blob: 5bb98ac44e42aa15346f8f5152f9c3ad80d62613 [file] [log] [blame]
/*
* Copyright (c) 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/counter.h>
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(test);
static struct k_sem top_cnt_sem;
static volatile uint32_t top_cnt;
static struct k_sem alarm_cnt_sem;
static volatile uint32_t alarm_cnt;
static void top_handler(const struct device *dev, void *user_data);
void *exp_user_data = (void *)199;
struct counter_alarm_cfg alarm_cfg;
struct counter_alarm_cfg alarm_cfg2;
#define DEVICE_DT_GET_AND_COMMA(node_id) DEVICE_DT_GET(node_id),
/* Generate a list of devices for all instances of the "compat" */
#define DEVS_FOR_DT_COMPAT(compat) \
DT_FOREACH_STATUS_OKAY(compat, DEVICE_DT_GET_AND_COMMA)
static const struct device *const devices[] = {
#ifdef CONFIG_COUNTER_TIMER0
/* Nordic TIMER0 may be reserved for Bluetooth */
DEVICE_DT_GET(DT_NODELABEL(timer0)),
#endif
#ifdef CONFIG_COUNTER_TIMER1
DEVICE_DT_GET(DT_NODELABEL(timer1)),
#endif
#ifdef CONFIG_COUNTER_TIMER2
DEVICE_DT_GET(DT_NODELABEL(timer2)),
#endif
#ifdef CONFIG_COUNTER_TIMER3
DEVICE_DT_GET(DT_NODELABEL(timer3)),
#endif
#ifdef CONFIG_COUNTER_TIMER4
DEVICE_DT_GET(DT_NODELABEL(timer4)),
#endif
#ifdef CONFIG_COUNTER_RTC0
/* Nordic RTC0 may be reserved for Bluetooth */
DEVICE_DT_GET(DT_NODELABEL(rtc0)),
#endif
/* Nordic RTC1 is used for the system clock */
#ifdef CONFIG_COUNTER_RTC2
DEVICE_DT_GET(DT_NODELABEL(rtc2)),
#endif
#ifdef CONFIG_COUNTER_TIMER_STM32
#define STM32_COUNTER_DEV(idx) \
DEVICE_DT_GET(DT_INST(idx, st_stm32_counter)),
#define DT_DRV_COMPAT st_stm32_counter
DT_INST_FOREACH_STATUS_OKAY(STM32_COUNTER_DEV)
#undef DT_DRV_COMPAT
#undef STM32_COUNTER_DEV
#endif
#ifdef CONFIG_COUNTER_NATIVE_POSIX
DEVICE_DT_GET(DT_NODELABEL(counter0)),
#endif
/* NOTE: there is no trailing comma, as the DEVS_FOR_DT_COMPAT
* handles it.
*/
DEVS_FOR_DT_COMPAT(arm_cmsdk_timer)
DEVS_FOR_DT_COMPAT(arm_cmsdk_dtimer)
DEVS_FOR_DT_COMPAT(microchip_xec_timer)
DEVS_FOR_DT_COMPAT(nxp_imx_epit)
DEVS_FOR_DT_COMPAT(nxp_imx_gpt)
#ifdef CONFIG_COUNTER_MCUX_CTIMER
DEVS_FOR_DT_COMPAT(nxp_lpc_ctimer)
#endif
#ifdef CONFIG_COUNTER_MCUX_RTC
DEVS_FOR_DT_COMPAT(nxp_kinetis_rtc)
#endif
#ifdef CONFIG_COUNTER_MCUX_QTMR
DEVS_FOR_DT_COMPAT(nxp_imx_tmr)
#endif
#ifdef CONFIG_COUNTER_MCUX_LPC_RTC
DEVS_FOR_DT_COMPAT(nxp_lpc_rtc)
#endif
DEVS_FOR_DT_COMPAT(silabs_gecko_rtcc)
DEVS_FOR_DT_COMPAT(st_stm32_rtc)
#ifdef CONFIG_COUNTER_MCUX_PIT
DEVS_FOR_DT_COMPAT(nxp_kinetis_pit)
#endif
#ifdef CONFIG_COUNTER_XLNX_AXI_TIMER
DEVS_FOR_DT_COMPAT(xlnx_xps_timer_1_00_a)
#endif
#ifdef CONFIG_COUNTER_TMR_ESP32
DEVS_FOR_DT_COMPAT(espressif_esp32_timer)
#endif
};
static const struct device *const period_devs[] = {
#ifdef CONFIG_COUNTER_MCUX_RTC
DEVS_FOR_DT_COMPAT(nxp_kinetis_rtc)
#endif
#ifdef CONFIG_COUNTER_MCUX_LPC_RTC
DEVS_FOR_DT_COMPAT(nxp_lpc_rtc)
#endif
DEVS_FOR_DT_COMPAT(st_stm32_rtc)
};
typedef void (*counter_test_func_t)(const struct device *dev);
typedef bool (*counter_capability_func_t)(const struct device *dev);
static inline uint32_t get_counter_period_us(const struct device *dev)
{
for (int i = 0; i < ARRAY_SIZE(period_devs); i++) {
if (period_devs[i] == dev) {
return (USEC_PER_SEC * 2U);
}
}
/* if more counter drivers exist other than RTC,
* the test value set to 20000 by default
*/
return 20000;
}
static void counter_setup_instance(const struct device *dev)
{
k_sem_reset(&alarm_cnt_sem);
if (!k_is_user_context()) {
alarm_cnt = 0;
}
}
static void counter_tear_down_instance(const struct device *dev)
{
int err;
struct counter_top_cfg top_cfg = {
.callback = NULL,
.user_data = NULL,
.flags = 0
};
top_cfg.ticks = counter_get_max_top_value(dev);
err = counter_set_top_value(dev, &top_cfg);
if (err == -ENOTSUP) {
/* If resetting is not support, attempt without reset. */
top_cfg.flags = COUNTER_TOP_CFG_DONT_RESET;
err = counter_set_top_value(dev, &top_cfg);
}
zassert_true((err == 0) || (err == -ENOTSUP),
"%s: Setting top value to default failed", dev->name);
err = counter_stop(dev);
zassert_equal(0, err, "%s: Counter failed to stop", dev->name);
}
static void test_all_instances(counter_test_func_t func,
counter_capability_func_t capability_check)
{
zassert_true(ARRAY_SIZE(devices) > 0, "No device found");
for (int i = 0; i < ARRAY_SIZE(devices); i++) {
counter_setup_instance(devices[i]);
if ((capability_check == NULL) ||
capability_check(devices[i])) {
TC_PRINT("Testing %s\n", devices[i]->name);
func(devices[i]);
} else {
TC_PRINT("Skipped for %s\n", devices[i]->name);
}
counter_tear_down_instance(devices[i]);
/* Allow logs to be printed. */
k_sleep(K_MSEC(100));
}
}
static bool set_top_value_capable(const struct device *dev)
{
struct counter_top_cfg cfg = {
.ticks = counter_get_top_value(dev) - 1
};
int err;
err = counter_set_top_value(dev, &cfg);
if (err == -ENOTSUP) {
return false;
}
cfg.ticks++;
err = counter_set_top_value(dev, &cfg);
if (err == -ENOTSUP) {
return false;
}
return true;
}
static void top_handler(const struct device *dev, void *user_data)
{
zassert_true(user_data == exp_user_data,
"%s: Unexpected callback", dev->name);
if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS)) {
top_cnt++;
return;
}
k_sem_give(&top_cnt_sem);
}
static void test_set_top_value_with_alarm_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t top_value;
uint32_t counter_period_us;
uint32_t top_handler_cnt;
struct counter_top_cfg top_cfg = {
.callback = top_handler,
.user_data = exp_user_data,
.flags = 0
};
k_sem_reset(&top_cnt_sem);
top_cnt = 0;
counter_period_us = get_counter_period_us(dev);
top_cfg.ticks = counter_us_to_ticks(dev, counter_period_us);
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
k_busy_wait(5000);
err = counter_get_value(dev, &cnt);
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
if (counter_is_counting_up(dev)) {
err = (cnt > 0) ? 0 : 1;
} else {
top_value = counter_get_top_value(dev);
err = (cnt < top_value) ? 0 : 1;
}
zassert_true(err == 0, "%s: Counter should progress", dev->name);
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err, "%s: Counter failed to set top value (err: %d)",
dev->name, err);
k_busy_wait(5.2*counter_period_us);
top_handler_cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
top_cnt : k_sem_count_get(&top_cnt_sem);
zassert_true(top_handler_cnt == 5U,
"%s: Unexpected number of turnarounds (%d).",
dev->name, top_handler_cnt);
}
ZTEST(counter_basic, test_set_top_value_with_alarm)
{
test_all_instances(test_set_top_value_with_alarm_instance,
set_top_value_capable);
}
static void test_set_top_value_without_alarm_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t top_value;
uint32_t counter_period_us;
struct counter_top_cfg top_cfg = {
.callback = NULL,
.user_data = NULL,
.flags = 0
};
counter_period_us = get_counter_period_us(dev);
top_cfg.ticks = counter_us_to_ticks(dev, counter_period_us);
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
k_busy_wait(5000);
err = counter_get_value(dev, &cnt);
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
if (counter_is_counting_up(dev)) {
err = (cnt > 0) ? 0 : 1;
} else {
top_value = counter_get_top_value(dev);
err = (cnt < top_value) ? 0 : 1;
}
zassert_true(err == 0, "%s: Counter should progress", dev->name);
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err, "%s: Counter failed to set top value (err: %d)",
dev->name, err);
zassert_true(counter_get_top_value(dev) == top_cfg.ticks,
"%s: new top value not in use.",
dev->name);
}
ZTEST_USER(counter_no_callback, test_set_top_value_without_alarm)
{
test_all_instances(test_set_top_value_without_alarm_instance,
set_top_value_capable);
}
static void alarm_handler(const struct device *dev, uint8_t chan_id,
uint32_t counter,
void *user_data)
{
/* Arbitrary limit for alarm processing - time between hw expiration
* and read-out from counter in the handler.
*/
static const uint64_t processing_limit_us = 1000;
uint32_t now;
int err;
uint32_t top;
uint32_t diff;
err = counter_get_value(dev, &now);
zassert_true(err == 0, "%s: Counter read failed (err: %d)",
dev->name, err);
top = counter_get_top_value(dev);
if (counter_is_counting_up(dev)) {
diff = (now < counter) ?
(now + top - counter) : (now - counter);
} else {
diff = (now > counter) ?
(counter + top - now) : (counter - now);
}
zassert_true(diff <= counter_us_to_ticks(dev, processing_limit_us),
"Unexpected distance between reported alarm value(%u) "
"and actual counter value (%u), top:%d (processing "
"time limit (%d us) might be exceeded?",
counter, now, top, processing_limit_us);
if (user_data) {
zassert_true(&alarm_cfg == user_data,
"%s: Unexpected callback", dev->name);
}
if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS)) {
alarm_cnt++;
return;
}
zassert_true(k_is_in_isr(), "%s: Expected interrupt context",
dev->name);
k_sem_give(&alarm_cnt_sem);
}
static void test_single_shot_alarm_instance(const struct device *dev, bool set_top)
{
int err;
uint32_t ticks;
uint32_t cnt;
uint32_t counter_period_us;
struct counter_top_cfg top_cfg = {
.callback = top_handler,
.user_data = exp_user_data,
.flags = 0
};
counter_period_us = get_counter_period_us(dev);
ticks = counter_us_to_ticks(dev, counter_period_us);
top_cfg.ticks = ticks;
alarm_cfg.flags = 0;
alarm_cfg.callback = alarm_handler;
alarm_cfg.user_data = &alarm_cfg;
k_sem_reset(&alarm_cnt_sem);
alarm_cnt = 0;
if (counter_get_num_of_channels(dev) < 1U) {
/* Counter does not support any alarm */
return;
}
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
if (set_top) {
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err,
"%s: Counter failed to set top value", dev->name);
alarm_cfg.ticks = ticks + 1;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-EINVAL, err,
"%s: Counter should return error because ticks"
" exceeded the limit set alarm", dev->name);
alarm_cfg.ticks = ticks - 1;
}
alarm_cfg.ticks = ticks;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Counter set alarm failed (err: %d)",
dev->name, err);
k_busy_wait(2*(uint32_t)counter_ticks_to_us(dev, ticks));
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(1, cnt, "%s: Expecting alarm callback", dev->name);
k_busy_wait(1.5*counter_ticks_to_us(dev, ticks));
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(1, cnt, "%s: Expecting alarm callback", dev->name);
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Counter disabling alarm failed", dev->name);
top_cfg.ticks = counter_get_max_top_value(dev);
top_cfg.callback = NULL;
top_cfg.user_data = NULL;
err = counter_set_top_value(dev, &top_cfg);
if (err == -ENOTSUP) {
/* If resetting is not support, attempt without reset. */
top_cfg.flags = COUNTER_TOP_CFG_DONT_RESET;
err = counter_set_top_value(dev, &top_cfg);
}
zassert_true((err == 0) || (err == -ENOTSUP),
"%s: Setting top value to default failed", dev->name);
err = counter_stop(dev);
zassert_equal(0, err, "%s: Counter failed to stop", dev->name);
}
void test_single_shot_alarm_notop_instance(const struct device *dev)
{
test_single_shot_alarm_instance(dev, false);
}
void test_single_shot_alarm_top_instance(const struct device *dev)
{
test_single_shot_alarm_instance(dev, true);
}
static bool single_channel_alarm_capable(const struct device *dev)
{
return (counter_get_num_of_channels(dev) > 0);
}
static bool single_channel_alarm_and_custom_top_capable(const struct device *dev)
{
return single_channel_alarm_capable(dev) &&
set_top_value_capable(dev);
}
ZTEST(counter_basic, test_single_shot_alarm_notop)
{
test_all_instances(test_single_shot_alarm_notop_instance,
single_channel_alarm_capable);
}
ZTEST(counter_basic, test_single_shot_alarm_top)
{
test_all_instances(test_single_shot_alarm_top_instance,
single_channel_alarm_and_custom_top_capable);
}
static void *clbk_data[10];
static void alarm_handler2(const struct device *dev, uint8_t chan_id,
uint32_t counter,
void *user_data)
{
if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS)) {
clbk_data[alarm_cnt] = user_data;
alarm_cnt++;
return;
}
clbk_data[k_sem_count_get(&alarm_cnt_sem)] = user_data;
k_sem_give(&alarm_cnt_sem);
}
/*
* Two alarms set. First alarm is absolute, second relative. Because
* setting of both alarms is delayed it is expected that second alarm
* will expire first (relative to the time called) while first alarm
* will expire after next wrap around.
*/
static void test_multiple_alarms_instance(const struct device *dev)
{
int err;
uint32_t ticks;
uint32_t cnt;
uint32_t counter_period_us;
struct counter_top_cfg top_cfg = {
.callback = top_handler,
.user_data = exp_user_data,
.flags = 0
};
counter_period_us = get_counter_period_us(dev);
ticks = counter_us_to_ticks(dev, counter_period_us);
err = counter_get_value(dev, &(top_cfg.ticks));
zassert_equal(0, err, "%s: Counter get value failed", dev->name);
top_cfg.ticks += ticks;
alarm_cfg.flags = COUNTER_ALARM_CFG_ABSOLUTE;
alarm_cfg.ticks = counter_us_to_ticks(dev, 2000);
alarm_cfg.callback = alarm_handler2;
alarm_cfg.user_data = &alarm_cfg;
alarm_cfg2.flags = 0;
alarm_cfg2.ticks = counter_us_to_ticks(dev, 2000);
alarm_cfg2.callback = alarm_handler2;
alarm_cfg2.user_data = &alarm_cfg2;
k_sem_reset(&alarm_cnt_sem);
alarm_cnt = 0;
if (counter_get_num_of_channels(dev) < 2U) {
/* Counter does not support two alarms */
return;
}
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
if (set_top_value_capable(dev)) {
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err, "%s: Counter failed to set top value", dev->name);
} else {
/* Counter does not support top value, do not run this test
* as it might take a long time to wrap and trigger the alarm
* resulting in test failures.
*/
return;
}
k_busy_wait(3*(uint32_t)counter_ticks_to_us(dev, alarm_cfg.ticks));
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Counter set alarm failed", dev->name);
err = counter_set_channel_alarm(dev, 1, &alarm_cfg2);
zassert_equal(0, err, "%s: Counter set alarm failed", dev->name);
k_busy_wait(1.2 * counter_ticks_to_us(dev, ticks * 2U));
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(2, cnt,
"%s: Invalid number of callbacks %d (expected: %d)",
dev->name, cnt, 2);
zassert_equal(&alarm_cfg2, clbk_data[0],
"%s: Expected different order or callbacks",
dev->name);
zassert_equal(&alarm_cfg, clbk_data[1],
"%s: Expected different order or callbacks",
dev->name);
/* tear down */
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Counter disabling alarm failed", dev->name);
err = counter_cancel_channel_alarm(dev, 1);
zassert_equal(0, err, "%s: Counter disabling alarm failed", dev->name);
}
static bool multiple_channel_alarm_capable(const struct device *dev)
{
return (counter_get_num_of_channels(dev) > 1);
}
ZTEST(counter_basic, test_multiple_alarms)
{
test_all_instances(test_multiple_alarms_instance,
multiple_channel_alarm_capable);
}
static void test_all_channels_instance(const struct device *dev)
{
int err;
const int n = 10;
int nchan = 0;
bool limit_reached = false;
struct counter_alarm_cfg alarm_cfgs;
uint32_t ticks;
uint32_t cnt;
uint32_t counter_period_us;
counter_period_us = get_counter_period_us(dev);
ticks = counter_us_to_ticks(dev, counter_period_us);
alarm_cfgs.flags = 0;
alarm_cfgs.ticks = ticks;
alarm_cfgs.callback = alarm_handler2;
alarm_cfgs.user_data = NULL;
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
for (int i = 0; i < n; i++) {
err = counter_set_channel_alarm(dev, i, &alarm_cfgs);
if ((err == 0) && !limit_reached) {
nchan++;
} else if (err == -ENOTSUP) {
limit_reached = true;
} else {
zassert_equal(0, 1,
"%s: Unexpected error on setting alarm", dev->name);
}
}
k_busy_wait(1.5*counter_ticks_to_us(dev, ticks));
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(nchan, cnt,
"%s: Expecting alarm callback", dev->name);
for (int i = 0; i < nchan; i++) {
err = counter_cancel_channel_alarm(dev, i);
zassert_equal(0, err,
"%s: Unexpected error on disabling alarm", dev->name);
}
for (int i = nchan; i < n; i++) {
err = counter_cancel_channel_alarm(dev, i);
zassert_equal(-ENOTSUP, err,
"%s: Unexpected error on disabling alarm", dev->name);
}
}
ZTEST(counter_basic, test_all_channels)
{
test_all_instances(test_all_channels_instance,
single_channel_alarm_capable);
}
/**
* Test validates if alarm set too late (current tick or current tick + 1)
* results in callback being called.
*/
static void test_late_alarm_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t tick_us = (uint32_t)counter_ticks_to_us(dev, 1);
uint32_t guard = counter_us_to_ticks(dev, 200);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = COUNTER_ALARM_CFG_ABSOLUTE |
COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE,
.user_data = NULL
};
err = counter_set_guard_period(dev, guard,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
k_busy_wait(2*tick_us);
alarm_cfg.ticks = 0;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err, "%s: Unexpected error (%d)", dev->name, err);
/* wait couple of ticks */
k_busy_wait(5*tick_us);
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(1, cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, 1, cnt);
err = counter_get_value(dev, &(alarm_cfg.ticks));
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err, "%s: Failed to set an alarm (err: %d)",
dev->name, err);
/* wait to ensure that tick+1 timeout will expire. */
k_busy_wait(3*tick_us);
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(2, cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, 2, cnt);
}
static void test_late_alarm_error_instance(const struct device *dev)
{
int err;
uint32_t tick_us = (uint32_t)counter_ticks_to_us(dev, 1);
uint32_t guard = counter_us_to_ticks(dev, 200);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = COUNTER_ALARM_CFG_ABSOLUTE,
.user_data = NULL
};
err = counter_set_guard_period(dev, guard,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
k_busy_wait(2*tick_us);
alarm_cfg.ticks = 0;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err,
"%s: Failed to detect late setting (err: %d)",
dev->name, err);
err = counter_get_value(dev, &(alarm_cfg.ticks));
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err,
"%s: Counter failed to detect late setting (err: %d)",
dev->name, err);
}
static bool late_detection_capable(const struct device *dev)
{
uint32_t guard = counter_get_guard_period(dev,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
int err = counter_set_guard_period(dev, guard,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
if (err == -ENOTSUP) {
return false;
}
if (single_channel_alarm_capable(dev) == false) {
return false;
}
return true;
}
ZTEST(counter_basic, test_late_alarm)
{
test_all_instances(test_late_alarm_instance, late_detection_capable);
}
ZTEST(counter_basic, test_late_alarm_error)
{
test_all_instances(test_late_alarm_error_instance,
late_detection_capable);
}
static void test_short_relative_alarm_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t tick_us = (uint32_t)counter_ticks_to_us(dev, 1);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = 0,
.user_data = NULL
};
/* for timers with very short ticks, counter_ticks_to_us() returns 0 */
tick_us = tick_us == 0 ? 1 : tick_us;
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
alarm_cfg.ticks = 1;
for (int i = 0; i < 100; ++i) {
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err,
"%s: Failed to set an alarm (err: %d)",
dev->name, err);
/* wait to ensure that tick+1 timeout will expire. */
k_busy_wait(3*tick_us);
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(i + 1, cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, i + 1, cnt);
}
}
/* Function checks if relative alarm set for 1 tick will expire. If handler is
* not called within near future it indicates that driver do not support it and
* more extensive testing is skipped.
*/
static bool short_relative_capable(const struct device *dev)
{
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = 0,
.user_data = NULL,
.ticks = 1
};
int err;
uint32_t cnt;
bool ret;
if (single_channel_alarm_capable(dev) == false) {
return false;
}
err = counter_start(dev);
if (err != 0) {
ret = false;
goto end;
}
k_sem_reset(&alarm_cnt_sem);
alarm_cnt = 0;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
if (err != 0) {
ret = false;
goto end;
}
k_busy_wait(counter_ticks_to_us(dev, 10));
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
if (cnt == 1) {
ret = true;
} else {
ret = false;
(void)counter_cancel_channel_alarm(dev, 0);
}
end:
k_sem_reset(&alarm_cnt_sem);
alarm_cnt = 0;
counter_stop(dev);
k_busy_wait(1000);
return ret;
}
ZTEST(counter_basic, test_short_relative_alarm)
{
test_all_instances(test_short_relative_alarm_instance,
short_relative_capable);
}
/* Test checks if cancelled alarm does not get triggered when new alarm is
* configured at the point where previous alarm was about to expire.
*/
static void test_cancelled_alarm_does_not_expire_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t us = 1000;
uint32_t ticks = counter_us_to_ticks(dev, us);
uint32_t top = counter_get_top_value(dev);
us = (uint32_t)counter_ticks_to_us(dev, ticks);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = COUNTER_ALARM_CFG_ABSOLUTE,
.user_data = NULL
};
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
for (int i = 0; i < us/2; ++i) {
err = counter_get_value(dev, &(alarm_cfg.ticks));
zassert_true(err == 0, "%s: Counter read failed (err: %d)",
dev->name, err);
alarm_cfg.ticks += ticks;
alarm_cfg.ticks = alarm_cfg.ticks % top;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Failed to set an alarm (err: %d)",
dev->name, err);
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Failed to cancel an alarm (err: %d)",
dev->name, err);
k_busy_wait(us/2 + i);
alarm_cfg.ticks = alarm_cfg.ticks + 2*ticks;
alarm_cfg.ticks = alarm_cfg.ticks % top;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Failed to set an alarm (err: %d)",
dev->name, err);
/* wait to ensure that tick+1 timeout will expire. */
k_busy_wait(us);
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Failed to cancel an alarm (err: %d)",
dev->name, err);
cnt = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) ?
alarm_cnt : k_sem_count_get(&alarm_cnt_sem);
zassert_equal(0, cnt,
"%s: Expected %d callbacks, got %d (i:%d)\n",
dev->name, 0, cnt, i);
}
}
static bool reliable_cancel_capable(const struct device *dev)
{
/* Test performed only for NRF_RTC instances. Other probably will fail.
*/
#ifdef CONFIG_COUNTER_RTC0
/* Nordic RTC0 may be reserved for Bluetooth */
if (dev == DEVICE_DT_GET(DT_NODELABEL(rtc0))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_RTC2
if (dev == DEVICE_DT_GET(DT_NODELABEL(rtc2))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER0
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer0))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER1
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer1))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER2
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer2))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER3
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer3))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER4
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer4))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER_STM32
if (single_channel_alarm_capable(dev)) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_NATIVE_POSIX
if (dev == DEVICE_DT_GET(DT_NODELABEL(counter0))) {
return true;
}
#endif
return false;
}
ZTEST(counter_basic, test_cancelled_alarm_does_not_expire)
{
test_all_instances(test_cancelled_alarm_does_not_expire_instance,
reliable_cancel_capable);
}
static void *counter_setup(void)
{
int i;
/* Give required clocks some time to stabilize. In particular, nRF SoCs
* need such delay for the Xtal LF clock source to start and for this
* test to use the correct timing.
*/
k_busy_wait(USEC_PER_MSEC * 300);
k_sem_init(&top_cnt_sem, 0, UINT_MAX);
k_object_access_grant(&top_cnt_sem, k_current_get());
k_sem_init(&alarm_cnt_sem, 0, UINT_MAX);
k_object_access_grant(&alarm_cnt_sem, k_current_get());
for (i = 0; i < ARRAY_SIZE(devices); i++) {
zassert_true(device_is_ready(devices[i]),
"Device %s is not ready", devices[i]->name);
k_object_access_grant(devices[i], k_current_get());
}
return NULL;
}
/* Uses callbacks, run in supervisor mode */
ZTEST_SUITE(counter_basic, NULL, counter_setup, NULL, NULL, NULL);
/* No callbacks, run in usermode */
ZTEST_SUITE(counter_no_callback, NULL, counter_setup, NULL, NULL, NULL);