| /* |
| * Copyright (c) 2018 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /* These assertions are very useful when debugging the tree code |
| * itself, but produce significant performance degradation as they are |
| * checked many times per operation. Leave them off unless you're |
| * working on the rbtree code itself |
| */ |
| #define CHECK(n) /**/ |
| /* #define CHECK(n) __ASSERT_NO_MSG(n) */ |
| |
| #include <kernel.h> |
| #include <misc/rb.h> |
| #include <stdbool.h> |
| |
| enum rb_color { RED = 0, BLACK = 1 }; |
| |
| static struct rbnode *get_child(struct rbnode *n, int side) |
| { |
| CHECK(n); |
| if (side != 0) { |
| return n->children[1]; |
| } |
| |
| uintptr_t l = (uintptr_t) n->children[0]; |
| |
| l &= ~1UL; |
| return (struct rbnode *) l; |
| } |
| |
| static void set_child(struct rbnode *n, int side, void *val) |
| { |
| CHECK(n); |
| if (side != 0) { |
| n->children[1] = val; |
| } else { |
| uintptr_t old = (uintptr_t) n->children[0]; |
| uintptr_t new = (uintptr_t) val; |
| |
| n->children[0] = (void *) (new | (old & 1UL)); |
| } |
| } |
| |
| static enum rb_color get_color(struct rbnode *n) |
| { |
| CHECK(n); |
| return ((uintptr_t)n->children[0]) & 1UL; |
| } |
| |
| static bool is_black(struct rbnode *n) |
| { |
| return get_color(n) == BLACK; |
| } |
| |
| static bool is_red(struct rbnode *n) |
| { |
| return get_color(n) == RED; |
| } |
| |
| static void set_color(struct rbnode *n, enum rb_color color) |
| { |
| CHECK(n); |
| |
| uintptr_t *p = (void *) &n->children[0]; |
| |
| *p = (*p & ~1UL) | color; |
| } |
| |
| /* Searches the tree down to a node that is either identical with the |
| * "node" argument or has an empty/leaf child pointer where "node" |
| * should be, leaving all nodes found in the resulting stack. Note |
| * that tree must not be empty and that stack should be allocated to |
| * contain at least tree->max_depth entries! Returns the number of |
| * entries pushed onto the stack. |
| */ |
| static int find_and_stack(struct rbtree *tree, struct rbnode *node, |
| struct rbnode **stack) |
| { |
| int sz = 0; |
| |
| stack[sz++] = tree->root; |
| |
| while (stack[sz - 1] != node) { |
| int side = tree->lessthan_fn(node, stack[sz - 1]) ? 0 : 1; |
| struct rbnode *ch = get_child(stack[sz - 1], side); |
| |
| if (ch != NULL) { |
| stack[sz++] = ch; |
| } else { |
| break; |
| } |
| } |
| |
| return sz; |
| } |
| |
| struct rbnode *_rb_get_minmax(struct rbtree *tree, int side) |
| { |
| struct rbnode *n; |
| |
| for (n = tree->root; n && get_child(n, side); n = get_child(n, side)) { |
| ; |
| } |
| return n; |
| } |
| |
| static int get_side(struct rbnode *parent, struct rbnode *child) |
| { |
| CHECK(get_child(parent, 0) == child || get_child(parent, 1) == child); |
| |
| return get_child(parent, 1) == child ? 1 : 0; |
| } |
| |
| /* Swaps the position of the two nodes at the top of the provided |
| * stack, modifying the stack accordingly. Does not change the color |
| * of either node. That is, it effects the following transition (or |
| * its mirror if N is on the other side of P, of course): |
| * |
| * P N |
| * N c --> a P |
| * a b b c |
| * |
| */ |
| static void rotate(struct rbnode **stack, int stacksz) |
| { |
| CHECK(stacksz >= 2); |
| |
| struct rbnode *parent = stack[stacksz - 2]; |
| struct rbnode *child = stack[stacksz - 1]; |
| int side = get_side(parent, child); |
| struct rbnode *a = get_child(child, side); |
| struct rbnode *b = get_child(child, !side); |
| |
| if (stacksz >= 3) { |
| struct rbnode *grandparent = stack[stacksz - 3]; |
| |
| set_child(grandparent, get_side(grandparent, parent), child); |
| } |
| |
| set_child(child, side, a); |
| set_child(child, !side, parent); |
| set_child(parent, side, b); |
| stack[stacksz - 2] = child; |
| stack[stacksz - 1] = parent; |
| } |
| |
| /* The node at the top of the provided stack is red, and its parent is |
| * too. Iteratively fix the tree so it becomes a valid red black tree |
| * again |
| */ |
| static void fix_extra_red(struct rbnode **stack, int stacksz) |
| { |
| while (stacksz > 1) { |
| struct rbnode *node = stack[stacksz - 1]; |
| struct rbnode *parent = stack[stacksz - 2]; |
| |
| /* Correct child colors are a precondition of the loop */ |
| CHECK(!get_child(node, 0) || is_black(get_child(node, 0))); |
| CHECK(!get_child(node, 1) || is_black(get_child(node, 1))); |
| |
| if (is_black(parent)) { |
| return; |
| } |
| |
| /* We are guaranteed to have a grandparent if our |
| * parent is red, as red nodes cannot be the root |
| */ |
| CHECK(stacksz >= 2); |
| |
| struct rbnode *grandparent = stack[stacksz - 3]; |
| int side = get_side(grandparent, parent); |
| struct rbnode *aunt = get_child(grandparent, !side); |
| |
| if ((aunt != NULL) && is_red(aunt)) { |
| set_color(grandparent, RED); |
| set_color(parent, BLACK); |
| set_color(aunt, BLACK); |
| |
| /* We colored the grandparent red, which might |
| * have a red parent, so continue iterating |
| * from there. |
| */ |
| stacksz -= 2; |
| continue; |
| } |
| |
| /* We can rotate locally to fix the whole tree. First |
| * make sure that node is on the same side of parent |
| * as parent is of grandparent. |
| */ |
| int parent_side = get_side(parent, node); |
| |
| if (parent_side != side) { |
| rotate(stack, stacksz); |
| node = stack[stacksz - 1]; |
| } |
| |
| /* Rotate the grandparent with parent, swapping colors */ |
| rotate(stack, stacksz - 1); |
| set_color(stack[stacksz - 3], BLACK); |
| set_color(stack[stacksz - 2], RED); |
| return; |
| } |
| |
| /* If we exit the loop, it's because our node is now the root, |
| * which must be black. |
| */ |
| set_color(stack[0], BLACK); |
| } |
| |
| void rb_insert(struct rbtree *tree, struct rbnode *node) |
| { |
| set_child(node, 0, NULL); |
| set_child(node, 1, NULL); |
| |
| if (!tree->root) { |
| tree->root = node; |
| tree->max_depth = 1; |
| set_color(node, BLACK); |
| return; |
| } |
| |
| struct rbnode *stack[tree->max_depth + 1]; |
| |
| int stacksz = find_and_stack(tree, node, stack); |
| |
| struct rbnode *parent = stack[stacksz - 1]; |
| |
| int side = tree->lessthan_fn(node, parent) ? 0 : 1; |
| |
| set_child(parent, side, node); |
| set_color(node, RED); |
| |
| stack[stacksz++] = node; |
| fix_extra_red(stack, stacksz); |
| |
| if (stacksz > tree->max_depth) { |
| tree->max_depth = stacksz; |
| } |
| |
| /* We may have rotated up into the root! */ |
| tree->root = stack[0]; |
| CHECK(is_black(tree->root)); |
| } |
| |
| /* Called for a node N (at the top of the stack) which after a |
| * deletion operation is "missing a black" in its subtree. By |
| * construction N must be black (because if it was red it would be |
| * trivially fixed by recoloring and we wouldn't be here). Fixes up |
| * the tree to preserve red/black rules. The "null_node" pointer is |
| * for situations where we are removing a childless black node. The |
| * tree munging needs a real node for simplicity, so we use it and |
| * then clean it up (replace it with a simple NULL child in the |
| * parent) when finished. |
| */ |
| static void fix_missing_black(struct rbnode **stack, int stacksz, |
| struct rbnode *null_node) |
| { |
| /* Loop upward until we reach the root */ |
| while (stacksz > 1) { |
| struct rbnode *c0, *c1, *inner, *outer; |
| struct rbnode *n = stack[stacksz - 1]; |
| struct rbnode *parent = stack[stacksz - 2]; |
| int n_side = get_side(parent, n); |
| struct rbnode *sib = get_child(parent, !n_side); |
| |
| CHECK(is_black(n)); |
| |
| /* Guarantee the sibling is black, rotating N down a |
| * level if needed (after rotate() our parent is the |
| * child of our previous-sibling, so N is lower in the |
| * tree) |
| */ |
| if (!is_black(sib)) { |
| stack[stacksz - 1] = sib; |
| rotate(stack, stacksz); |
| set_color(parent, RED); |
| set_color(sib, BLACK); |
| stack[stacksz++] = n; |
| |
| parent = stack[stacksz - 2]; |
| sib = get_child(parent, !n_side); |
| } |
| |
| CHECK(sib); |
| |
| /* Cases where the sibling has only black children |
| * have simple resolutions |
| */ |
| c0 = get_child(sib, 0); |
| c1 = get_child(sib, 1); |
| if ((!c0 || is_black(c0)) && (!c1 || is_black(c1))) { |
| if (n == null_node) { |
| set_child(parent, n_side, NULL); |
| } |
| |
| set_color(sib, RED); |
| if (is_black(parent)) { |
| /* Balance the sibling's subtree by |
| * coloring it red, then our parent |
| * has a missing black so iterate |
| * upward |
| */ |
| stacksz--; |
| continue; |
| } else { |
| /* Recoloring makes the whole tree OK */ |
| set_color(parent, BLACK); |
| return; |
| } |
| } |
| |
| CHECK((c0 && is_red(c0)) || (c1 && is_red(c1))); |
| |
| /* We know sibling has at least one red child. Fix it |
| * so that the far/outer position (i.e. on the |
| * opposite side from N) is definitely red. |
| */ |
| outer = get_child(sib, !n_side); |
| if (!(outer && is_red(outer))) { |
| inner = get_child(sib, n_side); |
| |
| stack[stacksz - 1] = sib; |
| stack[stacksz++] = inner; |
| rotate(stack, stacksz); |
| set_color(sib, RED); |
| set_color(inner, BLACK); |
| |
| /* Restore stack state to have N on the top |
| * and make sib reflect the new sibling |
| */ |
| sib = stack[stacksz - 2]; |
| outer = get_child(sib, !n_side); |
| stack[stacksz - 2] = n; |
| stacksz--; |
| } |
| |
| /* Finally, the sibling must have a red child in the |
| * far/outer slot. We can rotate sib with our parent |
| * and recolor to produce a valid tree. |
| */ |
| CHECK(is_red(outer)); |
| set_color(sib, get_color(parent)); |
| set_color(parent, BLACK); |
| set_color(outer, BLACK); |
| stack[stacksz - 1] = sib; |
| rotate(stack, stacksz); |
| if (n == null_node) { |
| set_child(parent, n_side, NULL); |
| } |
| return; |
| } |
| } |
| |
| void rb_remove(struct rbtree *tree, struct rbnode *node) |
| { |
| struct rbnode *stack[tree->max_depth + 1], *tmp; |
| |
| int stacksz = find_and_stack(tree, node, stack); |
| |
| if (node != stack[stacksz - 1]) { |
| return; |
| } |
| |
| /* We can only remove a node with zero or one child, if we |
| * have two then pick the "biggest" child of side 0 (smallest |
| * of 1 would work too) and swap our spot in the tree with |
| * that one |
| */ |
| if (get_child(node, 0) && get_child(node, 1)) { |
| int stacksz0 = stacksz; |
| struct rbnode *hiparent, *loparent; |
| struct rbnode *node2 = get_child(node, 0); |
| |
| hiparent = stacksz > 1 ? stack[stacksz - 2] : NULL; |
| stack[stacksz++] = node2; |
| while (get_child(node2, 1)) { |
| node2 = get_child(node2, 1); |
| stack[stacksz++] = node2; |
| } |
| |
| loparent = stack[stacksz - 2]; |
| |
| /* Now swap the position of node/node2 in the tree. |
| * Design note: this is a spot where being an |
| * intrusive data structure hurts us fairly badly. |
| * The trees you see in textbooks do this by swapping |
| * the "data" pointers between the two nodes, but we |
| * have a few special cases to check. In principle |
| * this works by swapping the child pointers between |
| * the nodes and retargetting the nodes pointing to |
| * them from their parents, but: (1) the upper node |
| * may be the root of the tree and not have a parent, |
| * and (2) the lower node may be a direct child of the |
| * upper node. Remember to swap the color bits of the |
| * two nodes also. And of course we don't have parent |
| * pointers, so the stack tracking this structure |
| * needs to be swapped too! |
| */ |
| if (hiparent != NULL) { |
| set_child(hiparent, get_side(hiparent, node), node2); |
| } else { |
| tree->root = node2; |
| } |
| |
| if (loparent == node) { |
| set_child(node, 0, get_child(node2, 0)); |
| set_child(node2, 0, node); |
| } else { |
| set_child(loparent, get_side(loparent, node2), node); |
| tmp = get_child(node, 0); |
| set_child(node, 0, get_child(node2, 0)); |
| set_child(node2, 0, tmp); |
| } |
| |
| set_child(node2, 1, get_child(node, 1)); |
| set_child(node, 1, NULL); |
| |
| tmp = stack[stacksz0 - 1]; |
| stack[stacksz0 - 1] = stack[stacksz - 1]; |
| stack[stacksz - 1] = tmp; |
| |
| int ctmp = get_color(node); |
| |
| set_color(node, get_color(node2)); |
| set_color(node2, ctmp); |
| } |
| |
| CHECK(!get_child(node, 0) || !get_child(node, 1)); |
| |
| struct rbnode *child = get_child(node, 0); |
| |
| if (child == NULL) { |
| child = get_child(node, 1); |
| } |
| |
| /* Removing the root */ |
| if (stacksz < 2) { |
| tree->root = child; |
| if (child != NULL) { |
| set_color(child, BLACK); |
| } else { |
| tree->max_depth = 0; |
| } |
| return; |
| } |
| |
| struct rbnode *parent = stack[stacksz - 2]; |
| |
| /* Special case: if the node to be removed is childless, then |
| * we leave it in place while we do the missing black |
| * rotations, which will replace it with a proper NULL when |
| * they isolate it. |
| */ |
| if (!child) { |
| if (is_black(node)) { |
| fix_missing_black(stack, stacksz, node); |
| } else { |
| /* Red childless nodes can just be dropped */ |
| set_child(parent, get_side(parent, node), NULL); |
| } |
| } else { |
| set_child(parent, get_side(parent, node), child); |
| |
| /* Check colors, if one was red (at least one must have been |
| * black in a valid tree), then we're done. Otherwise we have |
| * a missing black we need to fix |
| */ |
| if (is_red(node) || is_red(child)) { |
| set_color(child, BLACK); |
| } else { |
| stack[stacksz - 1] = child; |
| fix_missing_black(stack, stacksz, NULL); |
| } |
| } |
| |
| /* We may have rotated up into the root! */ |
| tree->root = stack[0]; |
| } |
| |
| void _rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie) |
| { |
| if (node != NULL) { |
| _rb_walk(get_child(node, 0), visit_fn, cookie); |
| visit_fn(node, cookie); |
| _rb_walk(get_child(node, 1), visit_fn, cookie); |
| } |
| } |
| |
| struct rbnode *_rb_child(struct rbnode *node, int side) |
| { |
| return get_child(node, side); |
| } |
| |
| int _rb_is_black(struct rbnode *node) |
| { |
| return is_black(node); |
| } |
| |
| bool rb_contains(struct rbtree *tree, struct rbnode *node) |
| { |
| struct rbnode *n = tree->root; |
| |
| while (n && n != node) { |
| n = get_child(n, tree->lessthan_fn(n, node)); |
| } |
| |
| return n == node; |
| } |
| |
| /* Pushes the node and its chain of left-side children onto the stack |
| * in the foreach struct, returning the last node, which is the next |
| * node to iterate. By construction node will always be a right child |
| * or the root, so is_left must be false. |
| */ |
| static inline struct rbnode *stack_left_limb(struct rbnode *n, |
| struct _rb_foreach *f) |
| { |
| f->top++; |
| f->stack[f->top] = n; |
| f->is_left[f->top] = 0; |
| |
| while ((n = get_child(n, 0)) != NULL) { |
| f->top++; |
| f->stack[f->top] = n; |
| f->is_left[f->top] = 1; |
| } |
| |
| return f->stack[f->top]; |
| } |
| |
| /* The foreach tracking works via a dynamic stack allocated via |
| * alloca(). The current node is found in stack[top] (and its parent |
| * is thus stack[top-1]). The side of each stacked node from its |
| * parent is stored in is_left[] (i.e. if is_left[top] is true, then |
| * node/stack[top] is the left child of stack[top-1]). The special |
| * case of top == -1 indicates that the stack is uninitialized and we |
| * need to push an initial stack starting at the root. |
| */ |
| struct rbnode *_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f) |
| { |
| struct rbnode *n; |
| |
| if (!tree->root) { |
| return NULL; |
| } |
| |
| /* Initialization condition, pick the leftmost child of the |
| * root as our first node, initializing the stack on the way. |
| */ |
| if (f->top == -1) { |
| return stack_left_limb(tree->root, f); |
| } |
| |
| /* The next child from a given node is the leftmost child of |
| * it's right subtree if it has a right child |
| */ |
| n = get_child(f->stack[f->top], 1); |
| if (n != NULL) { |
| return stack_left_limb(n, f); |
| } |
| |
| /* Otherwise if the node is a left child of its parent, the |
| * next node is the parent (note that the root is stacked |
| * above with is_left set to 0, so this condition still works |
| * even if node has no parent). |
| */ |
| if (f->is_left[f->top] != 0) { |
| return f->stack[--f->top]; |
| } |
| |
| /* If we had no left tree and are a right child then our |
| * parent was already walked, so walk up the stack looking for |
| * a left child (whose parent is unwalked, and thus next). |
| */ |
| while ((f->top > 0) && (f->is_left[f->top] == 0)) { |
| f->top--; |
| } |
| |
| f->top--; |
| return f->top >= 0 ? f->stack[f->top] : NULL; |
| } |