles) |
| * to part ber billion calibration value |
| * |
| * ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048 |
| */ |
| #define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048) |
| |
| /* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses |
| * added every 2^20 clock cycles |
| */ |
| #define MAX_CALP (512) |
| #define MAX_CALM (511) |
| |
| #define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP) |
| #define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM) |
| |
| /* Timeout in microseconds used to wait for flags */ |
| #define RTC_TIMEOUT 1000000 |
| |
| #ifdef CONFIG_RTC_ALARM |
| #define RTC_STM32_ALARMS_COUNT DT_INST_PROP(0, alarms_count) |
| |
| #define RTC_STM32_ALRM_A 0U |
| #define RTC_STM32_ALRM_B 1U |
| |
| /* Zephyr mask supported by RTC device, values from RTC_ALARM_TIME_MASK */ |
| #define RTC_STM32_SUPPORTED_ALARM_FIELDS \ |
| (RTC_ALARM_TIME_MASK_SECOND | RTC_ALARM_TIME_MASK_MINUTE \ |
| | RTC_ALARM_TIME_MASK_HOUR | RTC_ALARM_TIME_MASK_WEEKDAY \ |
| | RTC_ALARM_TIME_MASK_MONTHDAY) |
| |
| #if DT_INST_NODE_HAS_PROP(0, alrm_exti_line) |
| #define RTC_STM32_EXTI_LINE CONCAT(LL_EXTI_LINE_, DT_INST_PROP(0, alrm_exti_line)) |
| #else |
| #define RTC_STM32_EXTI_LINE 0 |
| #endif /* DT_INST_NODE_HAS_PROP(0, alrm_exti_line) */ |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| /* |
| * After system reset, the RTC registers are protected against parasitic write access by the |
| * DBP bit in the power control peripheral (PWR). |
| * Hence, DBP bit must be set in order to enable RTC registers write access. |
| */ |
| #define RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION (1) |
| #else |
| #define RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION (0) |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPCR_DBP || PWR_DBPR_DBP */ |
| |
| struct rtc_stm32_config { |
| uint32_t async_prescaler; |
| uint32_t sync_prescaler; |
| const struct stm32_pclken *pclken; |
| #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) |
| uint32_t cal_out_freq; |
| #endif |
| }; |
| |
| #ifdef CONFIG_RTC_ALARM |
| struct rtc_stm32_alrm { |
| LL_RTC_AlarmTypeDef ll_rtc_alrm; |
| /* user-defined alarm mask, values from RTC_ALARM_TIME_MASK */ |
| uint16_t user_mask; |
| rtc_alarm_callback user_callback; |
| void *user_data; |
| bool is_pending; |
| }; |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| struct rtc_stm32_data { |
| struct k_mutex lock; |
| #ifdef CONFIG_RTC_ALARM |
| struct rtc_stm32_alrm rtc_alrm_a; |
| struct rtc_stm32_alrm rtc_alrm_b; |
| #endif /* CONFIG_RTC_ALARM */ |
| }; |
| |
| static int rtc_stm32_configure(const struct device *dev) |
| { |
| const struct rtc_stm32_config *cfg = dev->config; |
| |
| int err = 0; |
| |
| uint32_t hour_format = LL_RTC_GetHourFormat(RTC); |
| uint32_t sync_prescaler = LL_RTC_GetSynchPrescaler(RTC); |
| uint32_t async_prescaler = LL_RTC_GetAsynchPrescaler(RTC); |
| |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| /* configuration process requires to stop the RTC counter so do it |
| * only if needed to avoid inducing time drift at each reset |
| */ |
| if ((hour_format != LL_RTC_HOURFORMAT_24HOUR) || |
| (sync_prescaler != cfg->sync_prescaler) || |
| (async_prescaler != cfg->async_prescaler)) { |
| ErrorStatus status = LL_RTC_EnterInitMode(RTC); |
| |
| if (status == SUCCESS) { |
| LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR); |
| LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler); |
| LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler); |
| } else { |
| err = -EIO; |
| } |
| |
| LL_RTC_DisableInitMode(RTC); |
| } |
| |
| #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) |
| LL_RTC_CAL_SetOutputFreq(RTC, cfg->cal_out_freq); |
| #else |
| LL_RTC_CAL_SetOutputFreq(RTC, LL_RTC_CALIB_OUTPUT_NONE); |
| #endif |
| |
| #ifdef RTC_CR_BYPSHAD |
| LL_RTC_EnableShadowRegBypass(RTC); |
| #endif /* RTC_CR_BYPSHAD */ |
| |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_RTC_ALARM |
| static inline ErrorStatus rtc_stm32_init_alarm(RTC_TypeDef *rtc, uint32_t format, |
| LL_RTC_AlarmTypeDef *ll_alarm_struct, uint16_t id) |
| { |
| ll_alarm_struct->AlarmDateWeekDaySel = RTC_STM32_ALRM_DATEWEEKDAYSEL_DATE; |
| /* |
| * RTC write protection is disabled & enabled again inside LL_RTC_ALMx_Init functions |
| * The LL_RTC_ALMx_Init does convert bin2bcd by itself |
| */ |
| if (id == RTC_STM32_ALRM_A) { |
| return LL_RTC_ALMA_Init(rtc, format, ll_alarm_struct); |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| return LL_RTC_ALMB_Init(rtc, format, ll_alarm_struct); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| |
| return 0; |
| } |
| |
| static inline void rtc_stm32_clear_alarm_flag(RTC_TypeDef *rtc, uint16_t id) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| LL_RTC_ClearFlag_ALRA(rtc); |
| return; |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| LL_RTC_ClearFlag_ALRB(rtc); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| } |
| |
| static inline uint32_t rtc_stm32_is_active_alarm(RTC_TypeDef *rtc, uint16_t id) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| return LL_RTC_IsActiveFlag_ALRA(rtc); |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| return LL_RTC_IsActiveFlag_ALRB(rtc); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| |
| return 0; |
| } |
| |
| static inline void rtc_stm32_enable_interrupt_alarm(RTC_TypeDef *rtc, uint16_t id) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| LL_RTC_EnableIT_ALRA(rtc); |
| return; |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| LL_RTC_EnableIT_ALRB(rtc); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| } |
| |
| static inline void rtc_stm32_disable_interrupt_alarm(RTC_TypeDef *rtc, uint16_t id) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| LL_RTC_DisableIT_ALRA(rtc); |
| return; |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| LL_RTC_DisableIT_ALRB(rtc); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| } |
| |
| static inline void rtc_stm32_enable_alarm(RTC_TypeDef *rtc, uint16_t id) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| LL_RTC_ALMA_Enable(rtc); |
| return; |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| LL_RTC_ALMB_Enable(rtc); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| } |
| |
| static inline void rtc_stm32_disable_alarm(RTC_TypeDef *rtc, uint16_t id) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| LL_RTC_ALMA_Disable(rtc); |
| return; |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| LL_RTC_ALMB_Disable(rtc); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| } |
| |
| void rtc_stm32_isr(const struct device *dev) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| struct rtc_stm32_alrm *p_rtc_alrm; |
| int id = 0; |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| for (id = 0; id < RTC_STM32_ALARMS_COUNT; id++) { |
| if (rtc_stm32_is_active_alarm(RTC, (uint16_t)id) != 0) { |
| LL_RTC_DisableWriteProtection(RTC); |
| rtc_stm32_clear_alarm_flag(RTC, (uint16_t)id); |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| if (id == RTC_STM32_ALRM_A) { |
| p_rtc_alrm = &(data->rtc_alrm_a); |
| } else { |
| p_rtc_alrm = &(data->rtc_alrm_b); |
| } |
| |
| p_rtc_alrm->is_pending = true; |
| |
| if (p_rtc_alrm->user_callback != NULL) { |
| p_rtc_alrm->user_callback(dev, (uint16_t)id, p_rtc_alrm->user_data); |
| } |
| } |
| } |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| ll_func_exti_clear_rtc_alarm_flag(RTC_STM32_EXTI_LINE); |
| } |
| |
| static void rtc_stm32_irq_config(const struct device *dev) |
| { |
| IRQ_CONNECT(DT_INST_IRQN(0), |
| DT_INST_IRQ(0, priority), |
| rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0); |
| irq_enable(DT_INST_IRQN(0)); |
| } |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| static int rtc_stm32_init(const struct device *dev) |
| { |
| const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| const struct rtc_stm32_config *cfg = dev->config; |
| struct rtc_stm32_data *data = dev->data; |
| |
| int err = 0; |
| |
| if (!device_is_ready(clk)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| /* Enable RTC bus clock */ |
| if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) { |
| LOG_ERR("clock op failed\n"); |
| return -EIO; |
| } |
| |
| k_mutex_init(&data->lock); |
| |
| /* Enable Backup access */ |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| /* Enable RTC clock source */ |
| if (clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL) != 0) { |
| LOG_ERR("clock configure failed\n"); |
| return -EIO; |
| } |
| |
| /* |
| * On STM32WBAX series, there is no bit in BCDR register to enable RTC. |
| * Enabling RTC is done directly via the RCC APB register bit. |
| */ |
| #ifndef CONFIG_SOC_SERIES_STM32WBAX |
| z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
| |
| LL_RCC_EnableRTC(); |
| |
| z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); |
| #endif /* CONFIG_SOC_SERIES_STM32WBAX */ |
| |
| err = rtc_stm32_configure(dev); |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| #ifdef CONFIG_RTC_ALARM |
| rtc_stm32_irq_config(dev); |
| |
| ll_func_exti_enable_rtc_alarm_it(RTC_STM32_EXTI_LINE); |
| |
| k_mutex_lock(&data->lock, K_FOREVER); |
| memset(&(data->rtc_alrm_a), 0, sizeof(struct rtc_stm32_alrm)); |
| memset(&(data->rtc_alrm_b), 0, sizeof(struct rtc_stm32_alrm)); |
| k_mutex_unlock(&data->lock); |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| return err; |
| } |
| |
| static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| LL_RTC_TimeTypeDef rtc_time; |
| LL_RTC_DateTypeDef rtc_date; |
| uint32_t real_year = timeptr->tm_year + TM_YEAR_REF; |
| int err = 0; |
| |
| if (real_year < RTC_YEAR_REF) { |
| /* RTC does not support years before 2000 */ |
| return -EINVAL; |
| } |
| |
| if (timeptr->tm_wday == -1) { |
| /* day of the week is expected */ |
| return -EINVAL; |
| } |
| |
| err = k_mutex_lock(&data->lock, K_NO_WAIT); |
| if (err) { |
| return err; |
| } |
| |
| LOG_DBG("Setting clock"); |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| /* Enter Init mode inside the LL_RTC_Time and Date Init functions */ |
| rtc_time.Hours = bin2bcd(timeptr->tm_hour); |
| rtc_time.Minutes = bin2bcd(timeptr->tm_min); |
| rtc_time.Seconds = bin2bcd(timeptr->tm_sec); |
| LL_RTC_TIME_Init(RTC, LL_RTC_FORMAT_BCD, &rtc_time); |
| |
| /* Set Date after Time to be sure the DR is correctly updated on stm32F2 serie. */ |
| rtc_date.Year = bin2bcd((real_year - RTC_YEAR_REF)); |
| rtc_date.Month = bin2bcd((timeptr->tm_mon + 1)); |
| rtc_date.Day = bin2bcd(timeptr->tm_mday); |
| rtc_date.WeekDay = ((timeptr->tm_wday == 0) ? (LL_RTC_WEEKDAY_SUNDAY) : (timeptr->tm_wday)); |
| /* WeekDay sunday (tm_wday = 0) is not represented by the same value in hardware, |
| * all the other values are consistent with what is expected by hardware. |
| */ |
| LL_RTC_DATE_Init(RTC, LL_RTC_FORMAT_BCD, &rtc_date); |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| #ifdef CONFIG_SOC_SERIES_STM32F2X |
| /* |
| * Because stm32F2 serie has no shadow registers, |
| * wait until TR and DR registers are synchronised : flag RS |
| */ |
| while (LL_RTC_IsActiveFlag_RS(RTC) != 1) { |
| ; |
| } |
| #endif /* CONFIG_SOC_SERIES_STM32F2X */ |
| |
| k_mutex_unlock(&data->lock); |
| |
| LOG_DBG("Calendar set : %d/%d/%d - %dh%dm%ds", |
| LL_RTC_DATE_GetDay(RTC), |
| LL_RTC_DATE_GetMonth(RTC), |
| LL_RTC_DATE_GetYear(RTC), |
| LL_RTC_TIME_GetHour(RTC), |
| LL_RTC_TIME_GetMinute(RTC), |
| LL_RTC_TIME_GetSecond(RTC) |
| ); |
| |
| return err; |
| } |
| |
| static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| |
| uint32_t rtc_date, rtc_time; |
| |
| #if HW_SUBSECOND_SUPPORT |
| const struct rtc_stm32_config *cfg = dev->config; |
| uint32_t rtc_subsecond; |
| #endif /* HW_SUBSECOND_SUPPORT */ |
| |
| if (timeptr == NULL) { |
| LOG_ERR("NULL rtc_time pointer"); |
| return -EINVAL; |
| } |
| |
| int err = k_mutex_lock(&data->lock, K_NO_WAIT); |
| |
| if (err) { |
| return err; |
| } |
| |
| if (!LL_RTC_IsActiveFlag_INITS(RTC)) { |
| /* INITS flag is set when the calendar has been initialiazed. This flag is |
| * reset only on backup domain reset, so it can be read after a system |
| * reset to check if the calendar has been initialized. |
| */ |
| k_mutex_unlock(&data->lock); |
| return -ENODATA; |
| } |
| |
| do { |
| /* read date, time and subseconds and relaunch if a day increment occurred |
| * while doing so as it will result in an erroneous result otherwise |
| */ |
| rtc_date = LL_RTC_DATE_Get(RTC); |
| do { |
| /* read time and subseconds and relaunch if a second increment occurred |
| * while doing so as it will result in an erroneous result otherwise |
| */ |
| rtc_time = LL_RTC_TIME_Get(RTC); |
| #if HW_SUBSECOND_SUPPORT |
| rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC); |
| #endif /* HW_SUBSECOND_SUPPORT */ |
| } while (rtc_time != LL_RTC_TIME_Get(RTC)); |
| } while (rtc_date != LL_RTC_DATE_Get(RTC)); |
| |
| k_mutex_unlock(&data->lock); |
| |
| /* tm_year is the value since 1900 and Rtc year is from 2000 */ |
| timeptr->tm_year = bcd2bin(__LL_RTC_GET_YEAR(rtc_date)) + (RTC_YEAR_REF - TM_YEAR_REF); |
| /* tm_mon allowed values are 0-11 */ |
| timeptr->tm_mon = bcd2bin(__LL_RTC_GET_MONTH(rtc_date)) - 1; |
| timeptr->tm_mday = bcd2bin(__LL_RTC_GET_DAY(rtc_date)); |
| |
| int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date); |
| |
| if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) { |
| /* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */ |
| timeptr->tm_wday = 0; |
| } else { |
| /* all other values are consistent between hardware and rtc_time structure */ |
| timeptr->tm_wday = hw_wday; |
| } |
| |
| timeptr->tm_hour = bcd2bin(__LL_RTC_GET_HOUR(rtc_time)); |
| timeptr->tm_min = bcd2bin(__LL_RTC_GET_MINUTE(rtc_time)); |
| timeptr->tm_sec = bcd2bin(__LL_RTC_GET_SECOND(rtc_time)); |
| |
| #if HW_SUBSECOND_SUPPORT |
| uint64_t temp = ((uint64_t)(cfg->sync_prescaler - rtc_subsecond)) * 1000000000L; |
| |
| timeptr->tm_nsec = temp / (cfg->sync_prescaler + 1); |
| #else |
| timeptr->tm_nsec = 0; |
| #endif |
| /* unknown values */ |
| timeptr->tm_yday = -1; |
| timeptr->tm_isdst = -1; |
| |
| /* __LL_RTC_GET_YEAR(rtc_date)is the real year (from 2000) */ |
| LOG_DBG("Calendar get : %d/%d/%d - %dh%dm%ds", |
| timeptr->tm_mday, |
| timeptr->tm_mon, |
| __LL_RTC_GET_YEAR(rtc_date), |
| timeptr->tm_hour, |
| timeptr->tm_min, |
| timeptr->tm_sec); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_RTC_ALARM |
| static void rtc_stm32_init_ll_alrm_struct(LL_RTC_AlarmTypeDef *p_rtc_alarm, |
| const struct rtc_time *timeptr, uint16_t mask) |
| { |
| LL_RTC_TimeTypeDef *p_rtc_alrm_time = &(p_rtc_alarm->AlarmTime); |
| uint32_t ll_mask = 0; |
| |
| /* |
| * STM32 RTC Alarm LL mask should be set for all fields beyond the broadest one |
| * that's being matched with RTC calendar to trigger alarm periodically, |
| * the opposite of Zephyr RTC Alarm mask which is set for active fields. |
| */ |
| ll_mask = RTC_STM32_ALRM_MASK_ALL; |
| |
| if (mask & RTC_ALARM_TIME_MASK_SECOND) { |
| ll_mask &= ~RTC_STM32_ALRM_MASK_SECONDS; |
| p_rtc_alrm_time->Seconds = bin2bcd(timeptr->tm_sec); |
| } |
| |
| if (mask & RTC_ALARM_TIME_MASK_MINUTE) { |
| ll_mask &= ~RTC_STM32_ALRM_MASK_MINUTES; |
| p_rtc_alrm_time->Minutes = bin2bcd(timeptr->tm_min); |
| } |
| |
| if (mask & RTC_ALARM_TIME_MASK_HOUR) { |
| ll_mask &= ~RTC_STM32_ALRM_MASK_HOURS; |
| p_rtc_alrm_time->Hours = bin2bcd(timeptr->tm_hour); |
| } |
| |
| if (mask & RTC_ALARM_TIME_MASK_WEEKDAY) { |
| /* the Alarm Mask field compares with the day of the week */ |
| ll_mask &= ~RTC_STM32_ALRM_MASK_DATEWEEKDAY; |
| p_rtc_alarm->AlarmDateWeekDaySel = RTC_STM32_ALRM_DATEWEEKDAYSEL_WEEKDAY; |
| |
| if (timeptr->tm_wday == 0) { |
| /* sunday (tm_wday = 0) is not represented by the same value in hardware */ |
| p_rtc_alarm->AlarmDateWeekDay = LL_RTC_WEEKDAY_SUNDAY; |
| } else { |
| /* all the other values are consistent with what is expected by hardware */ |
| p_rtc_alarm->AlarmDateWeekDay = bin2bcd(timeptr->tm_wday); |
| } |
| |
| } else if (mask & RTC_ALARM_TIME_MASK_MONTHDAY) { |
| /* the Alarm compares with the day number & ignores the day of the week */ |
| ll_mask &= ~RTC_STM32_ALRM_MASK_DATEWEEKDAY; |
| p_rtc_alarm->AlarmDateWeekDaySel = RTC_STM32_ALRM_DATEWEEKDAYSEL_DATE; |
| p_rtc_alarm->AlarmDateWeekDay = bin2bcd(timeptr->tm_mday); |
| } |
| |
| p_rtc_alrm_time->TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24; |
| |
| p_rtc_alarm->AlarmMask = ll_mask; |
| } |
| |
| static inline void rtc_stm32_get_ll_alrm_time(uint16_t id, struct rtc_time *timeptr) |
| { |
| if (id == RTC_STM32_ALRM_A) { |
| timeptr->tm_sec = bcd2bin(LL_RTC_ALMA_GetSecond(RTC)); |
| timeptr->tm_min = bcd2bin(LL_RTC_ALMA_GetMinute(RTC)); |
| timeptr->tm_hour = bcd2bin(LL_RTC_ALMA_GetHour(RTC)); |
| timeptr->tm_wday = bcd2bin(LL_RTC_ALMA_GetWeekDay(RTC)); |
| timeptr->tm_mday = bcd2bin(LL_RTC_ALMA_GetDay(RTC)); |
| return; |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| timeptr->tm_sec = bcd2bin(LL_RTC_ALMB_GetSecond(RTC)); |
| timeptr->tm_min = bcd2bin(LL_RTC_ALMB_GetMinute(RTC)); |
| timeptr->tm_hour = bcd2bin(LL_RTC_ALMB_GetHour(RTC)); |
| timeptr->tm_wday = bcd2bin(LL_RTC_ALMB_GetWeekDay(RTC)); |
| timeptr->tm_mday = bcd2bin(LL_RTC_ALMB_GetDay(RTC)); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| } |
| |
| static inline uint16_t rtc_stm32_get_ll_alrm_mask(uint16_t id) |
| { |
| uint32_t ll_alarm_mask = 0; |
| uint16_t zephyr_alarm_mask = 0; |
| uint32_t week_day = 0; |
| |
| /* |
| * STM32 RTC Alarm LL mask is set for all fields beyond the broadest one |
| * that's being matched with RTC calendar to trigger alarm periodically, |
| * the opposite of Zephyr RTC Alarm mask which is set for active fields. |
| */ |
| |
| if (id == RTC_STM32_ALRM_A) { |
| ll_alarm_mask = LL_RTC_ALMA_GetMask(RTC); |
| } |
| |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| ll_alarm_mask = LL_RTC_ALMB_GetMask(RTC); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| |
| if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_SECONDS) == 0x0) { |
| zephyr_alarm_mask = RTC_ALARM_TIME_MASK_SECOND; |
| } |
| if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_MINUTES) == 0x0) { |
| zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_MINUTE; |
| } |
| if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_HOURS) == 0x0) { |
| zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_HOUR; |
| } |
| if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_DATEWEEKDAY) == 0x0) { |
| if (id == RTC_STM32_ALRM_A) { |
| week_day = LL_RTC_ALMA_GetWeekDay(RTC); |
| } |
| #if RTC_STM32_ALARMS_COUNT > 1 |
| if (id == RTC_STM32_ALRM_B) { |
| week_day = LL_RTC_ALMB_GetWeekDay(RTC); |
| } |
| #endif /* RTC_STM32_ALARMS_COUNT > 1 */ |
| if (week_day) { |
| zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_WEEKDAY; |
| } else { |
| zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_MONTHDAY; |
| } |
| } |
| |
| return zephyr_alarm_mask; |
| } |
| |
| static int rtc_stm32_alarm_get_supported_fields(const struct device *dev, uint16_t id, |
| uint16_t *mask) |
| { |
| if (mask == NULL) { |
| LOG_ERR("NULL mask pointer"); |
| return -EINVAL; |
| } |
| |
| if ((id != RTC_STM32_ALRM_A) && (id != RTC_STM32_ALRM_B)) { |
| LOG_ERR("invalid alarm ID %d", id); |
| return -EINVAL; |
| } |
| |
| *mask = (uint16_t)RTC_STM32_SUPPORTED_ALARM_FIELDS; |
| |
| return 0; |
| } |
| |
| static int rtc_stm32_alarm_get_time(const struct device *dev, uint16_t id, uint16_t *mask, |
| struct rtc_time *timeptr) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| struct rtc_stm32_alrm *p_rtc_alrm; |
| LL_RTC_AlarmTypeDef *p_ll_rtc_alarm; |
| LL_RTC_TimeTypeDef *p_ll_rtc_alrm_time; |
| int err = 0; |
| |
| if ((mask == NULL) || (timeptr == NULL)) { |
| LOG_ERR("NULL pointer"); |
| return -EINVAL; |
| } |
| |
| k_mutex_lock(&data->lock, K_FOREVER); |
| |
| if (id == RTC_STM32_ALRM_A) { |
| p_rtc_alrm = &(data->rtc_alrm_a); |
| } else if (id == RTC_STM32_ALRM_B) { |
| p_rtc_alrm = &(data->rtc_alrm_b); |
| } else { |
| LOG_ERR("invalid alarm ID %d", id); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| p_ll_rtc_alarm = &(p_rtc_alrm->ll_rtc_alrm); |
| p_ll_rtc_alrm_time = &(p_ll_rtc_alarm->AlarmTime); |
| |
| memset(timeptr, -1, sizeof(struct rtc_time)); |
| |
| rtc_stm32_get_ll_alrm_time(id, timeptr); |
| |
| p_rtc_alrm->user_mask = rtc_stm32_get_ll_alrm_mask(id); |
| |
| *mask = p_rtc_alrm->user_mask; |
| |
| LOG_DBG("get alarm: mday = %d, wday = %d, hour = %d, min = %d, sec = %d, " |
| "mask = 0x%04x", timeptr->tm_mday, timeptr->tm_wday, timeptr->tm_hour, |
| timeptr->tm_min, timeptr->tm_sec, *mask); |
| |
| unlock: |
| k_mutex_unlock(&data->lock); |
| |
| return err; |
| } |
| |
| static int rtc_stm32_alarm_set_time(const struct device *dev, uint16_t id, uint16_t mask, |
| const struct rtc_time *timeptr) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| struct rtc_stm32_alrm *p_rtc_alrm; |
| LL_RTC_AlarmTypeDef *p_ll_rtc_alarm; |
| LL_RTC_TimeTypeDef *p_ll_rtc_alrm_time; |
| int err = 0; |
| |
| k_mutex_lock(&data->lock, K_FOREVER); |
| |
| if (id == RTC_STM32_ALRM_A) { |
| p_rtc_alrm = &(data->rtc_alrm_a); |
| } else if (id == RTC_STM32_ALRM_B) { |
| p_rtc_alrm = &(data->rtc_alrm_b); |
| } else { |
| LOG_ERR("invalid alarm ID %d", id); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| if ((mask == 0) && (timeptr == NULL)) { |
| memset(&(p_rtc_alrm->ll_rtc_alrm), 0, sizeof(LL_RTC_AlarmTypeDef)); |
| p_rtc_alrm->user_callback = NULL; |
| p_rtc_alrm->user_data = NULL; |
| p_rtc_alrm->is_pending = false; |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| if (rtc_stm32_is_active_alarm(RTC, id)) { |
| LL_RTC_DisableWriteProtection(RTC); |
| rtc_stm32_disable_alarm(RTC, id); |
| rtc_stm32_disable_interrupt_alarm(RTC, id); |
| LL_RTC_EnableWriteProtection(RTC); |
| } |
| LOG_DBG("Alarm %d has been disabled", id); |
| goto disable_bkup_access; |
| } |
| |
| if ((mask & ~RTC_STM32_SUPPORTED_ALARM_FIELDS) != 0) { |
| LOG_ERR("unsupported alarm %d field mask 0x%04x", id, mask); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| if (timeptr == NULL) { |
| LOG_ERR("timeptr is invalid"); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| if (!rtc_utils_validate_rtc_time(timeptr, mask)) { |
| LOG_DBG("One or multiple time values are invalid"); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| p_ll_rtc_alarm = &(p_rtc_alrm->ll_rtc_alrm); |
| p_ll_rtc_alrm_time = &(p_ll_rtc_alarm->AlarmTime); |
| |
| memset(p_ll_rtc_alrm_time, 0, sizeof(LL_RTC_TimeTypeDef)); |
| rtc_stm32_init_ll_alrm_struct(p_ll_rtc_alarm, timeptr, mask); |
| |
| p_rtc_alrm->user_mask = mask; |
| |
| LOG_DBG("set alarm %d : second = %d, min = %d, hour = %d," |
| " wday = %d, mday = %d, mask = 0x%04x", |
| id, timeptr->tm_sec, timeptr->tm_min, timeptr->tm_hour, |
| timeptr->tm_wday, timeptr->tm_mday, mask); |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| /* Disable the write protection for RTC registers */ |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| /* Disable ALARM so that the RTC_ISR_ALRAWF/RTC_ISR_ALRBWF is 0 */ |
| rtc_stm32_disable_alarm(RTC, id); |
| rtc_stm32_disable_interrupt_alarm(RTC, id); |
| |
| #ifdef RTC_ISR_ALRAWF |
| if (id == RTC_STM32_ALRM_A) { |
| /* Wait till RTC ALRAWF flag is set before writing to RTC registers */ |
| while (!LL_RTC_IsActiveFlag_ALRAW(RTC)) { |
| ; |
| } |
| } |
| #endif /* RTC_ISR_ALRAWF */ |
| |
| #ifdef RTC_ISR_ALRBWF |
| if (id == RTC_STM32_ALRM_B) { |
| /* Wait till RTC ALRBWF flag is set before writing to RTC registers */ |
| while (!LL_RTC_IsActiveFlag_ALRBW(RTC)) { |
| ; |
| } |
| } |
| #endif /* RTC_ISR_ALRBWF */ |
| |
| /* init Alarm */ |
| /* write protection is disabled & enabled again inside the LL_RTC_ALMx_Init function */ |
| if (rtc_stm32_init_alarm(RTC, LL_RTC_FORMAT_BCD, p_ll_rtc_alarm, id) != SUCCESS) { |
| LOG_ERR("Could not initialize Alarm %d", id); |
| err = -ECANCELED; |
| goto disable_bkup_access; |
| } |
| |
| /* Disable the write protection for RTC registers */ |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| /* Enable Alarm */ |
| rtc_stm32_enable_alarm(RTC, id); |
| /* Clear Alarm flag */ |
| rtc_stm32_clear_alarm_flag(RTC, id); |
| /* Enable Alarm IT */ |
| rtc_stm32_enable_interrupt_alarm(RTC, id); |
| |
| ll_func_exti_enable_rtc_alarm_it(RTC_STM32_EXTI_LINE); |
| |
| /* Enable the write protection for RTC registers */ |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| disable_bkup_access: |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| unlock: |
| k_mutex_unlock(&data->lock); |
| |
| if (id == RTC_STM32_ALRM_A) { |
| LOG_DBG("Alarm A : %dh%dm%ds mask = 0x%x", |
| LL_RTC_ALMA_GetHour(RTC), |
| LL_RTC_ALMA_GetMinute(RTC), |
| LL_RTC_ALMA_GetSecond(RTC), |
| LL_RTC_ALMA_GetMask(RTC)); |
| } |
| #ifdef RTC_ALARM_B |
| if (id == RTC_STM32_ALRM_B) { |
| LOG_DBG("Alarm B : %dh%dm%ds mask = 0x%x", |
| LL_RTC_ALMB_GetHour(RTC), |
| LL_RTC_ALMB_GetMinute(RTC), |
| LL_RTC_ALMB_GetSecond(RTC), |
| LL_RTC_ALMB_GetMask(RTC)); |
| } |
| #endif /* #ifdef RTC_ALARM_B */ |
| return err; |
| } |
| |
| static int rtc_stm32_alarm_set_callback(const struct device *dev, uint16_t id, |
| rtc_alarm_callback callback, void *user_data) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| struct rtc_stm32_alrm *p_rtc_alrm; |
| int err = 0; |
| |
| k_mutex_lock(&data->lock, K_FOREVER); |
| |
| if (id == RTC_STM32_ALRM_A) { |
| p_rtc_alrm = &(data->rtc_alrm_a); |
| } else if (id == RTC_STM32_ALRM_B) { |
| p_rtc_alrm = &(data->rtc_alrm_b); |
| } else { |
| LOG_ERR("invalid alarm ID %d", id); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| /* Passing the callback function and userdata filled by the user */ |
| p_rtc_alrm->user_callback = callback; |
| p_rtc_alrm->user_data = user_data; |
| |
| unlock: |
| k_mutex_unlock(&data->lock); |
| |
| return err; |
| } |
| |
| static int rtc_stm32_alarm_is_pending(const struct device *dev, uint16_t id) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| struct rtc_stm32_alrm *p_rtc_alrm; |
| int ret = 0; |
| |
| k_mutex_lock(&data->lock, K_FOREVER); |
| |
| if (id == RTC_STM32_ALRM_A) { |
| p_rtc_alrm = &(data->rtc_alrm_a); |
| } else if (id == RTC_STM32_ALRM_B) { |
| p_rtc_alrm = &(data->rtc_alrm_b); |
| } else { |
| LOG_ERR("invalid alarm ID %d", id); |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| __disable_irq(); |
| ret = p_rtc_alrm->is_pending ? 1 : 0; |
| p_rtc_alrm->is_pending = false; |
| __enable_irq(); |
| |
| unlock: |
| k_mutex_unlock(&data->lock); |
| return ret; |
| } |
| #endif /* CONFIG_RTC_ALARM */ |
| |
| #ifdef CONFIG_RTC_CALIBRATION |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT)) |
| static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration) |
| { |
| ARG_UNUSED(dev); |
| |
| /* Note : calibration is considered here to be ppb value to apply |
| * on clock period (not frequency) but with an opposite sign |
| */ |
| |
| if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) { |
| /* out of supported range */ |
| return -EINVAL; |
| } |
| |
| int32_t nb_pulses = PPB_TO_NB_PULSES(calibration); |
| |
| /* we tested calibration against supported range |
| * so theoretically nb_pulses is also within range |
| */ |
| __ASSERT_NO_MSG(nb_pulses <= MAX_CALP); |
| __ASSERT_NO_MSG(nb_pulses >= -MAX_CALM); |
| |
| uint32_t calp, calm; |
| |
| if (nb_pulses > 0) { |
| calp = LL_RTC_CALIB_INSERTPULSE_SET; |
| calm = MAX_CALP - nb_pulses; |
| } else { |
| calp = LL_RTC_CALIB_INSERTPULSE_NONE; |
| calm = -nb_pulses; |
| } |
| |
| /* wait for recalibration to be ok if a previous recalibration occurred */ |
| if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) { |
| return -EIO; |
| } |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm); |
| |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| #if RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* RTC_STM32_BACKUP_DOMAIN_WRITE_PROTECTION */ |
| |
| return 0; |
| } |
| |
| static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration) |
| { |
| ARG_UNUSED(dev); |
| |
| uint32_t calr = sys_read32((mem_addr_t) &RTC->CALR); |
| |
| bool calp_enabled = READ_BIT(calr, RTC_CALR_CALP); |
| uint32_t calm = READ_BIT(calr, RTC_CALR_CALM); |
| |
| int32_t nb_pulses = -((int32_t) calm); |
| |
| if (calp_enabled) { |
| nb_pulses += MAX_CALP; |
| } |
| |
| *calibration = NB_PULSES_TO_PPB(nb_pulses); |
| |
| return 0; |
| } |
| #endif |
| #endif /* CONFIG_RTC_CALIBRATION */ |
| |
| static const struct rtc_driver_api rtc_stm32_driver_api = { |
| .set_time = rtc_stm32_set_time, |
| .get_time = rtc_stm32_get_time, |
| #ifdef CONFIG_RTC_ALARM |
| .alarm_get_supported_fields = rtc_stm32_alarm_get_supported_fields, |
| .alarm_set_time = rtc_stm32_alarm_set_time, |
| .alarm_get_time = rtc_stm32_alarm_get_time, |
| .alarm_set_callback = rtc_stm32_alarm_set_callback, |
| .alarm_is_pending = rtc_stm32_alarm_is_pending, |
| #endif /* CONFIG_RTC_ALARM */ |
| #ifdef CONFIG_RTC_CALIBRATION |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT)) |
| .set_calibration = rtc_stm32_set_calibration, |
| .get_calibration = rtc_stm32_get_calibration, |
| #else |
| #error RTC calibration for devices without smooth calibration feature is not supported yet |
| #endif |
| #endif /* CONFIG_RTC_CALIBRATION */ |
| }; |
| |
| static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0); |
| |
| BUILD_ASSERT(DT_INST_CLOCKS_HAS_IDX(0, 1), "RTC source clock not defined in the device tree"); |
| |
| static const struct rtc_stm32_config rtc_config = { |
| #if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI |
| /* prescaler values for LSI @ 32 KHz */ |
| .async_prescaler = 0x7F, |
| .sync_prescaler = 0x00F9, |
| #else /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE */ |
| /* prescaler values for LSE @ 32768 Hz */ |
| .async_prescaler = 0x7F, |
| .sync_prescaler = 0x00FF, |
| #endif |
| .pclken = rtc_clk, |
| #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) |
| .cal_out_freq = _CONCAT(_CONCAT(LL_RTC_CALIB_OUTPUT_, DT_INST_PROP(0, calib_out_freq)), HZ), |
| #endif |
| }; |
| |
| static struct rtc_stm32_data rtc_data; |
| |
| DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL, &rtc_data, &rtc_config, PRE_KERNEL_1, |
| CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api); |