blob: 99081c7d3a50fe0f7d7b0b566f5847637fcac474 [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT adi_max32_adc
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_max32, CONFIG_ADC_LOG_LEVEL);
#include <wrap_max32_adc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
/* reference voltage for the ADC */
#define MAX32_ADC_VREF_MV DT_INST_PROP(0, vref_mv)
#define ADC_MAX32_INT_FIFO_LVL_MSK BIT(7)
#define ADC_MAX32_SAMPLE_SIZE 2
#define ADC_MAX32_BYTE_COUNT 16
enum adc_max32_fifo_format {
ADC_MAX32_DATA_STATUS_FIFO,
ADC_MAX32_DATA_ONLY_FIFO,
ADC_MAX32_RAW_DATA_ONLY_FIFO,
};
struct max32_adc_config {
uint8_t channel_count;
mxc_adc_regs_t *regs;
int clock_divider;
int track_count;
int idle_count;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
void (*irq_func)(void);
};
struct max32_adc_data {
const struct device *dev;
struct adc_context ctx;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
uint32_t sample_channels;
const uint8_t resolution;
#ifdef CONFIG_ADC_MAX32_STREAM
struct rtio_iodev_sqe *sqe;
struct rtio *rtio_ctx;
struct rtio_iodev *iodev;
uint64_t timestamp;
struct rtio *r_cb;
uint32_t adc_sample;
uint8_t data_ready_gpio;
uint8_t no_mem;
struct k_timer sample_timer;
const struct adc_sequence *sequence;
uint8_t fifo_full_irq;
#endif /* CONFIG_ADC_MAX32_STREAM */
};
#ifdef CONFIG_ADC_MAX32_STREAM
/** MAX32 qscale modes */
enum max32_qscale_modes {
MAX32_12B_MODE = 0,
};
struct adc_max32_fifo_config {
enum adc_max32_fifo_format fifo_format;
uint16_t fifo_samples;
};
struct adc_max32_fifo_data {
uint16_t is_fifo: 1;
uint16_t max32_qscale_mode: 1;
uint16_t diff_mode: 1;
uint16_t res: 4;
uint16_t fifo_byte_count: 5;
uint16_t sample_set_size: 4;
uint16_t vref_mv;
uint64_t timestamp;
} __attribute__((__packed__));
#endif /* CONFIG_ADC_MAX32_STREAM */
#ifdef CONFIG_ADC_ASYNC
static void adc_complete_cb(void *req, int error)
{
ARG_UNUSED(req);
ARG_UNUSED(error);
}
#endif /* CONFIG_ADC_ASYNC */
#ifdef CONFIG_ADC_MAX32_STREAM
static void adc_complete_rtio_cb(const struct device *dev)
{
struct max32_adc_data *data = dev->data;
struct rtio_iodev_sqe *iodev_sqe = data->sqe;
rtio_iodev_sqe_ok(iodev_sqe, 0);
}
#endif /* CONFIG_ADC_MAX32_STREAM */
static void adc_max32_start_channel(const struct device *dev)
{
struct max32_adc_data *data = dev->data;
int ret = 0;
#if defined(CONFIG_ADC_ASYNC)
if (data->ctx.asynchronous) {
ret = Wrap_MXC_ADC_StartConversionAsync(&data->sample_channels, adc_complete_cb);
if (ret < 0) {
LOG_ERR("Error starting conversion (%d)", ret);
}
} else {
#endif /* CONFIG_ADC_ASYNC */
while (data->sample_channels) {
ret = Wrap_MXC_ADC_StartConversion(&data->sample_channels);
if (ret < 0) {
LOG_ERR("Error starting conversion (%d)", ret);
return;
}
Wrap_MXC_ADC_GetData(&data->buffer);
}
Wrap_MXC_ADC_DisableConversion();
adc_context_on_sampling_done(&data->ctx, dev);
#if defined(CONFIG_ADC_ASYNC)
}
#endif /* CONFIG_ADC_ASYNC */
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct max32_adc_data *data = CONTAINER_OF(ctx, struct max32_adc_data, ctx);
data->sample_channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
adc_max32_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
struct max32_adc_data *data = CONTAINER_OF(ctx, struct max32_adc_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int start_read(const struct device *dev, const struct adc_sequence *seq)
{
struct max32_adc_data *data = dev->data;
uint32_t num_of_sample_channels = POPCOUNT(seq->channels);
uint32_t num_of_sample = 1;
int ret = 0;
if (seq->resolution != data->resolution) {
LOG_ERR("Unsupported resolution (%d)", seq->resolution);
return -ENOTSUP;
}
if (seq->channels == 0) {
return -EINVAL;
}
if ((data->channels & seq->channels) != seq->channels) {
return -EINVAL;
}
ret = Wrap_MXC_ADC_AverageConfig(seq->oversampling);
if (ret != 0) {
return -EINVAL;
}
if (seq->options) {
num_of_sample += seq->options->extra_samplings;
}
if (seq->buffer_size < (num_of_sample * num_of_sample_channels)) { /* Buffer size control */
return -ENOMEM;
}
data->buffer = seq->buffer;
adc_context_start_read(&data->ctx, seq);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_max32_read(const struct device *dev, const struct adc_sequence *seq)
{
struct max32_adc_data *data = dev->data;
int ret;
adc_context_lock(&data->ctx, false, NULL);
ret = start_read(dev, seq);
adc_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_ADC_MAX32_STREAM
static int start_read_stream(const struct device *dev, const struct adc_sequence *seq)
{
struct max32_adc_data *data = dev->data;
int ret = 0;
if (seq->resolution != data->resolution) {
LOG_ERR("Unsupported resolution (%d)", seq->resolution);
return -ENOTSUP;
}
if (seq->channels == 0) {
return -EINVAL;
}
if ((data->channels & seq->channels) != seq->channels) {
return -EINVAL;
}
ret = Wrap_MXC_ADC_AverageConfig(seq->oversampling);
if (ret != 0) {
return -EINVAL;
}
data->ctx.asynchronous = 1;
data->sample_channels = seq->channels;
/* Here we use regular cb that does nothing, it should be
* adc_complete_rtio_cb but the problem is dev struct
* cannot be passed to HAL without some big changes
* in the HAL layers, for now it is set like this
*/
ret = Wrap_MXC_ADC_StartConversionAsyncStream(&data->sample_channels, adc_complete_cb);
if (ret != 0) {
return -EINVAL;
}
return adc_context_wait_for_completion(&data->ctx);
}
void adc_max32_submit_stream(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe)
{
struct max32_adc_data *data = (struct max32_adc_data *)dev->data;
const struct adc_read_config *read_cfg = iodev_sqe->sqe.iodev->data;
int rc;
if (data->no_mem == 1) {
data->no_mem = 0;
return;
}
data->sqe = iodev_sqe;
adc_context_lock(&data->ctx, false, NULL);
rc = start_read_stream(dev, read_cfg->sequence);
adc_context_release(&data->ctx, rc);
if (rc < 0) {
LOG_ERR("Error starting conversion (%d)", rc);
}
}
static const uint32_t adc_max32_resolution[] = {
[MAX32_12B_MODE] = 12,
};
static inline int adc_max32_convert_q31(q31_t *out, const uint8_t *buff,
enum max32_qscale_modes mode, uint8_t diff_mode,
uint16_t vref_mv, uint8_t adc_shift)
{
int32_t data_in = 0;
uint32_t scale = BIT(adc_max32_resolution[mode]);
/* No Differential mode */
if (diff_mode) {
return -EINVAL;
}
uint32_t sensitivity = (vref_mv * (scale - 1)) / scale
* 1000 / scale; /* uV / LSB */
if (mode == MAX32_12B_MODE) {
data_in = (buff[1] << 8) | buff[0];
if (diff_mode && (data_in & (BIT(adc_max32_resolution[mode] - 1)))) {
data_in |= ~BIT_MASK(adc_max32_resolution[mode]);
}
} else {
data_in = sys_get_be16(buff);
}
*out = BIT(31 - adc_shift) * sensitivity / 1000000 * data_in;
return 0;
}
static int adc_max32_decoder_get_frame_count(const uint8_t *buffer, uint32_t channel,
uint16_t *frame_count)
{
const struct adc_max32_fifo_data *data = (const struct adc_max32_fifo_data *)buffer;
*frame_count = data->fifo_byte_count/ADC_MAX32_SAMPLE_SIZE;
return 0;
}
static int adc_max32_decoder_decode(const uint8_t *buffer, uint32_t channel, uint32_t *fit,
uint16_t max_count, void *data_out)
{
const struct adc_max32_fifo_data *enc_data = (const struct adc_max32_fifo_data *)buffer;
const uint8_t *buffer_end =
buffer + sizeof(struct adc_max32_fifo_data) + enc_data->fifo_byte_count;
int count = 0;
uint8_t sample_num = 0;
if (buffer_end <= (buffer + *fit + sizeof(struct adc_max32_fifo_data))) {
return 0;
}
struct adc_data *data = (struct adc_data *)data_out;
memset(data, 0, sizeof(struct adc_data));
data->header.base_timestamp_ns = enc_data->timestamp;
data->header.reading_count = 1;
/* 32 is used because input parameter for __builtin_clz func is
* unsigneg int (32 bits) and func will consider any input value
* as 32 bit.
*/
data->shift = 32 - __builtin_clz(enc_data->vref_mv);
buffer += sizeof(struct adc_max32_fifo_data);
uint8_t sample_set_size = enc_data->sample_set_size;
/* Calculate which sample is decoded. */
if (*fit) {
sample_num = *fit / sample_set_size;
}
while (count < max_count && buffer < buffer_end) {
/* 125 KSPS - this can be calculated from
* cnt and idle dts parameters but it is hardcoded for now
*/
data->readings[count].timestamp_delta = sample_num * (UINT32_C(1000000000) / 62500);
adc_max32_convert_q31(&data->readings[count].value, (buffer + *fit),
enc_data->max32_qscale_mode, enc_data->diff_mode,
enc_data->vref_mv, data->shift);
sample_num++;
*fit += sample_set_size;
count++;
}
return 0;
}
#endif /* CONFIG_ADC_MAX32_STREAM */
#ifdef CONFIG_ADC_ASYNC
static int adc_max32_read_async(const struct device *dev, const struct adc_sequence *seq,
struct k_poll_signal *async)
{
struct max32_adc_data *data = dev->data;
int ret;
adc_context_lock(&data->ctx, true, async);
ret = start_read(dev, seq);
adc_context_release(&data->ctx, ret);
return ret;
}
#endif /* CONFIG_ADC_ASYNC */
static int adc_max32_channel_setup(const struct device *dev, const struct adc_channel_cfg *cfg)
{
const struct max32_adc_config *conf = dev->config;
struct max32_adc_data *data = dev->data;
wrap_mxc_adc_scale_t wrap_mxc_scale;
uint8_t adc_reference;
int ret = 0;
if (cfg->channel_id >= conf->channel_count) {
LOG_ERR("Invalid channel (%u)", cfg->channel_id);
return -EINVAL;
}
if (cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid channel acquisition time");
return -EINVAL;
}
if (cfg->differential) {
LOG_ERR("Differential sampling not supported");
return -ENOTSUP;
}
switch (cfg->reference) {
case ADC_REF_INTERNAL:
adc_reference = ADI_MAX32_ADC_REF_INTERNAL;
break;
case ADC_REF_VDD_1_2:
adc_reference = ADI_MAX32_ADC_REF_VDD_1_2;
break;
case ADC_REF_EXTERNAL0:
adc_reference = ADI_MAX32_ADC_REF_EXT0;
break;
default:
return -ENOTSUP;
}
ret = Wrap_MXC_ADC_ReferenceSelect(adc_reference);
if (ret != 0) {
LOG_ERR("Reference is not supported.");
return -ENOTSUP;
}
switch (cfg->gain) {
case ADC_GAIN_1_6:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_6;
break;
case ADC_GAIN_1_4:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_4;
break;
case ADC_GAIN_1_3:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_3;
break;
case ADC_GAIN_1_2:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_2;
break;
case ADC_GAIN_1:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_1;
break;
case ADC_GAIN_2:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_2X;
break;
default:
return -ENOTSUP;
}
ret = Wrap_MXC_ADC_SetExtScale(wrap_mxc_scale);
if (ret != 0) {
LOG_ERR("Gain value is not supported.");
return -ENOTSUP;
}
data->channels |= BIT(cfg->channel_id);
return 0;
}
static int adc_max32_init(const struct device *dev)
{
const struct max32_adc_config *config = dev->config;
struct max32_adc_data *data = dev->data;
uint32_t ret;
wrap_mxc_adc_req_t req = {
.clock = config->perclk.clk_src,
.clkdiv = config->clock_divider,
.cal = 1, /* Initial calibration enabled. */
.ref = 1, /* Reference set to internal reference until user define it. */
.trackCount = config->track_count,
.idleCount = config->idle_count};
/* Enable clock */
ret = clock_control_on(config->clock, (clock_control_subsys_t)&config->perclk);
if (ret) {
return ret;
}
ret = Wrap_MXC_ADC_Init(&req);
if (ret) {
return -EINVAL;
}
ret = pinctrl_apply_state(config->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
config->irq_func();
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_ADC_MAX32_STREAM
static void adc_max32_rtio_isr(const struct device *dev)
{
struct max32_adc_data *const data = dev->data;
uint32_t flags = MXC_ADC_GetFlags();
uint32_t int_req = BIT(3);
MXC_ADC_Handler();
if (flags & int_req) {
MXC_ADC_Free();
}
MXC_ADC_ClearFlags(flags);
if (flags & WRAP_MXC_F_ADC_CONV_DONE_IF) {
data->timestamp = k_ticks_to_ns_floor64(k_uptime_ticks());
const size_t min_read_size = 64;
uint8_t *buf;
uint32_t buf_len;
if (rtio_sqe_rx_buf(data->sqe, min_read_size, min_read_size,
&buf, &buf_len) != 0) {
data->no_mem = 1;
rtio_iodev_sqe_err(data->sqe, -ENOMEM);
return;
}
struct adc_max32_fifo_data *hdr = (struct adc_max32_fifo_data *)buf;
hdr->is_fifo = 1;
hdr->timestamp = data->timestamp;
hdr->vref_mv = MAX32_ADC_VREF_MV;
hdr->max32_qscale_mode = MAX32_12B_MODE;
hdr->fifo_byte_count = ADC_MAX32_BYTE_COUNT;
hdr->sample_set_size = ADC_MAX32_SAMPLE_SIZE;
uint8_t *read_buf = buf + sizeof(*hdr);
Wrap_MXC_ADC_GetData((uint16_t **)&read_buf);
if (data->sample_channels != 0) {
adc_max32_start_channel(dev);
} else {
Wrap_MXC_ADC_DisableConversion();
adc_context_on_sampling_done(&data->ctx, dev);
}
}
if (flags & int_req) {
adc_complete_rtio_cb(dev);
}
}
ADC_DECODER_API_DT_DEFINE() = {
.get_frame_count = adc_max32_decoder_get_frame_count,
.decode = adc_max32_decoder_decode,
};
int adc_max32_get_decoder(const struct device *dev, const struct adc_decoder_api **api)
{
ARG_UNUSED(dev);
*api = &ADC_DECODER_NAME();
return 0;
}
#else
static void adc_max32_isr(const struct device *dev)
{
struct max32_adc_data *const data = dev->data;
uint32_t flags = MXC_ADC_GetFlags();
MXC_ADC_Handler();
MXC_ADC_ClearFlags(flags);
if (flags & WRAP_MXC_F_ADC_CONV_DONE_IF) {
Wrap_MXC_ADC_GetData(&data->buffer);
if (data->sample_channels != 0) {
adc_max32_start_channel(dev);
} else {
Wrap_MXC_ADC_DisableConversion();
adc_context_on_sampling_done(&data->ctx, dev);
}
}
}
#endif /* CONFIG_ADC_MAX32_STREAM */
static DEVICE_API(adc, adc_max32_driver_api) = {
.channel_setup = adc_max32_channel_setup,
.read = adc_max32_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_max32_read_async,
#endif /* CONFIG_ADC_ASYNC */
.ref_internal = MAX32_ADC_VREF_MV,
#ifdef CONFIG_ADC_MAX32_STREAM
.submit = adc_max32_submit_stream,
.get_decoder = adc_max32_get_decoder,
#endif /* CONFIG_ADC_MAX32_STREAM */
};
#define MAX32_ADC_INIT(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
static void max32_adc_irq_init_##_num(void) \
{ \
COND_CODE_1(CONFIG_ADC_MAX32_STREAM, \
(IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), adc_max32_rtio_isr, \
DEVICE_DT_INST_GET(_num), 0)), \
(IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), adc_max32_isr, \
DEVICE_DT_INST_GET(_num), 0))); \
irq_enable(DT_INST_IRQN(_num)); \
}; \
static const struct max32_adc_config max32_adc_config_##_num = { \
.channel_count = DT_INST_PROP(_num, channel_count), \
.regs = (mxc_adc_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.clock_divider = DT_INST_PROP_OR(_num, clock_divider, 1), \
.track_count = DT_INST_PROP_OR(_num, track_count, 0), \
.idle_count = DT_INST_PROP_OR(_num, idle_count, 0), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
.perclk.clk_src = \
DT_INST_PROP_OR(_num, clock_source, ADI_MAX32_PRPH_CLK_SRC_PCLK), \
.irq_func = max32_adc_irq_init_##_num, \
}; \
static struct max32_adc_data max32_adc_data_##_num = { \
ADC_CONTEXT_INIT_TIMER(max32_adc_data_##_num, ctx), \
ADC_CONTEXT_INIT_LOCK(max32_adc_data_##_num, ctx), \
ADC_CONTEXT_INIT_SYNC(max32_adc_data_##_num, ctx), \
.resolution = DT_INST_PROP(_num, resolution), \
}; \
DEVICE_DT_INST_DEFINE(_num, adc_max32_init, NULL, &max32_adc_data_##_num, \
&max32_adc_config_##_num, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&adc_max32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(MAX32_ADC_INIT)