| /* |
| * Copyright (c) 2016-2019 Nordic Semiconductor ASA |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @brief Driver for Nordic Semiconductor nRF5X UART |
| */ |
| |
| #include <zephyr/drivers/uart.h> |
| #include <zephyr/pm/device.h> |
| #include <soc.h> |
| #include <hal/nrf_uart.h> |
| |
| #ifdef CONFIG_PINCTRL |
| #include <zephyr/drivers/pinctrl.h> |
| #else |
| #include <hal/nrf_gpio.h> |
| #endif /* CONFIG_PINCTRL */ |
| |
| /* |
| * Extract information from devicetree. |
| * |
| * This driver only supports one instance of this IP block, so the |
| * instance number is always 0. |
| */ |
| #define DT_DRV_COMPAT nordic_nrf_uart |
| |
| #define PROP(prop) DT_INST_PROP(0, prop) |
| #define HAS_PROP(prop) DT_INST_NODE_HAS_PROP(0, prop) |
| |
| #define BAUDRATE PROP(current_speed) |
| |
| #ifdef CONFIG_PINCTRL |
| #define DISABLE_RX PROP(disable_rx) |
| #else |
| #define DISABLE_RX !HAS_PROP(rx_pin) |
| #endif /* CONFIG_PINCTRL */ |
| #define HW_FLOW_CONTROL_AVAILABLE PROP(hw_flow_control) |
| |
| #define IRQN DT_INST_IRQN(0) |
| #define IRQ_PRIO DT_INST_IRQ(0, priority) |
| |
| static NRF_UART_Type *const uart0_addr = (NRF_UART_Type *)DT_INST_REG_ADDR(0); |
| |
| struct uart_nrfx_config { |
| #ifdef CONFIG_PINCTRL |
| const struct pinctrl_dev_config *pcfg; |
| #else |
| uint32_t tx_pin; |
| uint32_t rx_pin; |
| uint32_t rts_pin; |
| uint32_t cts_pin; |
| bool rx_pull_up; |
| bool cts_pull_up; |
| #endif /* CONFIG_PINCTRL */ |
| }; |
| |
| /* Device data structure */ |
| struct uart_nrfx_data { |
| struct uart_config uart_config; |
| }; |
| |
| #ifdef CONFIG_UART_0_ASYNC |
| static struct { |
| uart_callback_t callback; |
| void *user_data; |
| |
| uint8_t *rx_buffer; |
| uint8_t *rx_secondary_buffer; |
| size_t rx_buffer_length; |
| size_t rx_secondary_buffer_length; |
| volatile size_t rx_counter; |
| volatile size_t rx_offset; |
| int32_t rx_timeout; |
| struct k_timer rx_timeout_timer; |
| bool rx_enabled; |
| |
| bool tx_abort; |
| const uint8_t *volatile tx_buffer; |
| /* note: this is aliased with atomic_t in uart_nrfx_poll_out() */ |
| unsigned long tx_buffer_length; |
| volatile size_t tx_counter; |
| #if HW_FLOW_CONTROL_AVAILABLE |
| int32_t tx_timeout; |
| struct k_timer tx_timeout_timer; |
| #endif |
| } uart0_cb; |
| #endif /* CONFIG_UART_0_ASYNC */ |
| |
| #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN |
| |
| static uart_irq_callback_user_data_t irq_callback; /**< Callback function pointer */ |
| static void *irq_cb_data; /**< Callback function arg */ |
| |
| /* Variable used to override the state of the TXDRDY event in the initial state |
| * of the driver. This event is not set by the hardware until a first byte is |
| * sent, and we want to use it as an indication if the transmitter is ready |
| * to accept a new byte. |
| */ |
| static volatile uint8_t uart_sw_event_txdrdy; |
| static volatile bool disable_tx_irq; |
| |
| #endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */ |
| |
| #ifndef CONFIG_PINCTRL |
| static void uart_nrfx_pins_configure(const struct device *dev, bool sleep) |
| { |
| const struct uart_nrfx_config *cfg = dev->config; |
| |
| if (!sleep) { |
| if (cfg->tx_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_pin_write(cfg->tx_pin, 1); |
| nrf_gpio_cfg_output(cfg->tx_pin); |
| } |
| |
| if (cfg->rx_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_cfg_input(cfg->rx_pin, |
| (cfg->rx_pull_up ? |
| NRF_GPIO_PIN_PULLUP : |
| NRF_GPIO_PIN_NOPULL)); |
| } |
| |
| if (cfg->rts_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_pin_write(cfg->rts_pin, 1); |
| nrf_gpio_cfg_output(cfg->rts_pin); |
| } |
| |
| if (cfg->cts_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_cfg_input(cfg->cts_pin, |
| (cfg->cts_pull_up ? |
| NRF_GPIO_PIN_PULLUP : |
| NRF_GPIO_PIN_NOPULL)); |
| } |
| } else { |
| if (cfg->tx_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_cfg_default(cfg->tx_pin); |
| } |
| |
| if (cfg->rx_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_cfg_default(cfg->rx_pin); |
| } |
| |
| if (cfg->rts_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_cfg_default(cfg->rts_pin); |
| } |
| |
| if (cfg->cts_pin != NRF_UART_PSEL_DISCONNECTED) { |
| nrf_gpio_cfg_default(cfg->cts_pin); |
| } |
| } |
| |
| nrf_uart_txrx_pins_set(uart0_addr, cfg->tx_pin, cfg->rx_pin); |
| nrf_uart_hwfc_pins_set(uart0_addr, cfg->rts_pin, cfg->cts_pin); |
| } |
| #endif /* !CONFIG_PINCTRL */ |
| |
| static bool event_txdrdy_check(void) |
| { |
| return (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY) |
| #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN |
| || uart_sw_event_txdrdy |
| #endif |
| ); |
| } |
| |
| static void event_txdrdy_clear(void) |
| { |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY); |
| #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN |
| uart_sw_event_txdrdy = 0U; |
| #endif |
| } |
| |
| |
| /** |
| * @brief Set the baud rate |
| * |
| * This routine set the given baud rate for the UART. |
| * |
| * @param dev UART device struct |
| * @param baudrate Baud rate |
| * |
| * @retval 0 on success. |
| * @retval -EINVAL for invalid baudrate. |
| */ |
| |
| static int baudrate_set(const struct device *dev, uint32_t baudrate) |
| { |
| nrf_uart_baudrate_t nrf_baudrate; /* calculated baudrate divisor */ |
| |
| switch (baudrate) { |
| case 300: |
| /* value not supported by Nordic HAL */ |
| nrf_baudrate = 0x00014000; |
| break; |
| case 600: |
| /* value not supported by Nordic HAL */ |
| nrf_baudrate = 0x00027000; |
| break; |
| case 1200: |
| nrf_baudrate = NRF_UART_BAUDRATE_1200; |
| break; |
| case 2400: |
| nrf_baudrate = NRF_UART_BAUDRATE_2400; |
| break; |
| case 4800: |
| nrf_baudrate = NRF_UART_BAUDRATE_4800; |
| break; |
| case 9600: |
| nrf_baudrate = NRF_UART_BAUDRATE_9600; |
| break; |
| case 14400: |
| nrf_baudrate = NRF_UART_BAUDRATE_14400; |
| break; |
| case 19200: |
| nrf_baudrate = NRF_UART_BAUDRATE_19200; |
| break; |
| case 28800: |
| nrf_baudrate = NRF_UART_BAUDRATE_28800; |
| break; |
| case 31250: |
| nrf_baudrate = NRF_UART_BAUDRATE_31250; |
| break; |
| case 38400: |
| nrf_baudrate = NRF_UART_BAUDRATE_38400; |
| break; |
| case 56000: |
| nrf_baudrate = NRF_UART_BAUDRATE_56000; |
| break; |
| case 57600: |
| nrf_baudrate = NRF_UART_BAUDRATE_57600; |
| break; |
| case 76800: |
| nrf_baudrate = NRF_UART_BAUDRATE_76800; |
| break; |
| case 115200: |
| nrf_baudrate = NRF_UART_BAUDRATE_115200; |
| break; |
| case 230400: |
| nrf_baudrate = NRF_UART_BAUDRATE_230400; |
| break; |
| case 250000: |
| nrf_baudrate = NRF_UART_BAUDRATE_250000; |
| break; |
| case 460800: |
| nrf_baudrate = NRF_UART_BAUDRATE_460800; |
| break; |
| case 921600: |
| nrf_baudrate = NRF_UART_BAUDRATE_921600; |
| break; |
| case 1000000: |
| nrf_baudrate = NRF_UART_BAUDRATE_1000000; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| nrf_uart_baudrate_set(uart0_addr, nrf_baudrate); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Poll the device for input. |
| * |
| * @param dev UART device struct |
| * @param c Pointer to character |
| * |
| * @return 0 if a character arrived, -1 if the input buffer if empty. |
| */ |
| |
| static int uart_nrfx_poll_in(const struct device *dev, unsigned char *c) |
| { |
| if (!nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) { |
| return -1; |
| } |
| |
| /* Clear the interrupt */ |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY); |
| |
| /* got a character */ |
| *c = nrf_uart_rxd_get(uart0_addr); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_UART_0_ASYNC |
| static void uart_nrfx_isr(const struct device *dev); |
| #endif |
| |
| /** |
| * @brief Output a character in polled mode. |
| * |
| * @param dev UART device struct |
| * @param c Character to send |
| */ |
| static void uart_nrfx_poll_out(const struct device *dev, unsigned char c) |
| { |
| atomic_t *lock; |
| #ifdef CONFIG_UART_0_ASYNC |
| while (uart0_cb.tx_buffer) { |
| /* If there is ongoing asynchronous transmission, and we are in |
| * ISR, then call uart interrupt routine, otherwise |
| * busy wait until transmission is finished. |
| */ |
| if (k_is_in_isr()) { |
| uart_nrfx_isr(dev); |
| } |
| } |
| /* Use tx_buffer_length as lock, this way uart_nrfx_tx will |
| * return -EBUSY during poll_out. |
| */ |
| lock = &uart0_cb.tx_buffer_length; |
| #else |
| static atomic_val_t poll_out_lock; |
| |
| lock = &poll_out_lock; |
| #endif |
| |
| if (!k_is_in_isr()) { |
| uint8_t safety_cnt = 100; |
| |
| while (atomic_cas((atomic_t *) lock, |
| (atomic_val_t) 0, |
| (atomic_val_t) 1) == false) { |
| if (IS_ENABLED(CONFIG_MULTITHREADING)) { |
| /* k_sleep allows other threads to execute and finish |
| * their transactions. |
| */ |
| k_msleep(1); |
| } else { |
| k_busy_wait(1000); |
| } |
| if (--safety_cnt == 0) { |
| break; |
| } |
| } |
| } else { |
| *lock = 1; |
| } |
| /* Reset the transmitter ready state. */ |
| event_txdrdy_clear(); |
| |
| /* Activate the transmitter. */ |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX); |
| |
| /* Send the provided character. */ |
| nrf_uart_txd_set(uart0_addr, (uint8_t)c); |
| |
| /* Wait until the transmitter is ready, i.e. the character is sent. */ |
| int res; |
| |
| NRFX_WAIT_FOR(event_txdrdy_check(), 1000, 1, res); |
| |
| /* Deactivate the transmitter so that it does not needlessly |
| * consume power. |
| */ |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX); |
| |
| /* Release the lock. */ |
| *lock = 0; |
| } |
| |
| /** Console I/O function */ |
| static int uart_nrfx_err_check(const struct device *dev) |
| { |
| /* register bitfields maps to the defines in uart.h */ |
| return nrf_uart_errorsrc_get_and_clear(uart0_addr); |
| } |
| |
| static int uart_nrfx_configure(const struct device *dev, |
| const struct uart_config *cfg) |
| { |
| struct uart_nrfx_data *data = dev->data; |
| nrf_uart_config_t uart_cfg; |
| |
| #if defined(UART_CONFIG_STOP_Msk) |
| switch (cfg->stop_bits) { |
| case UART_CFG_STOP_BITS_1: |
| uart_cfg.stop = NRF_UART_STOP_ONE; |
| break; |
| case UART_CFG_STOP_BITS_2: |
| uart_cfg.stop = NRF_UART_STOP_TWO; |
| break; |
| default: |
| return -ENOTSUP; |
| } |
| #else |
| if (cfg->stop_bits != UART_CFG_STOP_BITS_1) { |
| return -ENOTSUP; |
| } |
| #endif |
| |
| if (cfg->data_bits != UART_CFG_DATA_BITS_8) { |
| return -ENOTSUP; |
| } |
| |
| switch (cfg->flow_ctrl) { |
| case UART_CFG_FLOW_CTRL_NONE: |
| uart_cfg.hwfc = NRF_UART_HWFC_DISABLED; |
| break; |
| case UART_CFG_FLOW_CTRL_RTS_CTS: |
| if (HW_FLOW_CONTROL_AVAILABLE) { |
| uart_cfg.hwfc = NRF_UART_HWFC_ENABLED; |
| } else { |
| return -ENOTSUP; |
| } |
| break; |
| default: |
| return -ENOTSUP; |
| } |
| |
| #if defined(UART_CONFIG_PARITYTYPE_Msk) |
| uart_cfg.paritytype = NRF_UART_PARITYTYPE_EVEN; |
| #endif |
| switch (cfg->parity) { |
| case UART_CFG_PARITY_NONE: |
| uart_cfg.parity = NRF_UART_PARITY_EXCLUDED; |
| break; |
| case UART_CFG_PARITY_EVEN: |
| uart_cfg.parity = NRF_UART_PARITY_INCLUDED; |
| break; |
| #if defined(UART_CONFIG_PARITYTYPE_Msk) |
| case UART_CFG_PARITY_ODD: |
| uart_cfg.parity = NRF_UART_PARITY_INCLUDED; |
| uart_cfg.paritytype = NRF_UART_PARITYTYPE_ODD; |
| break; |
| #endif |
| default: |
| return -ENOTSUP; |
| } |
| |
| if (baudrate_set(dev, cfg->baudrate) != 0) { |
| return -ENOTSUP; |
| } |
| |
| nrf_uart_configure(uart0_addr, &uart_cfg); |
| |
| data->uart_config = *cfg; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
| static int uart_nrfx_config_get(const struct device *dev, |
| struct uart_config *cfg) |
| { |
| struct uart_nrfx_data *data = dev->data; |
| |
| *cfg = data->uart_config; |
| return 0; |
| } |
| #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
| |
| #ifdef CONFIG_UART_0_ASYNC |
| |
| static void user_callback(const struct device *dev, struct uart_event *event) |
| { |
| if (uart0_cb.callback) { |
| uart0_cb.callback(dev, event, uart0_cb.user_data); |
| } |
| } |
| |
| static int uart_nrfx_callback_set(const struct device *dev, |
| uart_callback_t callback, |
| void *user_data) |
| { |
| uart0_cb.callback = callback; |
| uart0_cb.user_data = user_data; |
| |
| return 0; |
| } |
| |
| static int uart_nrfx_tx(const struct device *dev, const uint8_t *buf, |
| size_t len, |
| int32_t timeout) |
| { |
| if (atomic_cas((atomic_t *) &uart0_cb.tx_buffer_length, |
| (atomic_val_t) 0, |
| (atomic_val_t) len) == false) { |
| return -EBUSY; |
| } |
| |
| uart0_cb.tx_buffer = buf; |
| #if HW_FLOW_CONTROL_AVAILABLE |
| uart0_cb.tx_timeout = timeout; |
| #endif |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY); |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX); |
| nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_TXDRDY); |
| |
| uint8_t txd = uart0_cb.tx_buffer[uart0_cb.tx_counter]; |
| |
| nrf_uart_txd_set(uart0_addr, txd); |
| |
| return 0; |
| } |
| |
| static int uart_nrfx_tx_abort(const struct device *dev) |
| { |
| if (uart0_cb.tx_buffer_length == 0) { |
| return -EINVAL; |
| } |
| #if HW_FLOW_CONTROL_AVAILABLE |
| if (uart0_cb.tx_timeout != SYS_FOREVER_US) { |
| k_timer_stop(&uart0_cb.tx_timeout_timer); |
| } |
| #endif |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX); |
| |
| struct uart_event evt = { |
| .type = UART_TX_ABORTED, |
| .data.tx.buf = uart0_cb.tx_buffer, |
| .data.tx.len = uart0_cb.tx_counter |
| }; |
| |
| uart0_cb.tx_buffer_length = 0; |
| uart0_cb.tx_counter = 0; |
| |
| user_callback(dev, &evt); |
| |
| return 0; |
| } |
| |
| static int uart_nrfx_rx_enable(const struct device *dev, uint8_t *buf, |
| size_t len, |
| int32_t timeout) |
| { |
| if (DISABLE_RX) { |
| __ASSERT(false, "TX only UART instance"); |
| return -ENOTSUP; |
| } |
| |
| if (uart0_cb.rx_buffer_length != 0) { |
| return -EBUSY; |
| } |
| |
| uart0_cb.rx_enabled = 1; |
| uart0_cb.rx_buffer = buf; |
| uart0_cb.rx_buffer_length = len; |
| uart0_cb.rx_counter = 0; |
| uart0_cb.rx_secondary_buffer_length = 0; |
| uart0_cb.rx_timeout = timeout; |
| |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR); |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY); |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXTO); |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTRX); |
| nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_RXDRDY | |
| NRF_UART_INT_MASK_ERROR | |
| NRF_UART_INT_MASK_RXTO); |
| |
| return 0; |
| } |
| |
| static int uart_nrfx_rx_buf_rsp(const struct device *dev, uint8_t *buf, |
| size_t len) |
| { |
| int err; |
| unsigned int key = irq_lock(); |
| |
| if (!uart0_cb.rx_enabled) { |
| err = -EACCES; |
| } else if (uart0_cb.rx_secondary_buffer_length != 0) { |
| err = -EBUSY; |
| } else { |
| uart0_cb.rx_secondary_buffer = buf; |
| uart0_cb.rx_secondary_buffer_length = len; |
| err = 0; |
| } |
| |
| irq_unlock(key); |
| |
| return err; |
| } |
| |
| static int uart_nrfx_rx_disable(const struct device *dev) |
| { |
| if (uart0_cb.rx_buffer_length == 0) { |
| return -EFAULT; |
| } |
| |
| uart0_cb.rx_enabled = 0; |
| if (uart0_cb.rx_timeout != SYS_FOREVER_US) { |
| k_timer_stop(&uart0_cb.rx_timeout_timer); |
| } |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPRX); |
| |
| return 0; |
| } |
| |
| static void rx_rdy_evt(const struct device *dev) |
| { |
| struct uart_event event; |
| size_t rx_cnt = uart0_cb.rx_counter; |
| |
| event.type = UART_RX_RDY; |
| event.data.rx.buf = uart0_cb.rx_buffer; |
| event.data.rx.len = rx_cnt - uart0_cb.rx_offset; |
| event.data.rx.offset = uart0_cb.rx_offset; |
| |
| uart0_cb.rx_offset = rx_cnt; |
| |
| user_callback(dev, &event); |
| } |
| |
| static void buf_released_evt(const struct device *dev) |
| { |
| struct uart_event event = { |
| .type = UART_RX_BUF_RELEASED, |
| .data.rx_buf.buf = uart0_cb.rx_buffer |
| }; |
| user_callback(dev, &event); |
| } |
| |
| static void rx_disabled_evt(const struct device *dev) |
| { |
| struct uart_event event = { |
| .type = UART_RX_DISABLED |
| }; |
| user_callback(dev, &event); |
| } |
| |
| static void rx_reset_state(void) |
| { |
| nrf_uart_int_disable(uart0_addr, |
| NRF_UART_INT_MASK_RXDRDY | |
| NRF_UART_INT_MASK_ERROR | |
| NRF_UART_INT_MASK_RXTO); |
| uart0_cb.rx_buffer_length = 0; |
| uart0_cb.rx_enabled = 0; |
| uart0_cb.rx_counter = 0; |
| uart0_cb.rx_offset = 0; |
| uart0_cb.rx_secondary_buffer_length = 0; |
| } |
| |
| static void rx_isr(const struct device *dev) |
| { |
| struct uart_event event; |
| |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY); |
| |
| if (!uart0_cb.rx_buffer_length || !uart0_cb.rx_enabled) { |
| /* Byte received when receiving is disabled - data lost. */ |
| nrf_uart_rxd_get(uart0_addr); |
| } else { |
| if (uart0_cb.rx_counter == 0) { |
| event.type = UART_RX_BUF_REQUEST; |
| user_callback(dev, &event); |
| } |
| uart0_cb.rx_buffer[uart0_cb.rx_counter] = |
| nrf_uart_rxd_get(uart0_addr); |
| uart0_cb.rx_counter++; |
| if (uart0_cb.rx_timeout == 0) { |
| rx_rdy_evt(dev); |
| } else if (uart0_cb.rx_timeout != SYS_FOREVER_US) { |
| k_timer_start(&uart0_cb.rx_timeout_timer, |
| K_USEC(uart0_cb.rx_timeout), |
| K_NO_WAIT); |
| } |
| } |
| |
| if (uart0_cb.rx_buffer_length == uart0_cb.rx_counter) { |
| if (uart0_cb.rx_timeout != SYS_FOREVER_US) { |
| k_timer_stop(&uart0_cb.rx_timeout_timer); |
| } |
| rx_rdy_evt(dev); |
| |
| unsigned int key = irq_lock(); |
| |
| if (uart0_cb.rx_secondary_buffer_length == 0) { |
| uart0_cb.rx_enabled = 0; |
| } |
| irq_unlock(key); |
| |
| if (uart0_cb.rx_secondary_buffer_length) { |
| buf_released_evt(dev); |
| /* Switch to secondary buffer. */ |
| uart0_cb.rx_buffer_length = |
| uart0_cb.rx_secondary_buffer_length; |
| uart0_cb.rx_buffer = uart0_cb.rx_secondary_buffer; |
| uart0_cb.rx_secondary_buffer_length = 0; |
| uart0_cb.rx_counter = 0; |
| uart0_cb.rx_offset = 0; |
| |
| event.type = UART_RX_BUF_REQUEST; |
| user_callback(dev, &event); |
| } else { |
| uart_nrfx_rx_disable(dev); |
| } |
| } |
| } |
| |
| static void tx_isr(const struct device *dev) |
| { |
| uart0_cb.tx_counter++; |
| if (uart0_cb.tx_counter < uart0_cb.tx_buffer_length && |
| !uart0_cb.tx_abort) { |
| #if HW_FLOW_CONTROL_AVAILABLE |
| if (uart0_cb.tx_timeout != SYS_FOREVER_US) { |
| k_timer_start(&uart0_cb.tx_timeout_timer, |
| K_USEC(uart0_cb.tx_timeout), |
| K_NO_WAIT); |
| } |
| #endif |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY); |
| |
| uint8_t txd = uart0_cb.tx_buffer[uart0_cb.tx_counter]; |
| |
| nrf_uart_txd_set(uart0_addr, txd); |
| } else { |
| #if HW_FLOW_CONTROL_AVAILABLE |
| |
| if (uart0_cb.tx_timeout != SYS_FOREVER_US) { |
| k_timer_stop(&uart0_cb.tx_timeout_timer); |
| } |
| #endif |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX); |
| struct uart_event event = { |
| .type = UART_TX_DONE, |
| .data.tx.buf = uart0_cb.tx_buffer, |
| .data.tx.len = uart0_cb.tx_counter |
| }; |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY); |
| uart0_cb.tx_buffer_length = 0; |
| uart0_cb.tx_counter = 0; |
| uart0_cb.tx_buffer = NULL; |
| |
| nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_TXDRDY); |
| user_callback(dev, &event); |
| } |
| } |
| |
| #define UART_ERROR_FROM_MASK(mask) \ |
| (mask & NRF_UART_ERROR_OVERRUN_MASK ? UART_ERROR_OVERRUN \ |
| : mask & NRF_UART_ERROR_PARITY_MASK ? UART_ERROR_PARITY \ |
| : mask & NRF_UART_ERROR_FRAMING_MASK ? UART_ERROR_FRAMING \ |
| : mask & NRF_UART_ERROR_BREAK_MASK ? UART_BREAK \ |
| : 0) |
| |
| static void error_isr(const struct device *dev) |
| { |
| if (uart0_cb.rx_timeout != SYS_FOREVER_US) { |
| k_timer_stop(&uart0_cb.rx_timeout_timer); |
| } |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR); |
| |
| if (!uart0_cb.rx_enabled) { |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPRX); |
| } |
| struct uart_event event = { |
| .type = UART_RX_STOPPED, |
| .data.rx_stop.reason = |
| UART_ERROR_FROM_MASK( |
| nrf_uart_errorsrc_get_and_clear(uart0_addr)), |
| .data.rx_stop.data.len = uart0_cb.rx_counter |
| - uart0_cb.rx_offset, |
| .data.rx_stop.data.offset = uart0_cb.rx_offset, |
| .data.rx_stop.data.buf = uart0_cb.rx_buffer |
| }; |
| |
| user_callback(dev, &event); |
| /* Abort transfer. */ |
| uart_nrfx_rx_disable(dev); |
| } |
| |
| /* |
| * In nRF hardware RX timeout can occur only after stopping the peripheral, |
| * it is used as a sign that peripheral has finished its operation and is |
| * disabled. |
| */ |
| static void rxto_isr(const struct device *dev) |
| { |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXTO); |
| |
| /* Send rxrdy if there is any data pending. */ |
| if (uart0_cb.rx_counter - uart0_cb.rx_offset) { |
| rx_rdy_evt(dev); |
| } |
| |
| buf_released_evt(dev); |
| if (uart0_cb.rx_secondary_buffer_length) { |
| uart0_cb.rx_buffer = uart0_cb.rx_secondary_buffer; |
| buf_released_evt(dev); |
| } |
| |
| rx_reset_state(); |
| rx_disabled_evt(dev); |
| } |
| |
| void uart_nrfx_isr(const struct device *uart) |
| { |
| if (nrf_uart_int_enable_check(uart0_addr, NRF_UART_INT_MASK_ERROR) && |
| nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_ERROR)) { |
| error_isr(uart); |
| } else if (nrf_uart_int_enable_check(uart0_addr, |
| NRF_UART_INT_MASK_RXDRDY) && |
| nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) { |
| rx_isr(uart); |
| } |
| |
| if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY) |
| && nrf_uart_int_enable_check(uart0_addr, |
| NRF_UART_INT_MASK_TXDRDY)) { |
| tx_isr(uart); |
| } |
| |
| if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXTO)) { |
| rxto_isr(uart); |
| } |
| } |
| |
| static void rx_timeout(struct k_timer *timer) |
| { |
| rx_rdy_evt(DEVICE_DT_INST_GET(0)); |
| } |
| |
| #if HW_FLOW_CONTROL_AVAILABLE |
| static void tx_timeout(struct k_timer *timer) |
| { |
| struct uart_event evt; |
| |
| if (uart0_cb.tx_timeout != SYS_FOREVER_US) { |
| k_timer_stop(&uart0_cb.tx_timeout_timer); |
| } |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX); |
| evt.type = UART_TX_ABORTED; |
| evt.data.tx.buf = uart0_cb.tx_buffer; |
| evt.data.tx.len = uart0_cb.tx_buffer_length; |
| uart0_cb.tx_buffer_length = 0; |
| uart0_cb.tx_counter = 0; |
| user_callback(DEVICE_DT_INST_GET(0), &evt); |
| } |
| #endif |
| |
| #endif /* CONFIG_UART_0_ASYNC */ |
| |
| |
| #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN |
| |
| /** Interrupt driven FIFO fill function */ |
| static int uart_nrfx_fifo_fill(const struct device *dev, |
| const uint8_t *tx_data, |
| int len) |
| { |
| uint8_t num_tx = 0U; |
| |
| while ((len - num_tx > 0) && |
| event_txdrdy_check()) { |
| |
| /* Clear the interrupt */ |
| event_txdrdy_clear(); |
| |
| /* Send a character */ |
| nrf_uart_txd_set(uart0_addr, (uint8_t)tx_data[num_tx++]); |
| } |
| |
| return (int)num_tx; |
| } |
| |
| /** Interrupt driven FIFO read function */ |
| static int uart_nrfx_fifo_read(const struct device *dev, |
| uint8_t *rx_data, |
| const int size) |
| { |
| uint8_t num_rx = 0U; |
| |
| while ((size - num_rx > 0) && |
| nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) { |
| /* Clear the interrupt */ |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY); |
| |
| /* Receive a character */ |
| rx_data[num_rx++] = (uint8_t)nrf_uart_rxd_get(uart0_addr); |
| } |
| |
| return num_rx; |
| } |
| |
| /** Interrupt driven transfer enabling function */ |
| static void uart_nrfx_irq_tx_enable(const struct device *dev) |
| { |
| uint32_t key; |
| |
| disable_tx_irq = false; |
| |
| /* Indicate that this device started a transaction that should not be |
| * interrupted by putting the SoC into the deep sleep mode. |
| */ |
| pm_device_busy_set(dev); |
| |
| /* Activate the transmitter. */ |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX); |
| |
| nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_TXDRDY); |
| |
| /* Critical section is used to avoid any UART related interrupt which |
| * can occur after the if statement and before call of the function |
| * forcing an interrupt. |
| */ |
| key = irq_lock(); |
| if (uart_sw_event_txdrdy) { |
| /* Due to HW limitation first TXDRDY interrupt shall be |
| * triggered by the software. |
| */ |
| NVIC_SetPendingIRQ(IRQN); |
| } |
| irq_unlock(key); |
| } |
| |
| /** Interrupt driven transfer disabling function */ |
| static void uart_nrfx_irq_tx_disable(const struct device *dev) |
| { |
| /* Disable TX interrupt in uart_nrfx_isr() when transmission is done. */ |
| disable_tx_irq = true; |
| } |
| |
| /** Interrupt driven receiver enabling function */ |
| static void uart_nrfx_irq_rx_enable(const struct device *dev) |
| { |
| nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_RXDRDY); |
| } |
| |
| /** Interrupt driven receiver disabling function */ |
| static void uart_nrfx_irq_rx_disable(const struct device *dev) |
| { |
| nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_RXDRDY); |
| } |
| |
| /** Interrupt driven transfer empty function */ |
| static int uart_nrfx_irq_tx_ready_complete(const struct device *dev) |
| { |
| /* Signal TX readiness only when the TX interrupt is enabled and there |
| * is no pending request to disable it. Note that this function may get |
| * called after the TX interrupt is requested to be disabled but before |
| * the disabling is actually performed (in the IRQ handler). |
| */ |
| return nrf_uart_int_enable_check(uart0_addr, |
| NRF_UART_INT_MASK_TXDRDY) && |
| !disable_tx_irq && |
| event_txdrdy_check(); |
| } |
| |
| /** Interrupt driven receiver ready function */ |
| static int uart_nrfx_irq_rx_ready(const struct device *dev) |
| { |
| return nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY); |
| } |
| |
| /** Interrupt driven error enabling function */ |
| static void uart_nrfx_irq_err_enable(const struct device *dev) |
| { |
| nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_ERROR); |
| } |
| |
| /** Interrupt driven error disabling function */ |
| static void uart_nrfx_irq_err_disable(const struct device *dev) |
| { |
| nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_ERROR); |
| } |
| |
| /** Interrupt driven pending status function */ |
| static int uart_nrfx_irq_is_pending(const struct device *dev) |
| { |
| return ((nrf_uart_int_enable_check(uart0_addr, |
| NRF_UART_INT_MASK_TXDRDY) && |
| uart_nrfx_irq_tx_ready_complete(dev)) |
| || |
| (nrf_uart_int_enable_check(uart0_addr, |
| NRF_UART_INT_MASK_RXDRDY) && |
| uart_nrfx_irq_rx_ready(dev))); |
| } |
| |
| /** Interrupt driven interrupt update function */ |
| static int uart_nrfx_irq_update(const struct device *dev) |
| { |
| return 1; |
| } |
| |
| /** Set the callback function */ |
| static void uart_nrfx_irq_callback_set(const struct device *dev, |
| uart_irq_callback_user_data_t cb, |
| void *cb_data) |
| { |
| (void)dev; |
| irq_callback = cb; |
| irq_cb_data = cb_data; |
| } |
| |
| /** |
| * @brief Interrupt service routine. |
| * |
| * This simply calls the callback function, if one exists. |
| * |
| * @param arg Argument to ISR. |
| */ |
| static void uart_nrfx_isr(const struct device *dev) |
| { |
| if (disable_tx_irq && |
| nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)) { |
| nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_TXDRDY); |
| |
| /* Deactivate the transmitter so that it does not needlessly |
| * consume power. |
| */ |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX); |
| |
| /* The transaction is over. It is okay to enter the deep sleep |
| * mode if needed. |
| */ |
| pm_device_busy_clear(dev); |
| |
| disable_tx_irq = false; |
| |
| return; |
| } |
| |
| if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_ERROR)) { |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR); |
| } |
| |
| if (irq_callback) { |
| irq_callback(dev, irq_cb_data); |
| } |
| } |
| #endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */ |
| |
| /** |
| * @brief Initialize UART channel |
| * |
| * This routine is called to reset the chip in a quiescent state. |
| * It is assumed that this function is called only once per UART. |
| * |
| * @param dev UART device struct |
| * |
| * @return 0 on success |
| */ |
| static int uart_nrfx_init(const struct device *dev) |
| { |
| struct uart_nrfx_data *data = dev->data; |
| int err; |
| #ifdef CONFIG_PINCTRL |
| const struct uart_nrfx_config *config = dev->config; |
| #endif /* CONFIG_PINCTRL */ |
| |
| nrf_uart_disable(uart0_addr); |
| |
| #ifdef CONFIG_PINCTRL |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| return err; |
| } |
| #else |
| uart_nrfx_pins_configure(dev, false); |
| #endif /* CONFIG_PINCTRL */ |
| |
| /* Set initial configuration */ |
| err = uart_nrfx_configure(dev, &data->uart_config); |
| if (err) { |
| return err; |
| } |
| |
| /* Enable the UART and activate its receiver. With the current API |
| * the receiver needs to be active all the time. The transmitter |
| * will be activated when there is something to send. |
| */ |
| nrf_uart_enable(uart0_addr); |
| |
| if (!DISABLE_RX) { |
| nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY); |
| |
| nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTRX); |
| } |
| |
| #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN |
| /* Simulate that the TXDRDY event is set, so that the transmitter status |
| * is indicated correctly. |
| */ |
| uart_sw_event_txdrdy = 1U; |
| #endif |
| |
| #if defined(CONFIG_UART_0_ASYNC) || defined(CONFIG_UART_0_INTERRUPT_DRIVEN) |
| |
| IRQ_CONNECT(IRQN, |
| IRQ_PRIO, |
| uart_nrfx_isr, |
| DEVICE_DT_INST_GET(0), |
| 0); |
| irq_enable(IRQN); |
| #endif |
| |
| #ifdef CONFIG_UART_0_ASYNC |
| k_timer_init(&uart0_cb.rx_timeout_timer, rx_timeout, NULL); |
| #if HW_FLOW_CONTROL_AVAILABLE |
| k_timer_init(&uart0_cb.tx_timeout_timer, tx_timeout, NULL); |
| #endif |
| #endif |
| return 0; |
| } |
| |
| /* Common function: uart_nrfx_irq_tx_ready_complete is used for two API entries |
| * because Nordic hardware does not distinguish between them. |
| */ |
| static const struct uart_driver_api uart_nrfx_uart_driver_api = { |
| #ifdef CONFIG_UART_0_ASYNC |
| .callback_set = uart_nrfx_callback_set, |
| .tx = uart_nrfx_tx, |
| .tx_abort = uart_nrfx_tx_abort, |
| .rx_enable = uart_nrfx_rx_enable, |
| .rx_buf_rsp = uart_nrfx_rx_buf_rsp, |
| .rx_disable = uart_nrfx_rx_disable, |
| #endif /* CONFIG_UART_0_ASYNC */ |
| .poll_in = uart_nrfx_poll_in, |
| .poll_out = uart_nrfx_poll_out, |
| .err_check = uart_nrfx_err_check, |
| #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
| .configure = uart_nrfx_configure, |
| .config_get = uart_nrfx_config_get, |
| #endif |
| #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN |
| .fifo_fill = uart_nrfx_fifo_fill, |
| .fifo_read = uart_nrfx_fifo_read, |
| .irq_tx_enable = uart_nrfx_irq_tx_enable, |
| .irq_tx_disable = uart_nrfx_irq_tx_disable, |
| .irq_tx_ready = uart_nrfx_irq_tx_ready_complete, |
| .irq_rx_enable = uart_nrfx_irq_rx_enable, |
| .irq_rx_disable = uart_nrfx_irq_rx_disable, |
| .irq_tx_complete = uart_nrfx_irq_tx_ready_complete, |
| .irq_rx_ready = uart_nrfx_irq_rx_ready, |
| .irq_err_enable = uart_nrfx_irq_err_enable, |
| .irq_err_disable = uart_nrfx_irq_err_disable, |
| .irq_is_pending = uart_nrfx_irq_is_pending, |
| .irq_update = uart_nrfx_irq_update, |
| .irq_callback_set = uart_nrfx_irq_callback_set, |
| #endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */ |
| }; |
| |
| #ifdef CONFIG_PM_DEVICE |
| static int uart_nrfx_pm_action(const struct device *dev, |
| enum pm_device_action action) |
| { |
| #ifdef CONFIG_PINCTRL |
| const struct uart_nrfx_config *config = dev->config; |
| int ret; |
| #endif |
| |
| switch (action) { |
| case PM_DEVICE_ACTION_RESUME: |
| if (IS_ENABLED(CONFIG_UART_0_GPIO_MANAGEMENT)) { |
| #ifdef CONFIG_PINCTRL |
| ret = pinctrl_apply_state(config->pcfg, |
| PINCTRL_STATE_DEFAULT); |
| if (ret < 0) { |
| return ret; |
| } |
| #else |
| uart_nrfx_pins_configure(dev, false); |
| #endif /* CONFIG_PINCTRL */ |
| } |
| |
| nrf_uart_enable(uart0_addr); |
| if (!DISABLE_RX) { |
| nrf_uart_task_trigger(uart0_addr, |
| NRF_UART_TASK_STARTRX); |
| } |
| break; |
| case PM_DEVICE_ACTION_SUSPEND: |
| nrf_uart_disable(uart0_addr); |
| |
| if (IS_ENABLED(CONFIG_UART_0_GPIO_MANAGEMENT)) { |
| #ifdef CONFIG_PINCTRL |
| ret = pinctrl_apply_state(config->pcfg, |
| PINCTRL_STATE_SLEEP); |
| if (ret < 0) { |
| return ret; |
| } |
| #else |
| uart_nrfx_pins_configure(dev, true); |
| #endif /* CONFIG_PINCTRL */ |
| } |
| break; |
| default: |
| return -ENOTSUP; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_DEVICE */ |
| |
| #ifdef CONFIG_PINCTRL |
| PINCTRL_DT_INST_DEFINE(0); |
| #endif /* CONFIG_PINCTRL */ |
| |
| NRF_DT_CHECK_PIN_ASSIGNMENTS(DT_DRV_INST(0), 1, |
| tx_pin, rx_pin, rts_pin, cts_pin); |
| |
| static const struct uart_nrfx_config uart_nrfx_uart0_config = { |
| #ifdef CONFIG_PINCTRL |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), |
| #else |
| .tx_pin = DT_INST_PROP_OR(0, tx_pin, NRF_UART_PSEL_DISCONNECTED), |
| .rx_pin = DT_INST_PROP_OR(0, rx_pin, NRF_UART_PSEL_DISCONNECTED), |
| .rts_pin = DT_INST_PROP_OR(0, rts_pin, NRF_UART_PSEL_DISCONNECTED), |
| .cts_pin = DT_INST_PROP_OR(0, cts_pin, NRF_UART_PSEL_DISCONNECTED), |
| .rx_pull_up = DT_INST_PROP(0, rx_pull_up), |
| .cts_pull_up = DT_INST_PROP(0, cts_pull_up) |
| #endif /* CONFIG_PINCTRL */ |
| }; |
| |
| static struct uart_nrfx_data uart_nrfx_uart0_data = { |
| .uart_config = { |
| .stop_bits = UART_CFG_STOP_BITS_1, |
| .data_bits = UART_CFG_DATA_BITS_8, |
| .baudrate = BAUDRATE, |
| #ifdef CONFIG_UART_0_NRF_PARITY_BIT |
| .parity = UART_CFG_PARITY_EVEN, |
| #else |
| .parity = UART_CFG_PARITY_NONE, |
| #endif /* CONFIG_UART_0_NRF_PARITY_BIT */ |
| .flow_ctrl = PROP(hw_flow_control) ? |
| UART_CFG_FLOW_CTRL_RTS_CTS : UART_CFG_FLOW_CTRL_NONE, |
| } |
| }; |
| |
| PM_DEVICE_DT_INST_DEFINE(0, uart_nrfx_pm_action); |
| |
| DEVICE_DT_INST_DEFINE(0, |
| uart_nrfx_init, |
| PM_DEVICE_DT_INST_GET(0), |
| &uart_nrfx_uart0_data, |
| &uart_nrfx_uart0_config, |
| /* Initialize UART device before UART console. */ |
| PRE_KERNEL_1, |
| CONFIG_SERIAL_INIT_PRIORITY, |
| &uart_nrfx_uart_driver_api); |