| /* |
| * Copyright (c) 2024 GARDENA GmbH |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * Design decisions: |
| * - As there is only one AES controller, this implementation is not using a device configuration. |
| * |
| * Notes: |
| * - If not noted otherwise, chapter numbers refer to the SiM3U1XX/SiM3C1XX reference manual |
| * (SiM3U1xx-SiM3C1xx-RM.pdf, revision 1.0) |
| * - Each DMA channel has one word of unused data (=> 3 x 4 = 12 bytes of unused RAM) |
| */ |
| |
| #define DT_DRV_COMPAT silabs_si32_aes |
| |
| #define LOG_LEVEL CONFIG_CRYPTO_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(aes_silabs_si32); |
| |
| #include <zephyr/crypto/crypto.h> |
| #include <zephyr/device.h> |
| #include <zephyr/drivers/dma.h> |
| #include <zephyr/init.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/sys/atomic.h> |
| #include <zephyr/sys/byteorder.h> |
| |
| #include <SI32_AES_A_Type.h> |
| #include <SI32_CLKCTRL_A_Type.h> |
| #include <SI32_DMACTRL_A_Type.h> |
| #include "SI32_DMAXBAR_A_Type.h" |
| #include <si32_device.h> |
| |
| #include <errno.h> |
| |
| #define AES_KEY_SIZE 16 |
| #define AES_BLOCK_SIZE 16 |
| |
| #define DMA_CHANNEL_COUNT DT_PROP(DT_INST(0, silabs_si32_dma), dma_channels) |
| |
| #define DMA_CHANNEL_ID_RX DT_INST_DMAS_CELL_BY_NAME(0, rx, channel) |
| #define DMA_CHANNEL_ID_TX DT_INST_DMAS_CELL_BY_NAME(0, tx, channel) |
| #define DMA_CHANNEL_ID_XOR DT_INST_DMAS_CELL_BY_NAME(0, xor, channel) |
| |
| BUILD_ASSERT(DMA_CHANNEL_ID_RX < DMA_CHANNEL_COUNT, "Too few DMA channels"); |
| BUILD_ASSERT(DMA_CHANNEL_ID_TX < DMA_CHANNEL_COUNT, "Too few DMA channels"); |
| BUILD_ASSERT(DMA_CHANNEL_ID_XOR < DMA_CHANNEL_COUNT, "Too few DMA channels"); |
| |
| struct crypto_session { |
| /* Decryption key needed only by ECB and CBC, and counter only by CTR. */ |
| union { |
| uint8_t decryption_key[32]; /* only used for decryption sessions */ |
| uint32_t current_ctr; /* only used for AES-CTR sessions */ |
| }; |
| |
| bool in_use; |
| }; |
| |
| struct crypto_data { |
| struct crypto_session sessions[CONFIG_CRYPTO_SI32_MAX_SESSION]; |
| }; |
| |
| K_MUTEX_DEFINE(crypto_si32_in_use); |
| K_SEM_DEFINE(crypto_si32_work_done, 0, 1); |
| |
| static struct crypto_data crypto_si32_data; |
| |
| static void crypto_si32_dma_completed(const struct device *dev, void *user_data, uint32_t channel, |
| int status) |
| { |
| ARG_UNUSED(dev); |
| ARG_UNUSED(user_data); |
| |
| const char *const result = status == DMA_STATUS_COMPLETE ? "succeeded" : "failed"; |
| |
| switch (channel) { |
| case DMA_CHANNEL_ID_RX: |
| LOG_DBG("AES0 RX DMA channel %s", result); |
| k_sem_give(&crypto_si32_work_done); |
| break; |
| case DMA_CHANNEL_ID_TX: |
| LOG_DBG("AES0 TX DMA channel %s", result); |
| break; |
| case DMA_CHANNEL_ID_XOR: |
| LOG_DBG("AES0 XOR DMA channel %s", result); |
| break; |
| default: |
| LOG_ERR("Unknown DMA channel number: %d", channel); |
| break; |
| } |
| } |
| |
| static int crypto_si32_query_hw_caps(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| return (CAP_RAW_KEY | CAP_INPLACE_OPS | CAP_SEPARATE_IO_BUFS | CAP_SYNC_OPS | |
| CAP_NO_IV_PREFIX); |
| } |
| |
| static void crypto_si32_irq_error_handler(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| /* 12.3 Interrupts: An AES0 error interrupt can be generated whenever an input/output data |
| * FIFO overrun (DORF = 1) or underrun (DURF = 1) error occurs, or when an XOR data FIFO |
| * overrun (XORF = 1) occurs. |
| */ |
| if (SI32_AES_0->STATUS.ERRI) { |
| LOG_ERR("AES0 FIFO overrun (%u), underrun (%u), XOR FIF0 overrun (%u)", |
| SI32_AES_0->STATUS.DORF, SI32_AES_0->STATUS.DURF, SI32_AES_0->STATUS.XORF); |
| SI32_AES_A_clear_error_interrupt(SI32_AES_0); |
| } |
| } |
| |
| /* For simplicity, the AES HW does not get turned of when not in use. */ |
| static int crypto_si32_init(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| /* Enable clock for AES HW */ |
| SI32_CLKCTRL_A_enable_apb_to_modules_0(SI32_CLKCTRL_0, SI32_CLKCTRL_A_APBCLKG0_AES0); |
| |
| /* To use the AES0 module, firmware must first clear the RESET bit before initializing the |
| * registers. |
| */ |
| SI32_AES_A_reset_module(SI32_AES_0); |
| |
| __ASSERT(SI32_AES_0->CONTROL.RESET == 0, "Reset done"); |
| |
| /* 12.3. Interrupts: The completion interrupt should only be used in conjunction |
| * with software mode (SWMDEN bit is set to 1) and not with DMA operations, where the DMA |
| * completion interrupt should be used. |
| */ |
| SI32_AES_A_disable_operation_complete_interrupt(SI32_AES_0); /* default */ |
| |
| /* 12.3. Interrupts: The error interrupt should always be enabled (ERRIEN = 1), even when |
| * using the DMA with the AES module. |
| */ |
| SI32_AES_A_enable_error_interrupt(SI32_AES_0); |
| |
| /* Install error handler */ |
| IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), crypto_si32_irq_error_handler, |
| DEVICE_DT_INST_GET(0), 0); |
| irq_enable(DT_INST_IRQN(0)); |
| |
| /* Halt AES0 module on debug breakpoint */ |
| SI32_AES_A_enable_stall_in_debug_mode(SI32_AES_0); |
| |
| /* For peripheral transfers, firmware should configure the peripheral for the DMA transfer |
| * and set the device’s DMA crossbar (DMAXBAR) to map a DMA channel to the peripheral. |
| */ |
| SI32_DMAXBAR_A_select_channel_peripheral(SI32_DMAXBAR_0, SI32_DMAXBAR_CHAN5_AES0_TX); |
| SI32_DMAXBAR_A_select_channel_peripheral(SI32_DMAXBAR_0, SI32_DMAXBAR_CHAN6_AES0_RX); |
| SI32_DMAXBAR_A_select_channel_peripheral(SI32_DMAXBAR_0, SI32_DMAXBAR_CHAN7_AES0_XOR); |
| |
| return 0; |
| } |
| |
| static int crypto_si32_aes_set_key(const uint8_t *key, uint8_t key_len) |
| { |
| const uint32_t *key_as_word = (const uint32_t *)key; |
| |
| switch (key_len) { |
| case 32: |
| SI32_AES_0->HWKEY7.U32 = key_as_word[7]; |
| SI32_AES_0->HWKEY6.U32 = key_as_word[6]; |
| __fallthrough; |
| case 24: |
| SI32_AES_0->HWKEY5.U32 = key_as_word[5]; |
| SI32_AES_0->HWKEY4.U32 = key_as_word[4]; |
| __fallthrough; |
| case 16: |
| SI32_AES_0->HWKEY3.U32 = key_as_word[3]; |
| SI32_AES_0->HWKEY2.U32 = key_as_word[2]; |
| SI32_AES_0->HWKEY1.U32 = key_as_word[1]; |
| SI32_AES_0->HWKEY0.U32 = key_as_word[0]; |
| break; |
| default: |
| LOG_ERR("Invalid key len: %" PRIu16, key_len); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int crypto_si32_aes_calc_decryption_key(const struct cipher_ctx *ctx, |
| uint8_t *decryption_key) |
| { |
| uint32_t *decryption_key_word = (uint32_t *)decryption_key; |
| int ret; |
| |
| ret = crypto_si32_aes_set_key(ctx->key.bit_stream, ctx->keylen); |
| if (ret) { |
| return ret; |
| } |
| |
| LOG_INF("Generating decryption key"); |
| /* TODO: How much of this can be removed? */ |
| SI32_AES_A_write_xfrsize(SI32_AES_0, 0); |
| SI32_AES_A_enable_error_interrupt(SI32_AES_0); |
| SI32_AES_A_exit_cipher_block_chaining_mode(SI32_AES_0); |
| SI32_AES_A_exit_counter_mode(SI32_AES_0); |
| SI32_AES_A_exit_bypass_hardware_mode(SI32_AES_0); |
| SI32_AES_A_select_xor_path_none(SI32_AES_0); |
| SI32_AES_A_select_software_mode(SI32_AES_0); |
| SI32_AES_A_select_encryption_mode(SI32_AES_0); |
| SI32_AES_A_enable_key_capture(SI32_AES_0); |
| |
| for (unsigned int i = 0; i < 4; i++) { |
| SI32_AES_A_write_datafifo(SI32_AES_0, 0x00000000); |
| } |
| |
| SI32_AES_A_clear_operation_complete_interrupt(SI32_AES_0); |
| SI32_AES_A_start_operation(SI32_AES_0); |
| while (!SI32_AES_A_is_operation_complete_interrupt_pending(SI32_AES_0)) { |
| /* This should not take long */ |
| } |
| |
| for (unsigned int i = 0; i < 4; i++) { |
| SI32_AES_A_read_datafifo(SI32_AES_0); |
| } |
| |
| switch (ctx->keylen) { |
| case 32: |
| decryption_key_word[7] = SI32_AES_0->HWKEY7.U32; |
| decryption_key_word[6] = SI32_AES_0->HWKEY6.U32; |
| __fallthrough; |
| case 24: |
| decryption_key_word[5] = SI32_AES_0->HWKEY5.U32; |
| decryption_key_word[4] = SI32_AES_0->HWKEY4.U32; |
| __fallthrough; |
| case 16: |
| decryption_key_word[3] = SI32_AES_0->HWKEY3.U32; |
| decryption_key_word[2] = SI32_AES_0->HWKEY2.U32; |
| decryption_key_word[1] = SI32_AES_0->HWKEY1.U32; |
| decryption_key_word[0] = SI32_AES_0->HWKEY0.U32; |
| break; |
| default: |
| LOG_ERR("Invalid key len: %" PRIu16, ctx->keylen); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int crypto_si32_aes_set_key_size(const struct cipher_ctx *ctx) |
| { |
| switch (ctx->keylen) { |
| case 32: |
| SI32_AES_A_select_key_size_256(SI32_AES_0); |
| break; |
| case 24: |
| SI32_AES_A_select_key_size_192(SI32_AES_0); |
| break; |
| case 16: |
| SI32_AES_A_select_key_size_128(SI32_AES_0); |
| break; |
| default: |
| LOG_ERR("Invalid key len: %" PRIu16, ctx->keylen); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void assert_dma_settings_common(struct SI32_DMADESC_A_Struct *channel_descriptor) |
| { |
| ARG_UNUSED(channel_descriptor); |
| |
| __ASSERT(channel_descriptor->CONFIG.SRCSIZE == 2, |
| "Source size (SRCSIZE) and destination size (DSTSIZE) are 2 for a word transfer."); |
| __ASSERT(channel_descriptor->CONFIG.DSTSIZE == 2, |
| "Source size (SRCSIZE) and destination size (DSTSIZE) are 2 for a word transfer."); |
| __ASSERT(channel_descriptor->CONFIG.RPOWER == 2, |
| "RPOWER = 2 (4 data transfers per transaction)."); |
| } |
| |
| static void assert_dma_settings_channel_rx(struct SI32_DMADESC_A_Struct *channel_descriptor) |
| { |
| ARG_UNUSED(channel_descriptor); |
| |
| assert_dma_settings_common(channel_descriptor); |
| |
| __ASSERT(channel_descriptor->SRCEND.U32 == (uintptr_t)&SI32_AES_0->DATAFIFO, |
| "Source end pointer set to the DATAFIFO register."); |
| __ASSERT(channel_descriptor->CONFIG.DSTAIMD == 0b10, |
| "The DSTAIMD field should be set to 010b for word increments."); |
| __ASSERT(channel_descriptor->CONFIG.SRCAIMD == 0b11, |
| "The SRCAIMD field should be set to 011b for no increment."); |
| } |
| |
| static void assert_dma_settings_channel_tx(struct SI32_DMADESC_A_Struct *channel_descriptor) |
| { |
| ARG_UNUSED(channel_descriptor); |
| |
| assert_dma_settings_common(channel_descriptor); |
| |
| __ASSERT(channel_descriptor->DSTEND.U32 == (uintptr_t)&SI32_AES_0->DATAFIFO, |
| "Destination end pointer set to the DATAFIFO register."); |
| __ASSERT(channel_descriptor->CONFIG.DSTAIMD == 0b11, |
| "The DSTAIMD field should be set to 011b for no increment."); |
| __ASSERT(channel_descriptor->CONFIG.SRCAIMD == 0b10, |
| "The SRCAIMD field should be set to 010b for word increments."); |
| } |
| |
| static void assert_dma_settings_channel_xor(struct SI32_DMADESC_A_Struct *channel_descriptor) |
| { |
| ARG_UNUSED(channel_descriptor); |
| |
| assert_dma_settings_common(channel_descriptor); |
| |
| __ASSERT(channel_descriptor->DSTEND.U32 == (uintptr_t)&SI32_AES_0->XORFIFO, |
| "Destination end pointer set to the XORFIFO register."); |
| __ASSERT(channel_descriptor->CONFIG.DSTAIMD == 0b11, |
| "The DSTAIMD field should be set to 011b for no increment."); |
| __ASSERT(channel_descriptor->CONFIG.SRCAIMD == 0b10, |
| "The SRCAIMD field should be set to 010b for word increments."); |
| } |
| |
| /* Set up and start input (TX) DMA channel */ |
| static int crypto_si32_dma_setup_tx(struct cipher_pkt *pkt, unsigned int in_buf_offset) |
| { |
| struct dma_block_config dma_block_cfg = {}; |
| const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma)); |
| struct dma_config dma_cfg; |
| int ret; |
| |
| if (!pkt->in_len) { |
| LOG_WRN("Zero-sized data"); |
| return 0; |
| } |
| |
| if (pkt->in_len % 16) { |
| LOG_ERR("Data size must be 4-word aligned"); |
| return -EINVAL; |
| } |
| |
| dma_block_cfg.block_size = pkt->in_len - in_buf_offset; |
| dma_block_cfg.source_address = (uintptr_t)pkt->in_buf + in_buf_offset; |
| dma_block_cfg.source_addr_adj = 0b00; /* increment */ |
| dma_block_cfg.dest_address = (uintptr_t)&SI32_AES_0->DATAFIFO; |
| dma_block_cfg.dest_addr_adj = 0b10; /* no change (no increment) */ |
| |
| dma_cfg = (struct dma_config){ |
| .channel_direction = MEMORY_TO_PERIPHERAL, |
| .source_data_size = 4, /* SiM3x1xx limitation: must match dest_data_size */ |
| .dest_data_size = 4, /* DATAFIFO must be written to in word chunks (4 bytes) */ |
| .source_burst_length = AES_BLOCK_SIZE, |
| .dest_burst_length = AES_BLOCK_SIZE, |
| .block_count = 1, |
| .head_block = &dma_block_cfg, |
| .dma_callback = crypto_si32_dma_completed, |
| }; |
| |
| /* Stop channel to ensure we are not messing with an ongoing DMA operation */ |
| ret = dma_stop(dma, DMA_CHANNEL_ID_TX); |
| if (ret) { |
| LOG_ERR("TX DMA channel stop failed: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_config(dma, DMA_CHANNEL_ID_TX, &dma_cfg); |
| if (ret) { |
| LOG_ERR("TX DMA channel setup failed: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_start(dma, DMA_CHANNEL_ID_TX); |
| if (ret) { |
| LOG_ERR("TX DMA channel start failed: %d", ret); |
| return ret; |
| } |
| |
| /* Some assertions, helpful during development */ |
| { |
| struct SI32_DMADESC_A_Struct *d = |
| (struct SI32_DMADESC_A_Struct *)SI32_DMACTRL_0->BASEPTR.U32; |
| |
| /* Verify 12.5.2. General DMA Transfer Setup */ |
| assert_dma_settings_channel_tx(d + DMA_CHANNEL_ID_TX); |
| |
| /* Other checks */ |
| __ASSERT(SI32_DMACTRL_A_is_channel_enabled(SI32_DMACTRL_0, DMA_CHANNEL_ID_TX), |
| "The channel request mask (CHREQMCLR) must be cleared for the channel to " |
| "use peripheral transfers."); |
| |
| __ASSERT(SI32_DMAXBAR_0->DMAXBAR0.CH5SEL == 0b0001, |
| "0001: Service AES0 TX data requests."); |
| } |
| |
| return 0; |
| } |
| |
| /* Set up and start output (RX) DMA channel */ |
| static int crypto_si32_dma_setup_rx(struct cipher_pkt *pkt, unsigned int in_buf_offset, |
| unsigned int out_buf_offset) |
| { |
| struct dma_block_config dma_block_cfg = {}; |
| const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma)); |
| struct dma_config dma_cfg; |
| int ret; |
| uint32_t dest_address; |
| |
| if (!pkt->in_len) { |
| LOG_WRN("Zero-sized data"); |
| return 0; |
| } |
| |
| if (pkt->in_len % 16) { |
| LOG_ERR("Data size must be 4-word aligned"); |
| return -EINVAL; |
| } |
| |
| /* A NULL out_buf indicates an in-place operation. */ |
| if (pkt->out_buf == NULL) { |
| dest_address = (uintptr_t)pkt->in_buf; |
| } else { |
| if ((pkt->out_buf_max - out_buf_offset) < (pkt->in_len - in_buf_offset)) { |
| LOG_ERR("Output buf too small"); |
| return -ENOMEM; |
| } |
| |
| dest_address = (uintptr_t)(pkt->out_buf + out_buf_offset); |
| } |
| |
| /* Set up output (RX) DMA channel */ |
| dma_block_cfg.block_size = pkt->in_len - in_buf_offset; |
| dma_block_cfg.source_address = (uintptr_t)&SI32_AES_0->DATAFIFO; |
| dma_block_cfg.source_addr_adj = 0b10; /* no change */ |
| dma_block_cfg.dest_address = dest_address; |
| dma_block_cfg.dest_addr_adj = 0b00; /* increment */ |
| |
| dma_cfg = (struct dma_config){ |
| .channel_direction = PERIPHERAL_TO_MEMORY, |
| .source_data_size = 4, /* DATAFIFO must be read from in word chunks (4 bytes) */ |
| .dest_data_size = 4, /* SiM3x1xx limitation: must match source_data_size */ |
| .source_burst_length = AES_BLOCK_SIZE, |
| .dest_burst_length = AES_BLOCK_SIZE, |
| .block_count = 1, |
| .head_block = &dma_block_cfg, |
| .dma_callback = crypto_si32_dma_completed, |
| }; |
| |
| /* Stop channel to ensure we are not messing with an ongoing DMA operation */ |
| ret = dma_stop(dma, DMA_CHANNEL_ID_RX); |
| if (ret) { |
| LOG_ERR("RX DMA channel stop failed: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_config(dma, DMA_CHANNEL_ID_RX, &dma_cfg); |
| if (ret) { |
| LOG_ERR("RX DMA channel setup failed: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_start(dma, DMA_CHANNEL_ID_RX); |
| if (ret) { |
| LOG_ERR("RX DMA channel start failed: %d", ret); |
| return ret; |
| } |
| |
| /* Some assertions, helpful during development */ |
| { |
| struct SI32_DMADESC_A_Struct *d = |
| (struct SI32_DMADESC_A_Struct *)SI32_DMACTRL_0->BASEPTR.U32; |
| |
| /* As per 12.5.2. General DMA Transfer Setup, check input and output channel |
| * programming |
| */ |
| assert_dma_settings_channel_rx(d + DMA_CHANNEL_ID_RX); |
| |
| /* Other checks */ |
| __ASSERT(SI32_DMACTRL_A_is_channel_enabled(SI32_DMACTRL_0, DMA_CHANNEL_ID_RX), |
| "The channel request mask (CHREQMCLR) must be cleared for the channel to " |
| "use peripheral transfers."); |
| |
| __ASSERT(SI32_DMAXBAR_0->DMAXBAR0.CH6SEL == 0b0001, |
| "0001: Service AES0 RX data requests."); |
| } |
| |
| return 0; |
| } |
| |
| /* Set up and start XOR DMA channel */ |
| static int crypto_si32_dma_setup_xor(struct cipher_pkt *pkt) |
| { |
| struct dma_block_config dma_block_cfg = {}; |
| const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma)); |
| struct dma_config dma_cfg; |
| int ret; |
| |
| if (!pkt->in_len) { |
| LOG_WRN("Zero-sized data"); |
| return 0; |
| } |
| |
| if (pkt->in_len % 16) { |
| LOG_ERR("Data size must be 4-word aligned"); |
| return -EINVAL; |
| } |
| |
| dma_block_cfg.block_size = pkt->in_len; |
| dma_block_cfg.source_address = (uintptr_t)pkt->in_buf; |
| dma_block_cfg.source_addr_adj = 0b00; /* increment */ |
| dma_block_cfg.dest_address = (uintptr_t)&SI32_AES_0->XORFIFO; |
| dma_block_cfg.dest_addr_adj = 0b10; /* no change (no increment) */ |
| |
| dma_cfg = (struct dma_config){ |
| .channel_direction = MEMORY_TO_PERIPHERAL, |
| .source_data_size = 4, /* SiM3x1xx limitation: must match dest_data_size */ |
| .dest_data_size = 4, /* DATAFIFO must be written to in word chunks (4 bytes) */ |
| .source_burst_length = AES_BLOCK_SIZE, |
| .dest_burst_length = AES_BLOCK_SIZE, |
| .block_count = 1, |
| .head_block = &dma_block_cfg, |
| .dma_callback = crypto_si32_dma_completed, |
| }; |
| |
| /* Stop channel to ensure we are not messing with an ongoing DMA operation */ |
| ret = dma_stop(dma, DMA_CHANNEL_ID_XOR); |
| if (ret) { |
| LOG_ERR("XOR DMA channel stop failed: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_config(dma, DMA_CHANNEL_ID_XOR, &dma_cfg); |
| if (ret) { |
| LOG_ERR("XOR DMA channel setup failed: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_start(dma, DMA_CHANNEL_ID_XOR); |
| if (ret) { |
| LOG_ERR("XOR DMA channel start failed: %d", ret); |
| return ret; |
| } |
| |
| /* Some assertions, helpful during development */ |
| { |
| struct SI32_DMADESC_A_Struct *d = |
| (struct SI32_DMADESC_A_Struct *)SI32_DMACTRL_0->BASEPTR.U32; |
| |
| /* As per 12.5.2. General DMA Transfer Setup, check input and output channel |
| * programming |
| */ |
| assert_dma_settings_channel_xor(d + DMA_CHANNEL_ID_XOR); |
| |
| /* Other checks */ |
| __ASSERT(SI32_DMACTRL_A_is_channel_enabled(SI32_DMACTRL_0, DMA_CHANNEL_ID_XOR), |
| "The channel request mask (CHREQMCLR) must be cleared for the channel to " |
| "use peripheral transfers."); |
| |
| __ASSERT(SI32_DMAXBAR_0->DMAXBAR0.CH7SEL == 0b0001, |
| "0001: Service AES0 XOR data requests."); |
| } |
| |
| return 0; |
| } |
| |
| static int crypto_si32_aes_ecb_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, |
| const enum cipher_op op) |
| { |
| struct crypto_session *session; |
| int ret; |
| |
| if (!ctx) { |
| LOG_WRN("Missing context"); |
| return -EINVAL; |
| } |
| |
| session = (struct crypto_session *)ctx->drv_sessn_state; |
| |
| if (!pkt) { |
| LOG_WRN("Missing packet"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len % 16) { |
| LOG_ERR("Can't work on partial blocks"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len > 16) { |
| LOG_ERR("Refusing to work on multiple ECB blocks"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len == 0) { |
| LOG_DBG("Zero-sized packet"); |
| return 0; |
| } |
| |
| if ((ctx->flags & CAP_INPLACE_OPS) && (pkt->out_buf != NULL)) { |
| LOG_ERR("In-place must not have an out_buf"); |
| return -EINVAL; |
| } |
| |
| /* As per 12.6.1./12.6.2. Configuring the DMA for ECB Encryption/Decryption */ |
| |
| /* DMA Input Channel */ |
| ret = crypto_si32_dma_setup_tx(pkt, 0); |
| if (ret) { |
| return ret; |
| } |
| |
| /* DMA Output Channel */ |
| ret = crypto_si32_dma_setup_rx(pkt, 0, 0); |
| if (ret) { |
| return ret; |
| } |
| |
| /* AES Module */ |
| |
| /* 1. The XFRSIZE register should be set to N-1, where N is the number of 4-word blocks. */ |
| SI32_AES_A_write_xfrsize(SI32_AES_0, pkt->in_len / AES_BLOCK_SIZE - 1); |
| |
| switch (op) { |
| case CRYPTO_CIPHER_OP_ENCRYPT: |
| /* 2. The HWKEYx registers should be written with the desired key in little endian |
| * format. |
| */ |
| ret = crypto_si32_aes_set_key(ctx->key.bit_stream, ctx->keylen); |
| if (ret) { |
| return ret; |
| } |
| break; |
| case CRYPTO_CIPHER_OP_DECRYPT: |
| /* 2. The HWKEYx registers should be written with decryption key value |
| * (automatically generated in the HWKEYx registers after the encryption process). |
| */ |
| ret = crypto_si32_aes_set_key(session->decryption_key, ctx->keylen); |
| if (ret) { |
| return ret; |
| } |
| break; |
| default: |
| LOG_ERR("Unsupported cipher_op: %d", op); |
| return -ENOSYS; |
| } |
| |
| /* 3. The CONTROL register should be set as follows: */ |
| { |
| __ASSERT(SI32_AES_0->CONTROL.ERRIEN == 1, "a. ERRIEN set to 1."); |
| |
| /* KEYSIZE set to the appropriate number of bits for the key. */ |
| ret = crypto_si32_aes_set_key_size(ctx); |
| if (ret) { |
| return ret; |
| } |
| |
| switch (op) { |
| /* c. EDMD set to 1 for encryption. */ |
| case CRYPTO_CIPHER_OP_ENCRYPT: |
| SI32_AES_A_select_encryption_mode(SI32_AES_0); |
| break; |
| /* c. EDMD set to 1 for DEcryption. (documentation is wrong here) */ |
| case CRYPTO_CIPHER_OP_DECRYPT: |
| SI32_AES_A_select_decryption_mode(SI32_AES_0); |
| break; |
| default: |
| LOG_ERR("Unsupported cipher_op: %d", op); |
| return -ENOSYS; |
| } |
| |
| /* d. KEYCPEN set to 1 to enable key capture at the end of the transaction. */ |
| SI32_AES_A_enable_key_capture(SI32_AES_0); |
| |
| /* e. The HCBCEN, HCTREN, XOREN, BEN, SWMDEN bits should all be cleared to 0. */ |
| SI32_AES_A_exit_cipher_block_chaining_mode(SI32_AES_0); /* Clear HCBCEN */ |
| SI32_AES_A_exit_counter_mode(SI32_AES_0); /* Clear HCTREN */ |
| SI32_AES_A_select_xor_path_none(SI32_AES_0); /* Clear XOREN */ |
| SI32_AES_A_exit_bypass_hardware_mode(SI32_AES_0); /* Clear BEN */ |
| SI32_AES_A_select_dma_mode(SI32_AES_0); /* Clear SWMDEN*/ |
| } |
| |
| k_sem_reset(&crypto_si32_work_done); |
| |
| /* Once the DMA and AES settings have been set, the transfer should be started by writing 1 |
| * to the XFRSTA bit. |
| */ |
| SI32_AES_A_start_operation(SI32_AES_0); |
| |
| ret = k_sem_take(&crypto_si32_work_done, Z_TIMEOUT_MS(50)); /* TODO: Verify 50 ms */ |
| if (ret) { |
| LOG_ERR("AES operation timed out: %d", ret); |
| return -EIO; |
| } |
| |
| pkt->out_len = pkt->in_len; |
| |
| return 0; |
| } |
| |
| static int crypto_si32_aes_cbc_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, |
| const enum cipher_op op, const uint8_t iv[16]) |
| { |
| struct crypto_session *session; |
| int ret; |
| unsigned int in_buf_offset = 0; |
| unsigned int out_buf_offset = 0; |
| |
| if (!ctx) { |
| LOG_WRN("Missing context"); |
| return -EINVAL; |
| } |
| |
| session = (struct crypto_session *)ctx->drv_sessn_state; |
| |
| if (!pkt) { |
| LOG_WRN("Missing packet"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len % 16) { |
| LOG_ERR("Can't work on partial blocks"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len == 0) { |
| LOG_WRN("Zero-sized packet"); |
| return 0; |
| } |
| |
| /* Prefix IV to/remove from ciphertext unless CAP_NO_IV_PREFIX is set. */ |
| if ((ctx->flags & CAP_NO_IV_PREFIX) == 0U) { |
| switch (op) { |
| case CRYPTO_CIPHER_OP_ENCRYPT: |
| if (pkt->out_buf_max < 16) { |
| LOG_ERR("Output buf too small"); |
| return -ENOMEM; |
| } |
| if (!pkt->out_buf) { |
| LOG_ERR("Missing output buf"); |
| return -EINVAL; |
| } |
| memcpy(pkt->out_buf, iv, 16); |
| out_buf_offset = 16; |
| break; |
| case CRYPTO_CIPHER_OP_DECRYPT: |
| in_buf_offset = 16; |
| break; |
| default: |
| LOG_ERR("Unsupported cipher_op: %d", op); |
| return -ENOSYS; |
| } |
| } |
| |
| /* As per 12.7.1.1./12.7.1.2. Configuring the DMA for Hardware CBC Encryption/Decryption */ |
| |
| /* DMA Input Channel */ |
| ret = crypto_si32_dma_setup_tx(pkt, in_buf_offset); |
| if (ret) { |
| return ret; |
| } |
| |
| /* DMA Output Channel */ |
| ret = crypto_si32_dma_setup_rx(pkt, in_buf_offset, out_buf_offset); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Initialization Vector */ |
| |
| /* The initialization vector should be initialized to the HWCTRx registers. */ |
| SI32_AES_0->HWCTR0.U32 = *((uint32_t *)iv); |
| SI32_AES_0->HWCTR1.U32 = *((uint32_t *)iv + 1); |
| SI32_AES_0->HWCTR2.U32 = *((uint32_t *)iv + 2); |
| SI32_AES_0->HWCTR3.U32 = *((uint32_t *)iv + 3); |
| |
| /* AES Module */ |
| |
| /* 1. The XFRSIZE register should be set to N-1, where N is the number of 4-word blocks. */ |
| SI32_AES_A_write_xfrsize(SI32_AES_0, (pkt->in_len - in_buf_offset) / AES_BLOCK_SIZE - 1); |
| |
| switch (op) { |
| case CRYPTO_CIPHER_OP_ENCRYPT: |
| /* 2. The HWKEYx registers should be written with the desired key in little endian |
| * format. |
| */ |
| ret = crypto_si32_aes_set_key(ctx->key.bit_stream, ctx->keylen); |
| if (ret) { |
| return ret; |
| } |
| break; |
| case CRYPTO_CIPHER_OP_DECRYPT: |
| /* 2. The HWKEYx registers should be written with decryption key value |
| * (automatically generated in the HWKEYx registers after the encryption process). |
| */ |
| ret = crypto_si32_aes_set_key(session->decryption_key, ctx->keylen); |
| if (ret) { |
| return ret; |
| } |
| break; |
| default: |
| LOG_ERR("Unsupported cipher_op: %d", op); |
| return -ENOSYS; |
| } |
| |
| /* 3. The CONTROL register should be set as follows: */ |
| { |
| __ASSERT(SI32_AES_0->CONTROL.ERRIEN == 1, "a. ERRIEN set to 1."); |
| |
| /* b. KEYSIZE set to the appropriate number of bits for the key. */ |
| ret = crypto_si32_aes_set_key_size(ctx); |
| if (ret) { |
| return ret; |
| } |
| |
| switch (op) { |
| case CRYPTO_CIPHER_OP_ENCRYPT: |
| /* c. XOREN bits set to 01b to enable the XOR input path. */ |
| SI32_AES_A_select_xor_path_input(SI32_AES_0); |
| |
| /* d. EDMD set to 1 for encryption. */ |
| SI32_AES_A_select_encryption_mode(SI32_AES_0); |
| |
| /* e. KEYCPEN set to 1 to enable key capture at the end of the transaction. |
| */ |
| SI32_AES_A_enable_key_capture(SI32_AES_0); |
| break; |
| case CRYPTO_CIPHER_OP_DECRYPT: |
| /* c. XOREN set to 10b to enable the XOR output path. */ |
| SI32_AES_A_select_xor_path_output(SI32_AES_0); |
| |
| /* d. EDMD set to 0 for decryption. */ |
| SI32_AES_A_select_decryption_mode(SI32_AES_0); |
| |
| /* e. KEYCPEN set to 0 to disable key capture at the end of the transaction. |
| */ |
| SI32_AES_A_disable_key_capture(SI32_AES_0); |
| break; |
| default: |
| LOG_ERR("Unsupported cipher_op: %d", op); |
| return -ENOSYS; |
| } |
| |
| /* f. HCBCEN set to 1 to enable Hardware Cipher Block Chaining mode. */ |
| SI32_AES_A_enter_cipher_block_chaining_mode(SI32_AES_0); |
| |
| /* g. The HCTREN, BEN, SWMDEN bits should all be cleared to 0. */ |
| SI32_AES_A_exit_counter_mode(SI32_AES_0); /* Clear HCTREN */ |
| SI32_AES_A_exit_bypass_hardware_mode(SI32_AES_0); /* Clear BEN */ |
| SI32_AES_A_select_dma_mode(SI32_AES_0); /* Clear SWMDEN*/ |
| } |
| |
| k_sem_reset(&crypto_si32_work_done); |
| |
| /* Once the DMA and AES settings have been set, the transfer should be started by writing 1 |
| * to the XFRSTA bit. |
| */ |
| SI32_AES_A_start_operation(SI32_AES_0); |
| |
| ret = k_sem_take(&crypto_si32_work_done, Z_TIMEOUT_MS(50)); /* TODO: Verify 50 ms */ |
| if (ret) { |
| LOG_ERR("AES operation timed out: %d", ret); |
| return -EIO; |
| } |
| |
| /* Update passed IV buffer with new version */ |
| *((uint32_t *)iv) = SI32_AES_0->HWCTR0.U32; |
| *((uint32_t *)iv + 1) = SI32_AES_0->HWCTR1.U32; |
| *((uint32_t *)iv + 2) = SI32_AES_0->HWCTR2.U32; |
| *((uint32_t *)iv + 3) = SI32_AES_0->HWCTR3.U32; |
| |
| pkt->out_len = pkt->in_len - in_buf_offset + out_buf_offset; |
| |
| return 0; |
| } |
| |
| static int crypto_si32_aes_ctr_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t iv[12]) |
| { |
| struct crypto_session *session; |
| int ret; |
| |
| if (!ctx) { |
| LOG_WRN("Missing context"); |
| return -EINVAL; |
| } |
| |
| session = (struct crypto_session *)ctx->drv_sessn_state; |
| |
| if (!pkt) { |
| LOG_WRN("Missing packet"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len % 16) { |
| LOG_ERR("Can't work on partial blocks"); |
| return -EINVAL; |
| } |
| |
| if (pkt->in_len == 0) { |
| LOG_WRN("Zero-sized packet"); |
| return 0; |
| } |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| |
| /* 12.8.1./12.8.2. Configuring the DMA for CTR Encryption/Decryption */ |
| |
| /* DMA Output Channel */ |
| ret = crypto_si32_dma_setup_rx(pkt, 0, 0); |
| if (ret) { |
| goto out_unlock; |
| } |
| |
| /* DMA XOR Channel */ |
| ret = crypto_si32_dma_setup_xor(pkt); |
| if (ret) { |
| goto out_unlock; |
| } |
| |
| /* Initialization Vector */ |
| |
| /* The initialization vector should be initialized to the HWCTRx registers. */ |
| switch (ctx->mode_params.ctr_info.ctr_len) { |
| case 32: |
| SI32_AES_0->HWCTR3.U32 = sys_cpu_to_be32(session->current_ctr); |
| SI32_AES_0->HWCTR2.U32 = *((uint32_t *)iv + 2); |
| SI32_AES_0->HWCTR1.U32 = *((uint32_t *)iv + 1); |
| SI32_AES_0->HWCTR0.U32 = *((uint32_t *)iv); |
| break; |
| default: |
| LOG_ERR("Unsupported counter length: %" PRIu16, ctx->mode_params.ctr_info.ctr_len); |
| ret = -ENOSYS; |
| goto out_unlock; |
| } |
| |
| /* AES Module */ |
| |
| /* 1. The XFRSIZE register should be set to N-1, where N is the number of 4-word blocks. */ |
| SI32_AES_A_write_xfrsize(SI32_AES_0, pkt->in_len / AES_BLOCK_SIZE - 1); |
| |
| /* 2. The HWKEYx registers should be written with the desired key in little endian format. |
| */ |
| ret = crypto_si32_aes_set_key(ctx->key.bit_stream, ctx->keylen); |
| if (ret) { |
| goto out_unlock; |
| } |
| |
| /* 3. The CONTROL register should be set as follows: */ |
| { |
| __ASSERT(SI32_AES_0->CONTROL.ERRIEN == 1, "a. ERRIEN set to 1."); |
| |
| /* b. KEYSIZE set to the appropriate number of bits for the key. */ |
| ret = crypto_si32_aes_set_key_size(ctx); |
| if (ret) { |
| goto out_unlock; |
| } |
| |
| /* c. EDMD set to 1 for encryption. */ |
| SI32_AES_A_select_encryption_mode(SI32_AES_0); |
| |
| /* d. KEYCPEN set to 0 to disable key capture at the end of the transaction. */ |
| SI32_AES_A_disable_key_capture(SI32_AES_0); |
| |
| /* e. HCTREN set to 1 to enable Hardware Counter mode. */ |
| SI32_AES_A_enter_counter_mode(SI32_AES_0); |
| |
| /* f. XOREN set to 10b to enable the XOR output path. */ |
| SI32_AES_A_select_xor_path_output(SI32_AES_0); |
| |
| /* g. The HCBCEN, BEN, SWMDEN bits should all be cleared to 0. */ |
| SI32_AES_A_exit_cipher_block_chaining_mode(SI32_AES_0); /* Clear HCBCEN */ |
| SI32_AES_A_exit_bypass_hardware_mode(SI32_AES_0); /* Clear BEN */ |
| SI32_AES_A_select_dma_mode(SI32_AES_0); /* Clear SWMDEN*/ |
| } |
| |
| k_sem_reset(&crypto_si32_work_done); |
| |
| /* Once the DMA and AES settings have been set, the transfer should be started by writing 1 |
| * to the XFRSTA bit. |
| */ |
| SI32_AES_A_start_operation(SI32_AES_0); |
| |
| ret = k_sem_take(&crypto_si32_work_done, Z_TIMEOUT_MS(50)); /* TODO: Verify 50 ms */ |
| if (ret) { |
| LOG_ERR("AES operation timed out: %d", ret); |
| ret = -EIO; |
| goto out_unlock; |
| } |
| |
| /* Update session with new counter value */ |
| switch (ctx->mode_params.ctr_info.ctr_len) { |
| case 32: |
| session->current_ctr = sys_be32_to_cpu(SI32_AES_0->HWCTR3.U32); |
| break; |
| default: |
| LOG_ERR("Unsupported counter length: %" PRIu16, ctx->mode_params.ctr_info.ctr_len); |
| ret = -ENOSYS; |
| goto out_unlock; |
| } |
| |
| pkt->out_len = pkt->in_len; |
| |
| out_unlock: |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return ret; |
| } |
| |
| static int crypto_si32_aes_ecb_encrypt(struct cipher_ctx *ctx, struct cipher_pkt *pkt) |
| { |
| int ret; |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| ret = crypto_si32_aes_ecb_op(ctx, pkt, CRYPTO_CIPHER_OP_ENCRYPT); |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return ret; |
| } |
| |
| static int crypto_si32_aes_ecb_decrypt(struct cipher_ctx *ctx, struct cipher_pkt *pkt) |
| { |
| int ret; |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| ret = crypto_si32_aes_ecb_op(ctx, pkt, CRYPTO_CIPHER_OP_DECRYPT); |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return ret; |
| } |
| |
| static int crypto_si32_aes_cbc_encrypt(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv) |
| { |
| int ret; |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| ret = crypto_si32_aes_cbc_op(ctx, pkt, CRYPTO_CIPHER_OP_ENCRYPT, iv); |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return ret; |
| } |
| |
| static int crypto_si32_aes_cbc_decrypt(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv) |
| { |
| int ret; |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| ret = crypto_si32_aes_cbc_op(ctx, pkt, CRYPTO_CIPHER_OP_DECRYPT, iv); |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return ret; |
| } |
| |
| static int crypto_si32_begin_session(const struct device *dev, struct cipher_ctx *ctx, |
| const enum cipher_algo algo, const enum cipher_mode mode, |
| const enum cipher_op op) |
| { |
| int ret = 0; |
| struct crypto_session *session = 0; |
| |
| if (algo != CRYPTO_CIPHER_ALGO_AES) { |
| LOG_ERR("This driver supports only AES"); |
| return -ENOTSUP; |
| } |
| |
| if (!(ctx->flags & CAP_SYNC_OPS)) { |
| LOG_ERR("This driver supports only synchronous mode"); |
| return -ENOTSUP; |
| } |
| |
| if (ctx->key.bit_stream == NULL) { |
| LOG_ERR("No key provided"); |
| return -EINVAL; |
| } |
| |
| if (ctx->keylen != 16) { |
| LOG_ERR("Only AES-128 implemented"); |
| return -ENOSYS; |
| } |
| |
| switch (mode) { |
| case CRYPTO_CIPHER_MODE_CBC: |
| if (ctx->flags & CAP_INPLACE_OPS && (ctx->flags & CAP_NO_IV_PREFIX) == 0) { |
| LOG_ERR("In-place requires no IV prefix"); |
| return -EINVAL; |
| } |
| break; |
| case CRYPTO_CIPHER_MODE_CTR: |
| if (ctx->mode_params.ctr_info.ctr_len != 32U) { |
| LOG_ERR("Only 32 bit counter implemented"); |
| return -ENOSYS; |
| } |
| break; |
| case CRYPTO_CIPHER_MODE_ECB: |
| case CRYPTO_CIPHER_MODE_CCM: |
| case CRYPTO_CIPHER_MODE_GCM: |
| default: |
| break; |
| } |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| |
| for (unsigned int i = 0; i < ARRAY_SIZE(crypto_si32_data.sessions); i++) { |
| if (crypto_si32_data.sessions[i].in_use) { |
| continue; |
| } |
| |
| LOG_INF("Claiming session %u", i); |
| session = &crypto_si32_data.sessions[i]; |
| break; |
| } |
| |
| if (!session) { |
| LOG_INF("All %d session(s) in use", CONFIG_CRYPTO_SI32_MAX_SESSION); |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| switch (op) { |
| case CRYPTO_CIPHER_OP_ENCRYPT: |
| switch (mode) { |
| case CRYPTO_CIPHER_MODE_ECB: |
| ctx->ops.block_crypt_hndlr = crypto_si32_aes_ecb_encrypt; |
| break; |
| case CRYPTO_CIPHER_MODE_CBC: |
| ctx->ops.cbc_crypt_hndlr = crypto_si32_aes_cbc_encrypt; |
| break; |
| case CRYPTO_CIPHER_MODE_CTR: |
| ctx->ops.ctr_crypt_hndlr = crypto_si32_aes_ctr_op; |
| session->current_ctr = 0; |
| break; |
| case CRYPTO_CIPHER_MODE_CCM: |
| case CRYPTO_CIPHER_MODE_GCM: |
| default: |
| LOG_ERR("Unsupported encryption mode: %d", mode); |
| ret = -ENOSYS; |
| goto out; |
| } |
| break; |
| case CRYPTO_CIPHER_OP_DECRYPT: |
| switch (mode) { |
| case CRYPTO_CIPHER_MODE_ECB: |
| ctx->ops.block_crypt_hndlr = crypto_si32_aes_ecb_decrypt; |
| ret = crypto_si32_aes_calc_decryption_key(ctx, session->decryption_key); |
| if (ret) { |
| goto out; |
| } |
| break; |
| case CRYPTO_CIPHER_MODE_CBC: |
| ctx->ops.cbc_crypt_hndlr = crypto_si32_aes_cbc_decrypt; |
| ret = crypto_si32_aes_calc_decryption_key(ctx, session->decryption_key); |
| if (ret) { |
| goto out; |
| } |
| break; |
| case CRYPTO_CIPHER_MODE_CTR: |
| ctx->ops.ctr_crypt_hndlr = crypto_si32_aes_ctr_op; |
| session->current_ctr = 0; |
| break; |
| case CRYPTO_CIPHER_MODE_CCM: |
| case CRYPTO_CIPHER_MODE_GCM: |
| default: |
| LOG_ERR("Unsupported decryption mode: %d", mode); |
| ret = -ENOSYS; |
| goto out; |
| } |
| break; |
| default: |
| LOG_ERR("Unsupported cipher_op: %d", op); |
| ret = -ENOSYS; |
| goto out; |
| } |
| |
| session->in_use = true; |
| ctx->drv_sessn_state = session; |
| |
| out: |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return ret; |
| } |
| |
| static int crypto_si32_free_session(const struct device *dev, struct cipher_ctx *ctx) |
| { |
| ARG_UNUSED(dev); |
| |
| if (!ctx) { |
| LOG_WRN("Missing context"); |
| return -EINVAL; |
| } |
| |
| struct crypto_session *session = (struct crypto_session *)ctx->drv_sessn_state; |
| |
| k_mutex_lock(&crypto_si32_in_use, K_FOREVER); |
| session->in_use = false; |
| k_mutex_unlock(&crypto_si32_in_use); |
| |
| return 0; |
| } |
| |
| /* AES only, no support for hashing */ |
| static const struct crypto_driver_api crypto_si32_api = { |
| .query_hw_caps = crypto_si32_query_hw_caps, |
| .cipher_begin_session = crypto_si32_begin_session, |
| .cipher_free_session = crypto_si32_free_session, |
| }; |
| |
| DEVICE_DT_INST_DEFINE(0, crypto_si32_init, NULL, NULL, NULL, POST_KERNEL, |
| CONFIG_CRYPTO_INIT_PRIORITY, &crypto_si32_api); |