blob: 7ed9cf56ea540fbd6937231669cda927811179f9 [file] [log] [blame]
/*
* Copyright (c) 2021 NXP Semiconductor INC.
* All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief I2S bus (SAI) driver for NXP i.MX RT series.
*/
#include <errno.h>
#include <string.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/i2s.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/dt-bindings/clock/imx_ccm.h>
#include <zephyr/sys/barrier.h>
#include <soc.h>
#include "i2s_mcux_sai.h"
#define LOG_DOMAIN dev_i2s_mcux
#define LOG_LEVEL CONFIG_I2S_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#define DT_DRV_COMPAT nxp_mcux_i2s
#define NUM_DMA_BLOCKS_RX_PREP 3
#define MAX_TX_DMA_BLOCKS CONFIG_DMA_TCD_QUEUE_SIZE
#if (NUM_DMA_BLOCKS_RX_PREP >= CONFIG_DMA_TCD_QUEUE_SIZE)
#error NUM_DMA_BLOCKS_RX_PREP must be < CONFIG_DMA_TCD_QUEUE_SIZE
#endif
#if defined(CONFIG_DMA_MCUX_EDMA) && (NUM_DMA_BLOCKS_RX_PREP < 3)
#error eDMA avoids TCD coherency issue if NUM_DMA_BLOCKS_RX_PREP >= 3
#endif
/*
* SAI driver uses source_gather_en/dest_scatter_en feature of DMA, and relies
* on DMA driver managing circular list of DMA blocks. Like eDMA driver links
* Transfer Control Descriptors (TCDs) in list, and manages the tcdpool.
* Calling dma_reload() adds new DMA block to DMA channel already configured,
* into the DMA driver's circular list of blocks.
* This indicates the Tx/Rx stream.
*
* in_queue and out_queue are used as follows
* transmit stream:
* application provided buffer is queued to in_queue until loaded to DMA.
* when DMA channel is idle, buffer is retrieved from in_queue and loaded
* to DMA and queued to out_queue. when DMA completes, buffer is retrieved
* from out_queue and freed.
*
* receive stream:
* driver allocates buffer from slab and loads DMA buffer is queued to
* in_queue when DMA completes, buffer is retrieved from in_queue
* and queued to out_queue when application reads, buffer is read
* (may optionally block) from out_queue and presented to application.
*/
struct stream {
int32_t state;
uint32_t dma_channel;
uint32_t start_channel;
void (*irq_call_back)(void);
struct i2s_config cfg;
struct dma_config dma_cfg;
struct dma_block_config dma_block;
uint8_t free_tx_dma_blocks;
bool last_block;
struct k_msgq in_queue;
struct k_msgq out_queue;
};
struct i2s_mcux_config {
I2S_Type *base;
uint32_t clk_src;
uint32_t clk_pre_div;
uint32_t clk_src_div;
uint32_t pll_src;
uint32_t pll_lp;
uint32_t pll_pd;
uint32_t pll_num;
uint32_t pll_den;
uint32_t mclk_pin_mask;
uint32_t mclk_pin_offset;
uint32_t tx_channel;
clock_control_subsys_t clk_sub_sys;
const struct device *ccm_dev;
const struct pinctrl_dev_config *pinctrl;
void (*irq_connect)(const struct device *dev);
bool rx_sync_mode;
bool tx_sync_mode;
};
/* Device run time data */
struct i2s_dev_data {
const struct device *dev_dma;
struct stream tx;
void *tx_in_msgs[CONFIG_I2S_TX_BLOCK_COUNT];
void *tx_out_msgs[CONFIG_I2S_TX_BLOCK_COUNT];
struct stream rx;
void *rx_in_msgs[CONFIG_I2S_RX_BLOCK_COUNT];
void *rx_out_msgs[CONFIG_I2S_RX_BLOCK_COUNT];
};
static void i2s_dma_tx_callback(const struct device *, void *,
uint32_t, int);
static void i2s_tx_stream_disable(const struct device *, bool drop);
static void i2s_rx_stream_disable(const struct device *,
bool in_drop, bool out_drop);
static inline void i2s_purge_stream_buffers(struct stream *strm,
struct k_mem_slab *mem_slab,
bool in_drop, bool out_drop)
{
void *buffer;
if (in_drop) {
while (k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, &buffer);
}
}
if (out_drop) {
while (k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, &buffer);
}
}
}
static void i2s_tx_stream_disable(const struct device *dev, bool drop)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
LOG_DBG("Stopping DMA channel %u for TX stream", strm->dma_channel);
/* Disable FIFO DMA request */
SAI_TxEnableDMA(dev_cfg->base, kSAI_FIFORequestDMAEnable,
false);
dma_stop(dev_dma, strm->dma_channel);
/* wait for TX FIFO to drain before disabling */
while ((dev_cfg->base->TCSR & I2S_TCSR_FWF_MASK) == 0)
;
/* Disable the channel FIFO */
dev_cfg->base->TCR3 &= ~I2S_TCR3_TCE_MASK;
/* Disable Tx */
SAI_TxEnable(dev_cfg->base, false);
/* If Tx is disabled, reset the FIFO pointer, clear error flags */
if ((dev_cfg->base->TCSR & I2S_TCSR_TE_MASK) == 0UL) {
dev_cfg->base->TCSR |=
(I2S_TCSR_FR_MASK | I2S_TCSR_SR_MASK);
dev_cfg->base->TCSR &= ~I2S_TCSR_SR_MASK;
}
/* purge buffers queued in the stream */
if (drop) {
i2s_purge_stream_buffers(strm, dev_data->tx.cfg.mem_slab,
true, true);
}
}
static void i2s_rx_stream_disable(const struct device *dev,
bool in_drop, bool out_drop)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
LOG_DBG("Stopping RX stream & DMA channel %u", strm->dma_channel);
dma_stop(dev_dma, strm->dma_channel);
/* Disable the channel FIFO */
dev_cfg->base->RCR3 &= ~I2S_RCR3_RCE_MASK;
/* Disable DMA enable bit */
SAI_RxEnableDMA(dev_cfg->base, kSAI_FIFORequestDMAEnable,
false);
/* Disable Rx */
SAI_RxEnable(dev_cfg->base, false);
/* wait for Receiver to disable */
while (dev_cfg->base->RCSR & I2S_RCSR_RE_MASK)
;
/* reset the FIFO pointer and clear error flags */
dev_cfg->base->RCSR |= (I2S_RCSR_FR_MASK | I2S_RCSR_SR_MASK);
dev_cfg->base->RCSR &= ~I2S_RCSR_SR_MASK;
/* purge buffers queued in the stream */
if (in_drop || out_drop) {
i2s_purge_stream_buffers(strm, dev_data->rx.cfg.mem_slab,
in_drop, out_drop);
}
}
static int i2s_tx_reload_multiple_dma_blocks(const struct device *dev,
uint8_t *blocks_queued)
{
struct i2s_dev_data *dev_data = dev->data;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct stream *strm = &dev_data->tx;
void *buffer = NULL;
int ret = 0;
unsigned int key;
*blocks_queued = 0;
key = irq_lock();
/* queue additional blocks to DMA if in_queue and DMA has free blocks */
while (strm->free_tx_dma_blocks) {
/* get the next buffer from queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret) {
/* in_queue is empty, no more blocks to send to DMA */
ret = 0;
break;
}
/* reload the DMA */
ret = dma_reload(dev_data->dev_dma, strm->dma_channel,
(uint32_t)buffer,
(uint32_t)&base->TDR[strm->start_channel],
strm->cfg.block_size);
if (ret != 0) {
LOG_ERR("dma_reload() failed with error 0x%x", ret);
break;
}
(strm->free_tx_dma_blocks)--;
ret = k_msgq_put(&strm->out_queue,
&buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> out %p err %d",
buffer, &strm->out_queue, ret);
break;
}
(*blocks_queued)++;
}
irq_unlock(key);
return ret;
}
/* This function is executed in the interrupt context */
static void i2s_dma_tx_callback(const struct device *dma_dev,
void *arg, uint32_t channel, int status)
{
const struct device *dev = (struct device *)arg;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
void *buffer = NULL;
int ret;
uint8_t blocks_queued;
LOG_DBG("tx cb");
ret = k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret == 0) {
/* transmission complete. free the buffer */
k_mem_slab_free(strm->cfg.mem_slab, &buffer);
(strm->free_tx_dma_blocks)++;
} else {
LOG_ERR("no buf in out_queue for channel %u", channel);
}
if (strm->free_tx_dma_blocks > MAX_TX_DMA_BLOCKS) {
strm->state = I2S_STATE_ERROR;
LOG_ERR("free_tx_dma_blocks exceeded maximum, now %d",
strm->free_tx_dma_blocks);
goto disabled_exit_no_drop;
}
/* Received a STOP trigger, terminate TX immediately */
if (strm->last_block) {
strm->state = I2S_STATE_READY;
LOG_DBG("TX STOPPED last_block set");
goto disabled_exit_no_drop;
}
if (ret) {
/* k_msgq_get() returned error, and was not last_block */
strm->state = I2S_STATE_ERROR;
goto disabled_exit_no_drop;
}
switch (strm->state) {
case I2S_STATE_RUNNING:
case I2S_STATE_STOPPING:
ret = i2s_tx_reload_multiple_dma_blocks(dev, &blocks_queued);
if (ret) {
strm->state = I2S_STATE_ERROR;
goto disabled_exit_no_drop;
}
dma_start(dev_data->dev_dma, strm->dma_channel);
if (blocks_queued ||
(strm->free_tx_dma_blocks < MAX_TX_DMA_BLOCKS)) {
goto enabled_exit;
} else {
/* all DMA blocks are free but no blocks were queued */
if (strm->state == I2S_STATE_STOPPING) {
/* TX queue has drained */
strm->state = I2S_STATE_READY;
LOG_DBG("TX stream has stopped");
} else {
strm->state = I2S_STATE_ERROR;
LOG_ERR("TX Failed to reload DMA");
}
goto disabled_exit_no_drop;
}
case I2S_STATE_ERROR:
default:
goto disabled_exit_drop;
}
disabled_exit_no_drop:
i2s_tx_stream_disable(dev, false);
return;
disabled_exit_drop:
i2s_tx_stream_disable(dev, true);
return;
enabled_exit:
return;
}
static void i2s_dma_rx_callback(const struct device *dma_dev,
void *arg, uint32_t channel, int status)
{
struct device *dev = (struct device *)arg;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
void *buffer;
int ret;
LOG_DBG("RX cb");
switch (strm->state) {
case I2S_STATE_STOPPING:
case I2S_STATE_RUNNING:
/* retrieve buffer from input queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
__ASSERT_NO_MSG(ret == 0);
/* put buffer to output queue */
ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> out_queue %p err %d",
buffer,
&strm->out_queue, ret);
i2s_rx_stream_disable(dev, false, false);
strm->state = I2S_STATE_ERROR;
return;
}
if (strm->state == I2S_STATE_RUNNING) {
/* allocate new buffer for next audio frame */
ret = k_mem_slab_alloc(strm->cfg.mem_slab,
&buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from slab %p err %d",
strm->cfg.mem_slab, ret);
i2s_rx_stream_disable(dev, false, false);
strm->state = I2S_STATE_ERROR;
} else {
uint32_t data_path = strm->start_channel;
ret = dma_reload(dev_data->dev_dma,
strm->dma_channel,
(uint32_t)&base->RDR[data_path],
(uint32_t)buffer,
strm->cfg.block_size);
if (ret != 0) {
LOG_ERR("dma_reload() failed with error 0x%x",
ret);
i2s_rx_stream_disable(dev,
false, false);
strm->state = I2S_STATE_ERROR;
return;
}
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue,
&buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("%p -> in_queue %p err %d",
buffer, &strm->in_queue,
ret);
}
dma_start(dev_data->dev_dma,
strm->dma_channel);
}
} else {
i2s_rx_stream_disable(dev, true, false);
/* Received a STOP/DRAIN trigger */
strm->state = I2S_STATE_READY;
}
break;
case I2S_STATE_ERROR:
i2s_rx_stream_disable(dev, true, true);
break;
}
}
static void enable_mclk_direction(const struct device *dev, bool dir)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
uint32_t offset = dev_cfg->mclk_pin_offset;
uint32_t mask = dev_cfg->mclk_pin_mask;
uint32_t *gpr = (uint32_t *)
(DT_REG_ADDR(DT_NODELABEL(iomuxcgpr)) + offset);
if (dir) {
*gpr |= mask;
} else {
*gpr &= ~mask;
}
}
static void get_mclk_rate(const struct device *dev, uint32_t *mclk)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
const struct device *ccm_dev = dev_cfg->ccm_dev;
clock_control_subsys_t clk_sub_sys = dev_cfg->clk_sub_sys;
uint32_t rate = 0;
if (device_is_ready(ccm_dev)) {
clock_control_get_rate(ccm_dev, clk_sub_sys, &rate);
} else {
LOG_ERR("CCM driver is not installed");
*mclk = rate;
return;
}
*mclk = rate;
}
static int i2s_mcux_config(const struct device *dev, enum i2s_dir dir,
const struct i2s_config *i2s_cfg)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct i2s_dev_data *dev_data = dev->data;
sai_transceiver_t config;
uint32_t mclk;
/*num_words is frame size*/
uint8_t num_words = i2s_cfg->channels;
uint8_t word_size_bits = i2s_cfg->word_size;
if ((dev_data->tx.state != I2S_STATE_NOT_READY) &&
(dev_data->tx.state != I2S_STATE_READY) &&
(dev_data->rx.state != I2S_STATE_NOT_READY) &&
(dev_data->rx.state != I2S_STATE_READY)) {
LOG_ERR("invalid state tx(%u) rx(%u)",
dev_data->tx.state,
dev_data->rx.state);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
if (i2s_cfg->frame_clk_freq == 0U) {
LOG_ERR("Invalid frame_clk_freq %u",
i2s_cfg->frame_clk_freq);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return 0;
}
if (word_size_bits < SAI_WORD_SIZE_BITS_MIN ||
word_size_bits > SAI_WORD_SIZE_BITS_MAX) {
LOG_ERR("Unsupported I2S word size %u", word_size_bits);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
if (num_words < SAI_WORD_PER_FRAME_MIN ||
num_words > SAI_WORD_PER_FRAME_MAX) {
LOG_ERR("Unsupported words length %u", num_words);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
if ((i2s_cfg->options & I2S_OPT_PINGPONG) == I2S_OPT_PINGPONG) {
LOG_ERR("Ping-pong mode not supported");
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -ENOTSUP;
}
memset(&config, 0, sizeof(config));
const bool is_mclk_slave = i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE;
enable_mclk_direction(dev, !is_mclk_slave);
get_mclk_rate(dev, &mclk);
LOG_DBG("mclk is %d", mclk);
/* bit clock source is MCLK */
config.bitClock.bclkSource = kSAI_BclkSourceMclkDiv;
/*
* additional settings for bclk
* read the SDK header file for more details
*/
config.bitClock.bclkInputDelay = false;
/* frame sync default configurations */
#if defined(FSL_FEATURE_SAI_HAS_ON_DEMAND_MODE) && \
FSL_FEATURE_SAI_HAS_ON_DEMAND_MODE
config.frameSync.frameSyncGenerateOnDemand = false;
#endif
/* serial data default configurations */
#if defined(FSL_FEATURE_SAI_HAS_CHANNEL_MODE) && \
FSL_FEATURE_SAI_HAS_CHANNEL_MODE
config.serialData.dataMode = kSAI_DataPinStateOutputZero;
#endif
config.frameSync.frameSyncPolarity = kSAI_PolarityActiveLow;
config.bitClock.bclkSrcSwap = false;
/* format */
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
SAI_GetClassicI2SConfig(&config, word_size_bits,
kSAI_Stereo,
dev_cfg->tx_channel);
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
SAI_GetLeftJustifiedConfig(&config, word_size_bits,
kSAI_Stereo,
dev_cfg->tx_channel);
break;
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
SAI_GetDSPConfig(&config, kSAI_FrameSyncLenOneBitClk,
word_size_bits, kSAI_Stereo,
dev_cfg->tx_channel);
break;
case I2S_FMT_DATA_FORMAT_PCM_LONG:
SAI_GetTDMConfig(&config, kSAI_FrameSyncLenPerWordWidth,
word_size_bits, num_words,
dev_cfg->tx_channel);
break;
default:
LOG_ERR("Unsupported I2S data format");
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
/* sync mode configurations */
if (dir == I2S_DIR_TX) {
/* TX */
if (dev_cfg->tx_sync_mode) {
config.syncMode = kSAI_ModeSync;
} else {
config.syncMode = kSAI_ModeAsync;
}
} else {
/* RX */
if (dev_cfg->rx_sync_mode) {
config.syncMode = kSAI_ModeSync;
} else {
config.syncMode = kSAI_ModeAsync;
}
}
if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE) {
if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
config.masterSlave = kSAI_Slave;
} else {
config.masterSlave =
kSAI_Bclk_Master_FrameSync_Slave;
}
} else {
if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
config.masterSlave =
kSAI_Bclk_Slave_FrameSync_Master;
} else {
config.masterSlave = kSAI_Master;
}
}
/* clock signal polarity */
switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) {
case I2S_FMT_CLK_NF_NB:
config.frameSync.frameSyncPolarity =
kSAI_PolarityActiveLow;
config.bitClock.bclkSrcSwap = false;
break;
case I2S_FMT_CLK_NF_IB:
config.frameSync.frameSyncPolarity =
kSAI_PolarityActiveLow;
config.bitClock.bclkSrcSwap = true;
break;
case I2S_FMT_CLK_IF_NB:
config.frameSync.frameSyncPolarity =
kSAI_PolarityActiveHigh;
config.bitClock.bclkSrcSwap = false;
break;
case I2S_FMT_CLK_IF_IB:
config.frameSync.frameSyncPolarity =
kSAI_PolarityActiveHigh;
config.bitClock.bclkSrcSwap = true;
break;
}
config.frameSync.frameSyncWidth = (uint8_t)word_size_bits;
if (dir == I2S_DIR_TX) {
memcpy(&dev_data->tx.cfg, i2s_cfg, sizeof(struct i2s_config));
LOG_DBG("tx slab free_list = 0x%x",
(uint32_t)i2s_cfg->mem_slab->free_list);
LOG_DBG("tx slab num_blocks = %d",
(uint32_t)i2s_cfg->mem_slab->num_blocks);
LOG_DBG("tx slab block_size = %d",
(uint32_t)i2s_cfg->mem_slab->block_size);
LOG_DBG("tx slab buffer = 0x%x",
(uint32_t)i2s_cfg->mem_slab->buffer);
/* set bit clock divider */
SAI_TxSetConfig(base, &config);
dev_data->tx.start_channel = config.startChannel;
/* Disable the channel FIFO */
base->TCR3 &= ~I2S_TCR3_TCE_MASK;
SAI_TxSetBitClockRate(base, mclk,
i2s_cfg->frame_clk_freq,
word_size_bits,
i2s_cfg->channels);
LOG_DBG("tx start_channel = %d", dev_data->tx.start_channel);
/*set up dma settings*/
dev_data->tx.dma_cfg.source_data_size = word_size_bits / 8;
dev_data->tx.dma_cfg.dest_data_size = word_size_bits / 8;
dev_data->tx.dma_cfg.source_burst_length =
i2s_cfg->word_size / 8;
dev_data->tx.dma_cfg.dest_burst_length =
i2s_cfg->word_size / 8;
dev_data->tx.dma_cfg.user_data = (void *)dev;
dev_data->tx.state = I2S_STATE_READY;
} else {
/* For RX, DMA reads from FIFO whenever data present */
config.fifo.fifoWatermark = 0;
memcpy(&dev_data->rx.cfg, i2s_cfg, sizeof(struct i2s_config));
LOG_DBG("rx slab free_list = 0x%x",
(uint32_t)i2s_cfg->mem_slab->free_list);
LOG_DBG("rx slab num_blocks = %d",
(uint32_t)i2s_cfg->mem_slab->num_blocks);
LOG_DBG("rx slab block_size = %d",
(uint32_t)i2s_cfg->mem_slab->block_size);
LOG_DBG("rx slab buffer = 0x%x",
(uint32_t)i2s_cfg->mem_slab->buffer);
/* set bit clock divider */
SAI_RxSetConfig(base, &config);
dev_data->rx.start_channel = config.startChannel;
SAI_RxSetBitClockRate(base, mclk,
i2s_cfg->frame_clk_freq,
word_size_bits,
i2s_cfg->channels);
LOG_DBG("rx start_channel = %d", dev_data->rx.start_channel);
/*set up dma settings*/
dev_data->rx.dma_cfg.source_data_size = word_size_bits / 8;
dev_data->rx.dma_cfg.dest_data_size = word_size_bits / 8;
dev_data->rx.dma_cfg.source_burst_length =
i2s_cfg->word_size / 8;
dev_data->rx.dma_cfg.dest_burst_length =
i2s_cfg->word_size / 8;
dev_data->rx.dma_cfg.user_data = (void *)dev;
dev_data->rx.state = I2S_STATE_READY;
}
return 0;
}
const struct i2s_config *i2s_mcux_config_get(const struct device *dev,
enum i2s_dir dir)
{
struct i2s_dev_data *dev_data = dev->data;
if (dir == I2S_DIR_RX) {
return &dev_data->rx.cfg;
}
return &dev_data->tx.cfg;
}
static int i2s_tx_stream_start(const struct device *dev)
{
int ret = 0;
void *buffer;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
/* retrieve buffer from input queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("No buffer in input queue to start");
return -EIO;
}
LOG_DBG("tx stream start");
/* Driver keeps track of how many DMA blocks can be loaded to the DMA */
strm->free_tx_dma_blocks = MAX_TX_DMA_BLOCKS;
/* Configure the DMA with the first TX block */
struct dma_block_config *blk_cfg = &strm->dma_block;
memset(blk_cfg, 0, sizeof(struct dma_block_config));
uint32_t data_path = strm->start_channel;
blk_cfg->dest_address = (uint32_t)&base->TDR[data_path];
blk_cfg->source_address = (uint32_t)buffer;
blk_cfg->block_size = strm->cfg.block_size;
blk_cfg->dest_scatter_en = 1;
strm->dma_cfg.block_count = 1;
strm->dma_cfg.head_block = &strm->dma_block;
strm->dma_cfg.user_data = (void *)dev;
(strm->free_tx_dma_blocks)--;
dma_config(dev_dma, strm->dma_channel, &strm->dma_cfg);
/* put buffer in output queue */
ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in output queue");
return ret;
}
uint8_t blocks_queued;
ret = i2s_tx_reload_multiple_dma_blocks(dev, &blocks_queued);
if (ret) {
LOG_ERR("i2s_tx_reload_multiple_dma_blocks() failed (%d)", ret);
return ret;
}
ret = dma_start(dev_dma, strm->dma_channel);
if (ret < 0) {
LOG_ERR("dma_start failed (%d)", ret);
return ret;
}
/* Enable DMA enable bit */
SAI_TxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable the channel FIFO */
base->TCR3 |= I2S_TCR3_TCE(1UL << strm->start_channel);
/* Enable SAI Tx clock */
SAI_TxEnable(base, true);
return 0;
}
static int i2s_rx_stream_start(const struct device *dev)
{
int ret = 0;
void *buffer;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
uint8_t num_of_bufs;
num_of_bufs = k_mem_slab_num_free_get(strm->cfg.mem_slab);
/*
* Need at least NUM_DMA_BLOCKS_RX_PREP buffers on the RX memory slab
* for reliable DMA reception.
*/
if (num_of_bufs < NUM_DMA_BLOCKS_RX_PREP) {
return -EINVAL;
}
/* allocate 1st receive buffer from SLAB */
ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer,
K_NO_WAIT);
if (ret != 0) {
LOG_DBG("buffer alloc from mem_slab failed (%d)", ret);
return ret;
}
/* Configure DMA block */
struct dma_block_config *blk_cfg = &strm->dma_block;
memset(blk_cfg, 0, sizeof(struct dma_block_config));
uint32_t data_path = strm->start_channel;
blk_cfg->dest_address = (uint32_t)buffer;
blk_cfg->source_address = (uint32_t)&base->RDR[data_path];
blk_cfg->block_size = strm->cfg.block_size;
blk_cfg->source_gather_en = 1;
strm->dma_cfg.block_count = 1;
strm->dma_cfg.head_block = &strm->dma_block;
strm->dma_cfg.user_data = (void *)dev;
dma_config(dev_dma, strm->dma_channel, &strm->dma_cfg);
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in input queue, ret1 %d", ret);
return ret;
}
/* prep DMA for each of remaining (NUM_DMA_BLOCKS_RX_PREP-1) buffers */
for (int i = 0; i < NUM_DMA_BLOCKS_RX_PREP - 1; i++) {
/* allocate receive buffer from SLAB */
ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer,
K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from mem_slab failed (%d)", ret);
return ret;
}
ret = dma_reload(dev_dma, strm->dma_channel,
(uint32_t)&base->RDR[data_path],
(uint32_t)buffer, blk_cfg->block_size);
if (ret != 0) {
LOG_ERR("dma_reload() failed with error 0x%x", ret);
return ret;
}
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in input queue, ret2 %d",
ret);
return ret;
}
}
LOG_DBG("Starting DMA Ch%u", strm->dma_channel);
ret = dma_start(dev_dma, strm->dma_channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA Ch%d (%d)", strm->dma_channel,
ret);
return ret;
}
/* Enable DMA enable bit */
SAI_RxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable the channel FIFO */
base->RCR3 |= I2S_RCR3_RCE(1UL << strm->start_channel);
/* Enable SAI Rx clock */
SAI_RxEnable(base, true);
return 0;
}
static int i2s_mcux_trigger(const struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm;
unsigned int key;
int ret = 0;
if (dir == I2S_DIR_BOTH) {
return -ENOSYS;
}
strm = (dir == I2S_DIR_TX) ? &dev_data->tx : &dev_data->rx;
key = irq_lock();
switch (cmd) {
case I2S_TRIGGER_START:
if (strm->state != I2S_STATE_READY) {
LOG_ERR("START trigger: invalid state %u",
strm->state);
ret = -EIO;
break;
}
if (dir == I2S_DIR_TX) {
ret = i2s_tx_stream_start(dev);
} else {
ret = i2s_rx_stream_start(dev);
}
if (ret < 0) {
LOG_DBG("START trigger failed %d", ret);
ret = -EIO;
break;
}
strm->state = I2S_STATE_RUNNING;
strm->last_block = false;
break;
case I2S_TRIGGER_DROP:
if (strm->state == I2S_STATE_NOT_READY) {
LOG_ERR("DROP trigger: invalid state %d",
strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_READY;
if (dir == I2S_DIR_TX) {
i2s_tx_stream_disable(dev, true);
} else {
i2s_rx_stream_disable(dev, true, true);
}
break;
case I2S_TRIGGER_STOP:
if (strm->state != I2S_STATE_RUNNING) {
LOG_ERR("STOP trigger: invalid state %d", strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_STOPPING;
strm->last_block = true;
break;
case I2S_TRIGGER_DRAIN:
if (strm->state != I2S_STATE_RUNNING) {
LOG_ERR("DRAIN/STOP trigger: invalid state %d",
strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_STOPPING;
break;
case I2S_TRIGGER_PREPARE:
if (strm->state != I2S_STATE_ERROR) {
LOG_ERR("PREPARE trigger: invalid state %d",
strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_READY;
if (dir == I2S_DIR_TX) {
i2s_tx_stream_disable(dev, true);
} else {
i2s_rx_stream_disable(dev, true, true);
}
break;
default:
LOG_ERR("Unsupported trigger command");
ret = -EINVAL;
}
irq_unlock(key);
return ret;
}
static int i2s_mcux_read(const struct device *dev, void **mem_block,
size_t *size)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
void *buffer;
int status, ret = 0;
LOG_DBG("i2s_mcux_read");
if (strm->state == I2S_STATE_NOT_READY) {
LOG_ERR("invalid state %d", strm->state);
return -EIO;
}
status = k_msgq_get(&strm->out_queue, &buffer,
SYS_TIMEOUT_MS(strm->cfg.timeout));
if (status != 0) {
if (strm->state == I2S_STATE_ERROR) {
ret = -EIO;
} else {
LOG_DBG("need retry");
ret = -EAGAIN;
}
return ret;
}
*mem_block = buffer;
*size = strm->cfg.block_size;
return 0;
}
static int i2s_mcux_write(const struct device *dev, void *mem_block,
size_t size)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
int ret;
LOG_DBG("i2s_mcux_write");
if (strm->state != I2S_STATE_RUNNING &&
strm->state != I2S_STATE_READY) {
LOG_ERR("invalid state (%d)", strm->state);
return -EIO;
}
ret = k_msgq_put(&strm->in_queue, &mem_block,
SYS_TIMEOUT_MS(strm->cfg.timeout));
if (ret) {
LOG_DBG("k_msgq_put returned code %d", ret);
return ret;
}
return ret;
}
static void sai_driver_irq(const struct device *dev)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
if ((base->TCSR & I2S_TCSR_FEF_MASK) == I2S_TCSR_FEF_MASK) {
/* Clear FIFO error flag to continue transfer */
SAI_TxClearStatusFlags(base, I2S_TCSR_FEF_MASK);
/* Reset FIFO for safety */
SAI_TxSoftwareReset(base, kSAI_ResetTypeFIFO);
LOG_DBG("sai tx error occurred");
}
if ((base->RCSR & I2S_RCSR_FEF_MASK) == I2S_RCSR_FEF_MASK) {
/* Clear FIFO error flag to continue transfer */
SAI_RxClearStatusFlags(base, I2S_RCSR_FEF_MASK);
/* Reset FIFO for safety */
SAI_RxSoftwareReset(base, kSAI_ResetTypeFIFO);
LOG_DBG("sai rx error occurred");
}
}
/* clear IRQ sources atm */
static void i2s_mcux_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
if ((base->RCSR & I2S_TCSR_FEF_MASK) == I2S_TCSR_FEF_MASK) {
sai_driver_irq(dev);
}
if ((base->TCSR & I2S_RCSR_FEF_MASK) == I2S_RCSR_FEF_MASK) {
sai_driver_irq(dev);
}
/*
* Add for ARM errata 838869, affects Cortex-M4,
* Cortex-M4F Store immediate overlapping exception return operation
* might vector to incorrect interrupt
*/
#if defined __CORTEX_M && (__CORTEX_M == 4U)
barrier_dsync_fence_full();
#endif
}
static void audio_clock_settings(const struct device *dev)
{
clock_audio_pll_config_t audioPllConfig;
const struct i2s_mcux_config *dev_cfg = dev->config;
uint32_t clock_name = (uint32_t) dev_cfg->clk_sub_sys;
/*Clock setting for SAI*/
imxrt_audio_codec_pll_init(clock_name, dev_cfg->clk_src,
dev_cfg->clk_pre_div, dev_cfg->clk_src_div);
#ifdef CONFIG_SOC_SERIES_IMX_RT11XX
audioPllConfig.loopDivider = dev_cfg->pll_lp;
audioPllConfig.postDivider = dev_cfg->pll_pd;
audioPllConfig.numerator = dev_cfg->pll_num;
audioPllConfig.denominator = dev_cfg->pll_den;
audioPllConfig.ssEnable = false;
#elif defined CONFIG_SOC_SERIES_IMX_RT10XX
audioPllConfig.src = dev_cfg->pll_src;
audioPllConfig.loopDivider = dev_cfg->pll_lp;
audioPllConfig.postDivider = dev_cfg->pll_pd;
audioPllConfig.numerator = dev_cfg->pll_num;
audioPllConfig.denominator = dev_cfg->pll_den;
#else
#error Initialize SOC Series-specific clock_audio_pll_config_t
#endif /* CONFIG_SOC_SERIES */
CLOCK_InitAudioPll(&audioPllConfig);
}
static int i2s_mcux_initialize(const struct device *dev)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct i2s_dev_data *dev_data = dev->data;
uint32_t mclk;
int err;
if (!dev_data->dev_dma) {
LOG_ERR("DMA device not found");
return -ENODEV;
}
/* Initialize the buffer queues */
k_msgq_init(&dev_data->tx.in_queue, (char *)dev_data->tx_in_msgs,
sizeof(void *), CONFIG_I2S_TX_BLOCK_COUNT);
k_msgq_init(&dev_data->rx.in_queue, (char *)dev_data->rx_in_msgs,
sizeof(void *), CONFIG_I2S_RX_BLOCK_COUNT);
k_msgq_init(&dev_data->tx.out_queue, (char *)dev_data->tx_out_msgs,
sizeof(void *), CONFIG_I2S_TX_BLOCK_COUNT);
k_msgq_init(&dev_data->rx.out_queue, (char *)dev_data->rx_out_msgs,
sizeof(void *), CONFIG_I2S_RX_BLOCK_COUNT);
/* register ISR */
dev_cfg->irq_connect(dev);
/* pinctrl */
err = pinctrl_apply_state(dev_cfg->pinctrl, PINCTRL_STATE_DEFAULT);
if (err) {
LOG_ERR("mclk pinctrl setup failed (%d)", err);
return err;
}
/*clock configuration*/
audio_clock_settings(dev);
SAI_Init(base);
dev_data->tx.state = I2S_STATE_NOT_READY;
dev_data->rx.state = I2S_STATE_NOT_READY;
#if (defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)) || \
(defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \
(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER))
sai_master_clock_t mclkConfig = {
#if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
.mclkOutputEnable = true,
#if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && \
(FSL_FEATURE_SAI_HAS_NO_MCR_MICS))
.mclkSource = kSAI_MclkSourceSysclk,
#endif
#endif
};
#endif
get_mclk_rate(dev, &mclk);
/* master clock configurations */
#if (defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)) || \
(defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \
(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER))
#if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \
(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)
mclkConfig.mclkHz = mclk;
mclkConfig.mclkSourceClkHz = mclk;
#endif
SAI_SetMasterClockConfig(base, &mclkConfig);
#endif
LOG_INF("Device %s initialized", dev->name);
return 0;
}
static const struct i2s_driver_api i2s_mcux_driver_api = {
.configure = i2s_mcux_config,
.read = i2s_mcux_read,
.write = i2s_mcux_write,
.config_get = i2s_mcux_config_get,
.trigger = i2s_mcux_trigger,
};
#define I2S_MCUX_INIT(i2s_id) \
static void i2s_irq_connect_##i2s_id(const struct device *dev); \
\
PINCTRL_DT_INST_DEFINE(i2s_id); \
\
static const struct i2s_mcux_config i2s_##i2s_id##_config = { \
.base = (I2S_Type *)DT_INST_REG_ADDR(i2s_id), \
.clk_src = \
DT_CLOCKS_CELL_BY_IDX(DT_DRV_INST(i2s_id), \
0, bits), \
.clk_pre_div = DT_INST_PROP(i2s_id, pre_div), \
.clk_src_div = DT_INST_PROP(i2s_id, podf), \
.pll_src = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, src, value), \
.pll_lp = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, lp, value), \
.pll_pd = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, pd, value), \
.pll_num = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, num, value), \
.pll_den = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, den, value), \
.mclk_pin_mask = \
DT_PHA_BY_IDX(DT_DRV_INST(i2s_id), \
pinmuxes, 0, function), \
.mclk_pin_offset = \
DT_PHA_BY_IDX(DT_DRV_INST(i2s_id), \
pinmuxes, 0, pin), \
.clk_sub_sys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL_BY_IDX(i2s_id, 0, name), \
.ccm_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i2s_id)), \
.irq_connect = i2s_irq_connect_##i2s_id, \
.pinctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(i2s_id), \
.tx_sync_mode = \
DT_INST_PROP(i2s_id, nxp_tx_sync_mode), \
.rx_sync_mode = \
DT_INST_PROP(i2s_id, nxp_rx_sync_mode), \
.tx_channel = DT_INST_PROP(i2s_id, nxp_tx_channel), \
}; \
\
static struct i2s_dev_data i2s_##i2s_id##_data = { \
.dev_dma = DEVICE_DT_GET( \
DT_INST_DMAS_CTLR_BY_NAME(i2s_id, rx)), \
.tx = { \
.dma_channel = \
DT_INST_PROP(i2s_id, nxp_tx_dma_channel), \
.dma_cfg = { \
.source_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dest_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dma_callback = i2s_dma_tx_callback, \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&i2s_##i2s_id##_data.tx.dma_block, \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(i2s_id, \
tx, source), \
}, \
}, \
.rx = { \
.dma_channel = \
DT_INST_PROP(i2s_id, nxp_rx_dma_channel), \
.dma_cfg = { \
.source_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dest_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dma_callback = i2s_dma_rx_callback, \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&i2s_##i2s_id##_data.rx.dma_block, \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(i2s_id, \
rx, source), \
}, \
}, \
}; \
\
DEVICE_DT_INST_DEFINE(i2s_id, &i2s_mcux_initialize, NULL, \
&i2s_##i2s_id##_data, &i2s_##i2s_id##_config, \
POST_KERNEL, \
CONFIG_I2S_INIT_PRIORITY, &i2s_mcux_driver_api); \
\
static void i2s_irq_connect_##i2s_id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(i2s_id, 0, irq), \
DT_INST_IRQ_BY_IDX(i2s_id, 0, priority), \
i2s_mcux_isr, \
DEVICE_DT_INST_GET(i2s_id), 0); \
irq_enable(DT_INST_IRQN(i2s_id)); \
}
DT_INST_FOREACH_STATUS_OKAY(I2S_MCUX_INIT)