blob: 2d14dfad1a3353e7fd7f37af09fd6f1665be77fb [file] [log] [blame]
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/ztest.h>
#define STACK_SIZE (1024 + CONFIG_TEST_EXTRA_STACK_SIZE)
#define PIPE_LEN (4 * 16)
#define BYTES_TO_WRITE 16
#define BYTES_TO_READ BYTES_TO_WRITE
K_HEAP_DEFINE(mpool, PIPE_LEN * 1);
static ZTEST_DMEM unsigned char __aligned(4) data[] =
"abcd1234$%^&PIPEefgh5678!/?*EPIPijkl9012[]<>PEPImnop3456{}()IPEP";
BUILD_ASSERT(sizeof(data) >= PIPE_LEN);
/**TESTPOINT: init via K_PIPE_DEFINE*/
K_PIPE_DEFINE(kpipe, PIPE_LEN, 4);
K_PIPE_DEFINE(khalfpipe, (PIPE_LEN / 2), 4);
K_PIPE_DEFINE(kpipe1, PIPE_LEN, 4);
K_PIPE_DEFINE(pipe_test_alloc, PIPE_LEN, 4);
K_PIPE_DEFINE(ksmallpipe, 10, 2);
struct k_pipe pipe, pipe1;
K_THREAD_STACK_DEFINE(tstack, STACK_SIZE);
K_THREAD_STACK_DEFINE(tstack1, STACK_SIZE);
K_THREAD_STACK_DEFINE(tstack2, STACK_SIZE);
struct k_thread tdata;
struct k_thread tdata1;
struct k_thread tdata2;
K_SEM_DEFINE(end_sema, 0, 1);
#ifdef CONFIG_64BIT
#define SZ 256
#else
#define SZ 128
#endif
K_HEAP_DEFINE(test_pool, SZ * 4);
struct mem_block {
void *data;
};
static void tpipe_put(struct k_pipe *ppipe, k_timeout_t timeout)
{
size_t to_wt, wt_byte = 0;
for (int i = 0; i < PIPE_LEN; i += wt_byte) {
/**TESTPOINT: pipe put*/
to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ?
BYTES_TO_WRITE : (PIPE_LEN - i);
zassert_false(k_pipe_put(ppipe, &data[i], to_wt,
&wt_byte, 1, timeout), NULL);
zassert_true(wt_byte == to_wt || wt_byte == 1);
}
}
static void tpipe_get(struct k_pipe *ppipe, k_timeout_t timeout)
{
unsigned char rx_data[PIPE_LEN];
size_t to_rd, rd_byte = 0;
/*get pipe data from "pipe_put"*/
for (int i = 0; i < PIPE_LEN; i += rd_byte) {
/**TESTPOINT: pipe get*/
to_rd = (PIPE_LEN - i) >= BYTES_TO_READ ?
BYTES_TO_READ : (PIPE_LEN - i);
zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
&rd_byte, 1, timeout), NULL);
zassert_true(rd_byte == to_rd || rd_byte == 1);
}
for (int i = 0; i < PIPE_LEN; i++) {
zassert_equal(rx_data[i], data[i]);
}
}
static void tThread_entry(void *p1, void *p2, void *p3)
{
tpipe_get((struct k_pipe *)p1, K_FOREVER);
k_sem_give(&end_sema);
tpipe_put((struct k_pipe *)p1, K_NO_WAIT);
k_sem_give(&end_sema);
}
static void tpipe_thread_thread(struct k_pipe *ppipe)
{
/**TESTPOINT: thread-thread data passing via pipe*/
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
tThread_entry, ppipe, NULL, NULL,
K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
tpipe_put(ppipe, K_NO_WAIT);
k_sem_take(&end_sema, K_FOREVER);
k_sem_take(&end_sema, K_FOREVER);
tpipe_get(ppipe, K_FOREVER);
/* clear the spawned thread avoid side effect */
k_thread_abort(tid);
}
static void tpipe_kthread_to_kthread(struct k_pipe *ppipe)
{
/**TESTPOINT: thread-thread data passing via pipe*/
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
tThread_entry, ppipe, NULL, NULL,
K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
tpipe_put(ppipe, K_NO_WAIT);
k_sem_take(&end_sema, K_FOREVER);
k_sem_take(&end_sema, K_FOREVER);
tpipe_get(ppipe, K_FOREVER);
/* clear the spawned thread avoid side effect */
k_thread_abort(tid);
}
static void tpipe_put_no_wait(struct k_pipe *ppipe)
{
size_t to_wt, wt_byte = 0;
for (int i = 0; i < PIPE_LEN; i += wt_byte) {
/**TESTPOINT: pipe put*/
to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ?
BYTES_TO_WRITE : (PIPE_LEN - i);
zassert_false(k_pipe_put(ppipe, &data[i], to_wt,
&wt_byte, 1, K_NO_WAIT), NULL);
zassert_true(wt_byte == to_wt || wt_byte == 1);
}
}
static void tpipe_put_small_size(struct k_pipe *ppipe, k_timeout_t timeout)
{
size_t to_wt, wt_byte = 0;
for (int i = 0; i < PIPE_LEN; i += wt_byte) {
/**TESTPOINT: pipe put*/
to_wt = 15;
zassert_false(k_pipe_put(ppipe, &data[i], to_wt, &wt_byte,
1, timeout) != 0, NULL);
}
}
static void tpipe_get_small_size(struct k_pipe *ppipe, k_timeout_t timeout)
{
unsigned char rx_data[PIPE_LEN];
size_t to_rd, rd_byte = 0;
/*get pipe data from "pipe_put"*/
for (int i = 0; i < PIPE_LEN; i += rd_byte) {
/**TESTPOINT: pipe get*/
to_rd = 15;
zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
&rd_byte, 1, timeout), NULL);
}
}
static void tpipe_get_large_size(struct k_pipe *ppipe, k_timeout_t timeout)
{
unsigned char rx_data[PIPE_LEN];
size_t to_rd, rd_byte = 0;
/*get pipe data from "pipe_put"*/
for (int i = 0; i < PIPE_LEN; i += rd_byte) {
/**TESTPOINT: pipe get*/
to_rd = (PIPE_LEN - i) >= 128 ?
128 : (PIPE_LEN - i);
zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
&rd_byte, 1, timeout), NULL);
}
}
/**
* @brief Test Initialization and buffer allocation of pipe,
* with various parameters
* @see k_pipe_alloc_init(), k_pipe_cleanup()
*/
ZTEST(pipe_api_1cpu, test_pipe_alloc)
{
int ret;
zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN));
tpipe_kthread_to_kthread(&pipe_test_alloc);
k_pipe_cleanup(&pipe_test_alloc);
zassert_false(k_pipe_alloc_init(&pipe_test_alloc, 0));
k_pipe_cleanup(&pipe_test_alloc);
ret = k_pipe_alloc_init(&pipe_test_alloc, 2048);
zassert_true(ret == -ENOMEM,
"resource pool max block size is not smaller then requested buffer");
}
static void thread_for_get_forever(void *p1, void *p2, void *p3)
{
tpipe_get((struct k_pipe *)p1, K_FOREVER);
}
ZTEST(pipe_api, test_pipe_cleanup)
{
int ret;
zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN));
/**TESTPOINT: test if a dynamically allocated buffer can be freed*/
ret = k_pipe_cleanup(&pipe_test_alloc);
zassert_true((ret == 0) && (pipe_test_alloc.buffer == NULL),
"Failed to free buffer with k_pipe_cleanup().");
/**TESTPOINT: nothing to do with k_pipe_cleanup() for static buffer in pipe*/
ret = k_pipe_cleanup(&kpipe);
zassert_true((ret == 0) && (kpipe.buffer != NULL),
"Static buffer should not be freed.");
zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN));
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
thread_for_get_forever, &pipe_test_alloc, NULL,
NULL, K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
k_sleep(K_MSEC(100));
ret = k_pipe_cleanup(&pipe_test_alloc);
zassert_true(ret == -EAGAIN, "k_pipe_cleanup() should not return with 0.");
k_thread_abort(tid);
}
static void thread_handler(void *p1, void *p2, void *p3)
{
tpipe_put_no_wait((struct k_pipe *)p1);
k_sem_give(&end_sema);
}
/**
* @addtogroup kernel_pipe_tests
* @{
*/
/**
* @brief Test pipe data passing between threads
*
* @ingroup kernel_pipe_tests
*
* @details
* Test Objective:
* - Verify data passing with "pipe put/get" APIs between
* threads
*
* Testing techniques:
* - function and block box testing,Interface testing,
* Dynamic analysis and testing.
*
* Prerequisite Conditions:
* - CONFIG_TEST_USERSPACE.
*
* Input Specifications:
* - N/A
*
* Test Procedure:
* -# Initialize a pipe, which is defined at run time.
* -# Create a thread (A).
* -# In A thread, check if it can get data, which is sent
* by main thread via the pipe.
* -# In A thread, send data to main thread via the pipe.
* -# In main thread, send data to A thread via the pipe.
* -# In main thread, check if it can get data, which is sent
* by A thread.
* -# Do the same testing with a pipe, which is defined at compile
* time
*
* Expected Test Result:
* - Data can be sent/received between threads.
*
* Pass/Fail Criteria:
* - Successful if check points in test procedure are all passed, otherwise failure.
*
* Assumptions and Constraints:
* - N/A
*
* @see k_pipe_init(), k_pipe_put(), #K_PIPE_DEFINE(x)
*/
ZTEST(pipe_api_1cpu, test_pipe_thread2thread)
{
/**TESTPOINT: test k_pipe_init pipe*/
k_pipe_init(&pipe, data, PIPE_LEN);
tpipe_thread_thread(&pipe);
/**TESTPOINT: test K_PIPE_DEFINE pipe*/
tpipe_thread_thread(&kpipe);
}
#ifdef CONFIG_USERSPACE
/**
* @brief Test data passing using pipes between user threads
* @see k_pipe_init(), k_pipe_put(), #K_PIPE_DEFINE(x)
*/
ZTEST_USER(pipe_api_1cpu, test_pipe_user_thread2thread)
{
/**TESTPOINT: test k_object_alloc pipe*/
struct k_pipe *p = k_object_alloc(K_OBJ_PIPE);
zassert_true(p != NULL);
/**TESTPOINT: test k_pipe_alloc_init*/
zassert_false(k_pipe_alloc_init(p, PIPE_LEN));
tpipe_thread_thread(p);
}
#endif
/**
* @brief Test resource pool free
* @see k_heap_alloc()
*/
#ifdef CONFIG_USERSPACE
ZTEST(pipe_api, test_resource_pool_auto_free)
{
/* Pool has 2 blocks, both should succeed if kernel object and pipe
* buffer are auto-freed when the allocating threads exit
*/
zassert_true(k_heap_alloc(&test_pool, 64, K_NO_WAIT) != NULL);
zassert_true(k_heap_alloc(&test_pool, 64, K_NO_WAIT) != NULL);
}
#endif
static void tThread_half_pipe_put(void *p1, void *p2, void *p3)
{
tpipe_put((struct k_pipe *)p1, K_FOREVER);
}
static void tThread_half_pipe_get(void *p1, void *p2, void *p3)
{
tpipe_get((struct k_pipe *)p1, K_FOREVER);
}
/**
* @brief Test put/get with smaller pipe buffer
* @see k_pipe_put(), k_pipe_get()
*/
ZTEST(pipe_api, test_half_pipe_put_get)
{
unsigned char rx_data[PIPE_LEN];
size_t rd_byte = 0;
int ret;
/* TESTPOINT: min_xfer > bytes_to_read */
ret = k_pipe_put(&kpipe, &rx_data[0], 1, &rd_byte, 24, K_NO_WAIT);
zassert_true(ret == -EINVAL);
ret = k_pipe_put(&kpipe, &rx_data[0], 24, NULL, 1, K_NO_WAIT);
zassert_true(ret == -EINVAL);
/**TESTPOINT: thread-thread data passing via pipe*/
k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
tThread_half_pipe_get, &khalfpipe,
NULL, NULL, K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
k_tid_t tid2 = k_thread_create(&tdata2, tstack2, STACK_SIZE,
tThread_half_pipe_get, &khalfpipe,
NULL, NULL, K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
k_sleep(K_MSEC(100));
tpipe_put_small_size(&khalfpipe, K_NO_WAIT);
/* clear the spawned thread avoid side effect */
k_thread_abort(tid1);
k_thread_abort(tid2);
}
ZTEST(pipe_api, test_pipe_get_put)
{
unsigned char rx_data[PIPE_LEN];
size_t rd_byte = 0;
int ret;
/* TESTPOINT: min_xfer > bytes_to_read */
ret = k_pipe_get(&kpipe, &rx_data[0], 1, &rd_byte, 24, K_NO_WAIT);
zassert_true(ret == -EINVAL);
ret = k_pipe_get(&kpipe, &rx_data[0], 24, NULL, 1, K_NO_WAIT);
zassert_true(ret == -EINVAL);
/**TESTPOINT: thread-thread data passing via pipe*/
k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
tThread_half_pipe_put, &khalfpipe,
NULL, NULL, K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
k_tid_t tid2 = k_thread_create(&tdata2, tstack2, STACK_SIZE,
tThread_half_pipe_put, &khalfpipe,
NULL, NULL, K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
k_sleep(K_MSEC(100));
tpipe_get_small_size(&khalfpipe, K_NO_WAIT);
/* clear the spawned thread avoid side effect */
k_thread_abort(tid1);
k_thread_abort(tid2);
}
ZTEST(pipe_api, test_pipe_get_large)
{
/**TESTPOINT: thread-thread data passing via pipe*/
k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
tThread_half_pipe_put, &khalfpipe,
NULL, NULL, K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
k_tid_t tid2 = k_thread_create(&tdata2, tstack2, STACK_SIZE,
tThread_half_pipe_put, &khalfpipe,
NULL, NULL, K_PRIO_PREEMPT(0),
K_INHERIT_PERMS | K_USER, K_NO_WAIT);
k_sleep(K_MSEC(100));
tpipe_get_large_size(&khalfpipe, K_NO_WAIT);
/* clear the spawned thread avoid side effect */
k_thread_abort(tid1);
k_thread_abort(tid2);
}
/**
* @brief Test pending reader in pipe
* @see k_pipe_put(), k_pipe_get()
*/
ZTEST(pipe_api, test_pipe_reader_wait)
{
/**TESTPOINT: test k_pipe_block_put with semaphore*/
k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
thread_handler, &kpipe1, NULL, NULL,
K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
tpipe_get(&kpipe1, K_FOREVER);
k_sem_take(&end_sema, K_FOREVER);
k_thread_abort(tid);
}
/**
* @}
*/