blob: 82933ffd0e479dbd7427612e2483cf22db5f1072 [file] [log] [blame]
/* timer.c - test microkernel timer APIs */
/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
DESCRIPTION
This module tests the following microkernel timer routines:
task_timer_alloc(), task_timer_free()
task_timer_start(), task_timer_restart(), task_timer_stop()
sys_tick_delta(), sys_tick_get_32()
*/
#include <tc_util.h>
#include <util_test_common.h>
#include <zephyr.h>
#include "fifo_timeout.c"
extern bool _timer_pool_is_empty(void); /* For white box testing only */
#define timer_pool_is_empty _timer_pool_is_empty
#define NTIMERS CONFIG_NUM_TIMER_PACKETS
#define WITHIN_ERROR(var, target, epsilon) \
(((var) >= (target)) && ((var) <= (target) + (epsilon)))
static ktimer_t pTimer[NTIMERS + 1];
/**
*
* @brief Test that task_timer_stop() does stop a timer
*
* @return TC_PASS on success, TC_FAIL otherwise
*/
int testLowTimerStop(void)
{
int status;
pTimer[0] = task_timer_alloc();
task_timer_start(pTimer[0], 10, 5, TIMER_SEM);
task_timer_stop(pTimer[0]);
status = task_sem_take(TIMER_SEM, 20);
if (status != RC_TIME) {
TC_ERROR("** task_sem_take() returned %d, not %d\n", status, RC_TIME);
return TC_FAIL; /* Return failure, do not "clean up" */
}
task_timer_free(pTimer[0]);
return TC_PASS;
}
/**
*
* @brief Test the periodic feature of a timer
*
* @return TC_PASS on success, TC_FAIL otherwise
*/
int testLowTimerPeriodicity(void)
{
int64_t ticks;
int32_t ticks_32;
int64_t refTime;
int i;
int status;
pTimer[0] = task_timer_alloc();
/* Align to a tick */
ticks_32 = sys_tick_get_32();
while (sys_tick_get_32() == ticks_32) {
}
(void) sys_tick_delta(&refTime);
task_timer_start(pTimer[0], 100, 50, TIMER_SEM);
for (i = 0; i < 5; i++) {
status = task_sem_take(TIMER_SEM, 200);
ticks = sys_tick_delta(&refTime);
if (status != RC_OK) {
TC_ERROR("** Timer appears to not have fired\n");
return TC_FAIL; /* Return failure, do not "clean up" */
}
if (((i == 0) && !WITHIN_ERROR(ticks, 100, 1)) ||
((i != 0) && !WITHIN_ERROR(ticks, 50, 1))) {
TC_ERROR("** Timer fired after %d ticks, not %d\n",
(int32_t)ticks, (i == 0) ? 100 : 50);
return TC_FAIL; /* Return failure, do not "clean up" */
}
}
ticks_32 = sys_tick_get_32();
while (sys_tick_get_32() == ticks_32) { /* Align to a tick */
}
(void) sys_tick_delta_32(&refTime);
/* Use task_timer_restart() to change the periodicity */
task_timer_restart(pTimer[0], 60, 60);
for (i = 0; i < 6; i++) {
status = task_sem_take(TIMER_SEM, 100);
ticks_32 = sys_tick_delta_32(&refTime);
if (status != RC_OK) {
TC_ERROR("** Timer appears to not have fired\n");
return TC_FAIL; /* Return failure, do not "clean up" */
}
if (!WITHIN_ERROR(ticks_32, 60, 1)) {
TC_ERROR("** Timer fired after %d ticks, not %d\n",
(int32_t)ticks, 60);
return TC_FAIL; /* Return failure, do not "clean up" */
}
}
/* task_timer_free() will both stop and free the timer */
task_timer_free(pTimer[0]);
return TC_PASS;
}
/**
*
* @brief Test that the timer does not start
*
* This test checks that the timer does not start under a variety of
* circumstances.
*
* @return TC_PASS on success, TC_FAIL otherwise
*/
int testLowTimerDoesNotStart(void)
{
int32_t ticks;
int status;
int Ti[3] = {-1, 1, 0};
int Tr[3] = {1, -1, 0};
int i;
pTimer[0] = task_timer_alloc();
for (i = 0; i < 3; i++) {
/* Align to a tick */
ticks = sys_tick_get_32();
while (sys_tick_get_32() == ticks) {
}
task_timer_start(pTimer[0], Ti[i], Tr[i], TIMER_SEM);
status = task_sem_take(TIMER_SEM, 200);
if (status != RC_TIME) {
TC_ERROR("** Timer appears to have fired unexpectedly\n");
return TC_FAIL; /* Return failure, do not "clean up" */
}
}
task_timer_free(pTimer[0]);
return TC_PASS;
}
/**
*
* @brief Test the one shot feature of a timer
*
* @return TC_PASS on success, TC_FAIL otherwise
*/
int testLowTimerOneShot(void)
{
int32_t ticks;
int64_t refTime;
int status;
pTimer[0] = task_timer_alloc();
/* Align to a tick */
ticks = sys_tick_get_32();
while (sys_tick_get_32() == ticks) {
}
/* Timer to fire once only in 100 ticks */
(void) sys_tick_delta(&refTime);
task_timer_start(pTimer[0], 100, 0, TIMER_SEM);
status = task_sem_take(TIMER_SEM, TICKS_UNLIMITED);
ticks = sys_tick_delta(&refTime);
if (!WITHIN_ERROR(ticks, 100, 1)) {
TC_ERROR("** Expected %d ticks to elapse, got %d\n", 100, ticks);
return TC_FAIL; /* Return failure, do not "clean up" */
}
if (status != RC_OK) {
TC_ERROR("** task_sem_take() unexpectedly failed\n");
return TC_FAIL; /* Return failure, do not "clean up" */
}
/*
* Wait up to 200 more ticks for another timer signalling
* that should not occur.
*/
status = task_sem_take(TIMER_SEM, 200);
if (status != RC_TIME) {
TC_ERROR("** task_sem_take() expected timeout, got %d\n", status);
return TC_FAIL; /* Return failure, do not "clean up" */
}
task_timer_free(pTimer[0]);
return TC_PASS;
}
/**
*
* @brief Test the task_timer_alloc() API
*
* This routine allocates all the timers in the system using task_timer_alloc().
* It verifies that all the allocated timers have unique IDs before freeing
* them using task_timer_free().
*
* This routine also does some partial testing of task_timer_free(). That is,
* it checks that timers that have been freed are available to be allocated
* again at a later time.
*
* @return TC_PASS on success, TC_FAIL otherwise
*/
int testLowTimerGet(void)
{
int i;
int j;
int k;
for (j = 0; j < 2; j++) {
for (i = 0; i < NTIMERS; i++) {
pTimer[i] = task_timer_alloc();
for (k = 0; k < i; k++) {
if (pTimer[i] == pTimer[k]) {
TC_ERROR("** task_timer_alloc() did not return a unique "
"timer ID.\n");
return TC_FAIL;
}
}
}
/* Whitebox test to ensure that all timers were allocated. */
if (!timer_pool_is_empty()) {
TC_ERROR("** Not all timers were allocated!\n");
}
for (i = 0; i < NTIMERS; i++) {
task_timer_free(pTimer[i]);
}
}
return TC_PASS;
}
extern int test_fifo_timeout(void);
void test_nano_timeouts(void)
{
if (test_fifo_timeout() == TC_PASS) {
task_sem_give(test_nano_timeouts_sem);
}
/* on failure, don't give semaphore, main test will time out */
}
#define TEST_NANO_TIMERS_DELAY 4
static struct nano_sem test_nano_timers_sem;
static char __stack test_nano_timers_stack[512];
static void test_nano_timers(int unused1, int unused2)
{
struct nano_timer timer;
ARG_UNUSED(unused1);
ARG_UNUSED(unused2);
nano_timer_init(&timer, (void *)0xdeadbeef);
TC_PRINT("starting nano timer to expire in %d seconds\n",
TEST_NANO_TIMERS_DELAY);
nano_fiber_timer_start(&timer, SECONDS(TEST_NANO_TIMERS_DELAY));
TC_PRINT("fiber pending on timer\n");
nano_fiber_timer_test(&timer, TICKS_UNLIMITED);
TC_PRINT("fiber back from waiting on timer: giving semaphore.\n");
nano_task_sem_give(&test_nano_timers_sem);
TC_PRINT("fiber semaphore given.\n");
/* on failure, don't give semaphore, main test will not obtain it */
}
/**
*
* @brief Regression test's entry point
*
* @return N/A
*/
void RegressionTaskEntry(void)
{
int tcRC;
nano_sem_init(&test_nano_timers_sem);
PRINT_DATA("Starting timer tests\n");
PRINT_LINE;
task_fiber_start(test_nano_timers_stack, 512, test_nano_timers, 0, 0, 5, 0);
/* Test the task_timer_alloc() API */
TC_PRINT("Test the allocation of timers\n");
tcRC = testLowTimerGet();
if (tcRC != TC_PASS) {
goto exitRtn;
}
TC_PRINT("Test the one shot feature of a timer\n");
tcRC = testLowTimerOneShot();
if (tcRC != TC_PASS) {
goto exitRtn;
}
TC_PRINT("Test that a timer does not start\n");
tcRC = testLowTimerDoesNotStart();
if (tcRC != TC_PASS) {
goto exitRtn;
}
TC_PRINT("Test the periodic feature of a timer\n");
tcRC = testLowTimerPeriodicity();
if (tcRC != TC_PASS) {
goto exitRtn;
}
TC_PRINT("Test the stopping of a timer\n");
tcRC = testLowTimerStop();
if (tcRC != TC_PASS) {
goto exitRtn;
}
TC_PRINT("Verifying the nanokernel timer fired\n");
if (!nano_task_sem_take(&test_nano_timers_sem, TICKS_NONE)) {
tcRC = TC_FAIL;
goto exitRtn;
}
TC_PRINT("Verifying the nanokernel timeouts worked\n");
tcRC = task_sem_take(test_nano_timeouts_sem, SECONDS(5));
tcRC = tcRC == RC_OK ? TC_PASS : TC_FAIL;
exitRtn:
TC_END_RESULT(tcRC);
TC_END_REPORT(tcRC);
}