blob: 044aad3c2db46a102a6ad1bc93b286b002339e22 [file] [log] [blame]
/*
* Copyright (c) 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/counter.h>
#include <zephyr/drivers/rtc/maxim_ds3231.h>
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(test);
static struct k_sem top_cnt_sem;
static struct k_sem alarm_cnt_sem;
static struct k_poll_signal sync_sig;
static void top_handler(const struct device *dev, void *user_data);
void *exp_user_data = (void *)199;
#define COUNTER_PERIOD_US USEC_PER_SEC
struct counter_alarm_cfg alarm_cfg;
struct counter_alarm_cfg alarm_cfg2;
static const struct device *const devices[] = {
DEVICE_DT_GET(DT_NODELABEL(ds3231)),
};
typedef void (*counter_test_func_t)(const struct device *dev);
typedef bool (*counter_capability_func_t)(const struct device *dev);
static void counter_setup_instance(const struct device *dev)
{
k_sem_reset(&alarm_cnt_sem);
}
static void counter_tear_down_instance(const struct device *dev)
{
int err;
struct counter_top_cfg top_cfg = {
.callback = NULL,
.user_data = NULL,
.flags = 0
};
top_cfg.ticks = counter_get_max_top_value(dev);
err = counter_set_top_value(dev, &top_cfg);
if (err == -ENOTSUP) {
/* If resetting is not support, attempt without reset. */
top_cfg.flags = COUNTER_TOP_CFG_DONT_RESET;
err = counter_set_top_value(dev, &top_cfg);
}
zassert_true((err == 0) || (err == -ENOTSUP),
"%s: Setting top value to default failed", dev->name);
err = counter_stop(dev);
/* DS3231 counter cannot be stopped */
zassert_equal(-ENOTSUP, err, "%s: Counter failed to stop", dev->name);
}
static void test_all_instances(counter_test_func_t func,
counter_capability_func_t capability_check)
{
for (int i = 0; i < ARRAY_SIZE(devices); i++) {
counter_setup_instance(devices[i]);
if ((capability_check == NULL) ||
capability_check(devices[i])) {
TC_PRINT("Testing %s\n", devices[i]->name);
func(devices[i]);
} else {
TC_PRINT("Skipped for %s\n", devices[i]->name);
}
counter_tear_down_instance(devices[i]);
/* Allow logs to be printed. */
k_sleep(K_MSEC(100));
}
}
static bool set_top_value_capable(const struct device *dev)
{
struct counter_top_cfg cfg = {
.ticks = counter_get_top_value(dev) - 1
};
int err;
err = counter_set_top_value(dev, &cfg);
if (err == -ENOTSUP) {
return false;
}
cfg.ticks++;
err = counter_set_top_value(dev, &cfg);
if (err == -ENOTSUP) {
return false;
}
return true;
}
static void top_handler(const struct device *dev, void *user_data)
{
zassert_true(user_data == exp_user_data,
"%s: Unexpected callback", dev->name);
k_sem_give(&top_cnt_sem);
}
void test_set_top_value_with_alarm_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t top_cnt;
struct counter_top_cfg top_cfg = {
.callback = top_handler,
.user_data = exp_user_data,
.flags = 0
};
k_sem_reset(&top_cnt_sem);
top_cfg.ticks = counter_us_to_ticks(dev, COUNTER_PERIOD_US);
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
k_busy_wait(5000);
err = counter_get_value(dev, &cnt);
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
if (counter_is_counting_up(dev)) {
err = (cnt > 0) ? 0 : 1;
} else {
top_cnt = counter_get_top_value(dev);
err = (cnt < top_cnt) ? 0 : 1;
}
zassert_true(err == 0, "%s: Counter should progress", dev->name);
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err, "%s: Counter failed to set top value (err: %d)",
dev->name, err);
k_sleep(K_USEC(5.2 * COUNTER_PERIOD_US));
top_cnt = k_sem_count_get(&top_cnt_sem);
zassert_true(top_cnt == 5U,
"%s: Unexpected number of turnarounds (%d).",
dev->name, top_cnt);
}
void test_set_top_value_with_alarm(void)
{
test_all_instances(test_set_top_value_with_alarm_instance,
set_top_value_capable);
}
void test_set_top_value_without_alarm_instance(const struct device *dev)
{
int err;
uint32_t cnt;
uint32_t top_cnt;
struct counter_top_cfg top_cfg = {
.callback = NULL,
.user_data = NULL,
.flags = 0
};
top_cfg.ticks = counter_us_to_ticks(dev, COUNTER_PERIOD_US);
err = counter_start(dev);
zassert_equal(0, err, "%s: Counter failed to start", dev->name);
k_sleep(K_USEC(5000));
err = counter_get_value(dev, &cnt);
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
if (counter_is_counting_up(dev)) {
err = (cnt > 0) ? 0 : 1;
} else {
top_cnt = counter_get_top_value(dev);
err = (cnt < top_cnt) ? 0 : 1;
}
zassert_true(err == 0, "%s: Counter should progress", dev->name);
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err, "%s: Counter failed to set top value (err: %d)",
dev->name, err);
zassert_true(counter_get_top_value(dev) == top_cfg.ticks,
"%s: new top value not in use.",
dev->name);
}
void test_set_top_value_without_alarm(void)
{
test_all_instances(test_set_top_value_without_alarm_instance,
set_top_value_capable);
}
static void alarm_handler(const struct device *dev, uint8_t chan_id,
uint32_t counter,
void *user_data)
{
uint32_t now;
int err;
err = counter_get_value(dev, &now);
zassert_true(err == 0, "%s: Counter read failed (err: %d)",
dev->name, err);
if (counter_is_counting_up(dev)) {
zassert_true(now >= counter,
"%s: Alarm (%d) too early now: %d (counting up).",
dev->name, counter, now);
} else {
zassert_true(now <= counter,
"%s: Alarm (%d) too early now: %d (counting down).",
dev->name, counter, now);
}
if (user_data) {
zassert_true(&alarm_cfg == user_data,
"%s: Unexpected callback", dev->name);
}
/* DS3231 does not invoke callbacks from interrupt context. */
zassert_false(k_is_in_isr(), "%s: Unexpected interrupt context",
dev->name);
k_sem_give(&alarm_cnt_sem);
}
void test_single_shot_alarm_instance(const struct device *dev, bool set_top)
{
int err;
uint32_t ticks;
uint32_t alarm_cnt;
struct counter_top_cfg top_cfg = {
.callback = top_handler,
.user_data = exp_user_data,
.flags = 0
};
ticks = counter_us_to_ticks(dev, COUNTER_PERIOD_US);
top_cfg.ticks = ticks;
alarm_cfg.flags = 0;
alarm_cfg.callback = alarm_handler;
alarm_cfg.user_data = &alarm_cfg;
k_sem_reset(&alarm_cnt_sem);
if (counter_get_num_of_channels(dev) < 1U) {
/* Counter does not support any alarm */
return;
}
err = counter_start(dev);
zassert_equal(-EALREADY, err, "%s: Counter failed to start", dev->name);
if (set_top) {
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(0, err,
"%s: Counter failed to set top value", dev->name);
alarm_cfg.ticks = ticks + 1;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-EINVAL, err,
"%s: Counter should return error because ticks"
" exceeded the limit set alarm", dev->name);
alarm_cfg.ticks = ticks - 1;
}
alarm_cfg.ticks = ticks;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Counter set alarm failed (err: %d)",
dev->name, err);
err = counter_set_top_value(dev, &top_cfg);
k_sleep(K_USEC(2 * (uint32_t)counter_ticks_to_us(dev, ticks)));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(1, alarm_cnt,
"%s: Expecting alarm callback", dev->name);
k_sleep(K_USEC(1.5 * counter_ticks_to_us(dev, ticks)));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(1, alarm_cnt,
"%s: Expecting alarm callback", dev->name);
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Counter disabling alarm failed %d", dev->name, err);
top_cfg.ticks = counter_get_max_top_value(dev);
top_cfg.callback = NULL;
top_cfg.user_data = NULL;
err = counter_set_top_value(dev, &top_cfg);
if (err == -ENOTSUP) {
/* If resetting is not support, attempt without reset. */
top_cfg.flags = COUNTER_TOP_CFG_DONT_RESET;
err = counter_set_top_value(dev, &top_cfg);
}
zassert_true((err == 0) || (err == -ENOTSUP),
"%s: Setting top value to default failed", dev->name);
err = counter_stop(dev);
/* DS3231 counter cannot be stopped */
zassert_equal(-ENOTSUP, err, "%s: Counter failed to stop", dev->name);
}
void test_single_shot_alarm_notop_instance(const struct device *dev)
{
test_single_shot_alarm_instance(dev, false);
}
void test_single_shot_alarm_top_instance(const struct device *dev)
{
test_single_shot_alarm_instance(dev, true);
}
static bool single_channel_alarm_capable(const struct device *dev)
{
return (counter_get_num_of_channels(dev) > 0);
}
static bool single_channel_alarm_and_custom_top_capable(const struct device *dev)
{
return single_channel_alarm_capable(dev) &&
set_top_value_capable(dev);
}
ZTEST(counter_callback, test_single_shot_alarm_notop)
{
test_all_instances(test_single_shot_alarm_notop_instance,
single_channel_alarm_capable);
}
ZTEST(counter_callback, test_single_shot_alarm_top)
{
test_all_instances(test_single_shot_alarm_top_instance,
single_channel_alarm_and_custom_top_capable);
}
static void *clbk_data[10];
static void alarm_handler2(const struct device *dev, uint8_t chan_id,
uint32_t counter,
void *user_data)
{
clbk_data[k_sem_count_get(&alarm_cnt_sem)] = user_data;
k_sem_give(&alarm_cnt_sem);
}
/*
* Two alarms set. First alarm is absolute, second relative. Because
* setting of both alarms is delayed it is expected that second alarm
* will expire first (relative to the time called) while first alarm
* will expire after next wrap around.
*/
void test_multiple_alarms_instance(const struct device *dev)
{
int err;
uint32_t ticks;
uint32_t alarm_cnt;
struct counter_top_cfg top_cfg = {
.callback = top_handler,
.user_data = exp_user_data,
.flags = 0
};
ticks = counter_us_to_ticks(dev, COUNTER_PERIOD_US);
top_cfg.ticks = ticks;
alarm_cfg.flags = COUNTER_ALARM_CFG_ABSOLUTE;
alarm_cfg.ticks = counter_us_to_ticks(dev, 2000);
alarm_cfg.callback = alarm_handler2;
alarm_cfg.user_data = &alarm_cfg;
alarm_cfg2.flags = 0;
alarm_cfg2.ticks = counter_us_to_ticks(dev, 2000);
alarm_cfg2.callback = alarm_handler2;
alarm_cfg2.user_data = &alarm_cfg2;
k_sem_reset(&alarm_cnt_sem);
if (counter_get_num_of_channels(dev) < 2U) {
/* Counter does not support two alarms */
return;
}
err = counter_start(dev);
/* DS3231 is always running */
zassert_equal(-EALREADY, err, "%s: Counter failed to start", dev->name);
err = counter_set_top_value(dev, &top_cfg);
zassert_equal(-ENOTSUP, err,
"%s: Counter failed to set top value: %d", dev->name);
k_sleep(K_USEC(3 * (uint32_t)counter_ticks_to_us(dev, alarm_cfg.ticks)));
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Counter set alarm failed", dev->name);
err = counter_set_channel_alarm(dev, 1, &alarm_cfg2);
zassert_equal(0, err, "%s: Counter set alarm failed", dev->name);
k_sleep(K_USEC(1.2 * counter_ticks_to_us(dev, ticks * 2U)));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(2, alarm_cnt,
"%s: Invalid number of callbacks %d (expected: %d)",
dev->name, alarm_cnt, 2);
zassert_equal(&alarm_cfg2, clbk_data[0],
"%s: Expected different order or callbacks",
dev->name);
zassert_equal(&alarm_cfg, clbk_data[1],
"%s: Expected different order or callbacks",
dev->name);
/* tear down */
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Counter disabling alarm failed", dev->name);
err = counter_cancel_channel_alarm(dev, 1);
zassert_equal(0, err, "%s: Counter disabling alarm failed", dev->name);
}
static bool multiple_channel_alarm_capable(const struct device *dev)
{
return (counter_get_num_of_channels(dev) > 1);
}
static bool not_capable(const struct device *dev)
{
return false;
}
ZTEST(counter_callback, test_multiple_alarms)
{
/* Test not supported on DS3231 because second alarm resolution is
* more coarse than first alarm; code would have to be changed to
* align to boundaries and wait over 60 s to verify.
*
* Basic support for two channels is verified in
* test_all_channels_instance().
*/
(void)multiple_channel_alarm_capable;
test_all_instances(test_multiple_alarms_instance,
not_capable);
}
void test_all_channels_instance(const struct device *dev)
{
int err;
const int n = 10;
int nchan = 0;
bool limit_reached = false;
struct counter_alarm_cfg alarm_cfgs;
uint32_t ticks;
uint32_t alarm_cnt;
/* Use a delay large enough to guarantee a minute-counter
* rollover so both alarms can be tested.
*/
ticks = counter_us_to_ticks(dev, 61U * COUNTER_PERIOD_US);
alarm_cfgs.flags = 0;
alarm_cfgs.ticks = ticks;
alarm_cfgs.callback = alarm_handler2;
alarm_cfgs.user_data = NULL;
err = counter_start(dev);
zassert_equal(-EALREADY, err, "%s: Counter failed to start", dev->name);
for (int i = 0; i < n; i++) {
err = counter_set_channel_alarm(dev, i, &alarm_cfgs);
if ((err == 0) && !limit_reached) {
nchan++;
} else if (err == -ENOTSUP) {
limit_reached = true;
} else {
zassert_equal(0, 1,
"%s: Unexpected error on setting alarm: %d",
dev->name, err);
}
}
TC_PRINT("Sleeping %u s to support minute-resolution alarm channel\n",
ticks + 1U);
k_sleep(K_USEC(counter_ticks_to_us(dev, ticks + 1U)));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(nchan, alarm_cnt,
"%s: Expecting alarm callback", dev->name);
for (int i = 0; i < nchan; i++) {
err = counter_cancel_channel_alarm(dev, i);
zassert_equal(0, err,
"%s: Unexpected error on disabling alarm", dev->name);
}
for (int i = nchan; i < n; i++) {
err = counter_cancel_channel_alarm(dev, i);
zassert_equal(-ENOTSUP, err,
"%s: Unexpected error on disabling alarm", dev->name);
}
}
ZTEST(counter_z, test_all_channels)
{
test_all_instances(test_all_channels_instance,
single_channel_alarm_capable);
}
/**
* Test validates if alarm set too late (current tick or current tick + 1)
* results in callback being called.
*/
void test_late_alarm_instance(const struct device *dev)
{
int err;
uint32_t alarm_cnt;
uint32_t tick_us = (uint32_t)counter_ticks_to_us(dev, 1);
uint32_t guard = counter_us_to_ticks(dev, 200);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = COUNTER_ALARM_CFG_ABSOLUTE |
COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE,
.user_data = NULL
};
err = counter_set_guard_period(dev, guard,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
k_sleep(K_USEC(2 * tick_us));
alarm_cfg.ticks = 0;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err, "%s: Unexpected error (%d)", dev->name, err);
/* wait couple of ticks */
k_sleep(K_USEC(5 * tick_us));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(1, alarm_cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, 1, alarm_cnt);
err = counter_get_value(dev, &(alarm_cfg.ticks));
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err, "%s: Failed to set an alarm (err: %d)",
dev->name, err);
/* wait to ensure that tick+1 timeout will expire. */
k_sleep(K_USEC(3 * tick_us));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(2, alarm_cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, 2, alarm_cnt);
}
void test_late_alarm_error_instance(const struct device *dev)
{
int err;
uint32_t tick_us = (uint32_t)counter_ticks_to_us(dev, 1);
uint32_t guard = counter_us_to_ticks(dev, 200);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = COUNTER_ALARM_CFG_ABSOLUTE,
.user_data = NULL
};
err = counter_set_guard_period(dev, guard,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
k_sleep(K_USEC(2 * tick_us));
alarm_cfg.ticks = 0;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err,
"%s: Failed to detect late setting (err: %d)",
dev->name, err);
err = counter_get_value(dev, &(alarm_cfg.ticks));
zassert_true(err == 0, "%s: Counter read failed (err: %d)", dev->name,
err);
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(-ETIME, err,
"%s: Counter failed to detect late setting (err: %d)",
dev->name, err);
}
static bool late_detection_capable(const struct device *dev)
{
uint32_t guard = counter_get_guard_period(dev,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
int err = counter_set_guard_period(dev, guard,
COUNTER_GUARD_PERIOD_LATE_TO_SET);
if (err == -ENOTSUP) {
return false;
}
return true;
}
ZTEST(counter_callback, test_late_alarm)
{
test_all_instances(test_late_alarm_instance, late_detection_capable);
}
ZTEST(counter_callback, test_late_alarm_error)
{
test_all_instances(test_late_alarm_error_instance,
late_detection_capable);
}
static void test_short_relative_alarm_instance(const struct device *dev)
{
int err;
uint32_t alarm_cnt;
uint32_t tick_us = (uint32_t)counter_ticks_to_us(dev, 1);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = 0,
.user_data = NULL
};
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
alarm_cfg.ticks = 1;
for (int i = 0; i < 100; ++i) {
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err,
"%s: Failed to set an alarm (err: %d)",
dev->name, err);
/* wait to ensure that tick+1 timeout will expire. */
k_sleep(K_USEC(3 * tick_us));
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(i + 1, alarm_cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, i + 1, alarm_cnt);
}
}
/* Function checks if relative alarm set for 1 tick will expire. If handler is
* not called within near future it indicates that driver do not support it and
* more extensive testing is skipped.
*/
static bool short_relative_capable(const struct device *dev)
{
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = 0,
.user_data = NULL,
.ticks = 1
};
int err;
bool ret;
if (single_channel_alarm_capable(dev) == false) {
return false;
}
err = counter_start(dev);
if (err != 0) {
ret = false;
goto end;
}
k_sem_reset(&alarm_cnt_sem);
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
if (err != 0) {
ret = false;
goto end;
}
k_sleep(K_USEC(counter_ticks_to_us(dev, 10)));
if (k_sem_count_get(&alarm_cnt_sem) == 1) {
ret = true;
} else {
ret = false;
(void)counter_cancel_channel_alarm(dev, 0);
}
end:
k_sem_reset(&alarm_cnt_sem);
counter_stop(dev);
k_sleep(K_USEC(1000));
return ret;
}
ZTEST(counter_callback, test_short_relative_alarm)
{
test_all_instances(test_short_relative_alarm_instance,
short_relative_capable);
}
/* Test checks if cancelled alarm does not get triggered when new alarm is
* configured at the point where previous alarm was about to expire.
*/
static void test_cancelled_alarm_does_not_expire_instance(const struct device *dev)
{
int err;
uint32_t alarm_cnt;
uint32_t us = 1000;
uint32_t ticks = counter_us_to_ticks(dev, us);
us = (uint32_t)counter_ticks_to_us(dev, ticks);
struct counter_alarm_cfg alarm_cfg = {
.callback = alarm_handler,
.flags = COUNTER_ALARM_CFG_ABSOLUTE,
.user_data = NULL
};
err = counter_start(dev);
zassert_equal(0, err, "%s: Unexpected error", dev->name);
for (int i = 0; i < us / 2; ++i) {
err = counter_get_value(dev, &(alarm_cfg.ticks));
zassert_true(err == 0, "%s: Counter read failed (err: %d)",
dev->name, err);
alarm_cfg.ticks += ticks;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Failed to set an alarm (err: %d)",
dev->name, err);
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Failed to cancel an alarm (err: %d)",
dev->name, err);
k_sleep(K_USEC(us / 2 + i));
alarm_cfg.ticks = alarm_cfg.ticks + 2 * alarm_cfg.ticks;
err = counter_set_channel_alarm(dev, 0, &alarm_cfg);
zassert_equal(0, err, "%s: Failed to set an alarm (err: %d)",
dev->name, err);
/* wait to ensure that tick+1 timeout will expire. */
k_sleep(K_USEC(us));
err = counter_cancel_channel_alarm(dev, 0);
zassert_equal(0, err, "%s: Failed to cancel an alarm (err: %d)",
dev->name, err);
alarm_cnt = k_sem_count_get(&alarm_cnt_sem);
zassert_equal(0, alarm_cnt,
"%s: Expected %d callbacks, got %d\n",
dev->name, 0, alarm_cnt);
}
}
static bool reliable_cancel_capable(const struct device *dev)
{
/* Test performed only for NRF_RTC instances. Other probably will fail.
*/
#ifdef CONFIG_COUNTER_RTC0
/* Nordic RTC0 may be reserved for Bluetooth */
if (dev == DEVICE_DT_GET(DT_NODELABEL(rtc0))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_RTC2
if (dev == DEVICE_DT_GET(DT_NODELABEL(rtc2))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER0
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer0))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER1
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer1))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER2
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer2))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER3
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer3))) {
return true;
}
#endif
#ifdef CONFIG_COUNTER_TIMER4
if (dev == DEVICE_DT_GET(DT_NODELABEL(timer4))) {
return true;
}
#endif
return false;
}
ZTEST(counter_callback, test_cancelled_alarm_does_not_expire)
{
test_all_instances(test_cancelled_alarm_does_not_expire_instance,
reliable_cancel_capable);
}
static void test_ds3231_synchronize(void)
{
const struct device *dev = devices[0];
struct sys_notify notify;
struct k_poll_event evt = K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY,
&sync_sig);
int rc;
int res = 0;
k_poll_signal_reset(&sync_sig);
sys_notify_init_signal(&notify, &sync_sig);
rc = maxim_ds3231_synchronize(dev, &notify);
zassert_true(rc >= 0,
"%s: Failed to initiate synchronize: %d", dev->name, rc);
rc = k_poll(&evt, 1, K_SECONDS(2));
zassert_true(rc == 0,
"%s: Sync wait failed: %d\n", dev->name, rc);
rc = sys_notify_fetch_result(&notify, &res);
zassert_true(rc >= 0,
"%s: Sync result read failed: %d", dev->name, rc);
zassert_true(res >= 0,
"%s: Sync operation failed: %d", dev->name, res);
}
static void ds3231_get_syncpoint(void)
{
const struct device *dev = devices[0];
struct maxim_ds3231_syncpoint syncpoint;
int rc;
rc = maxim_ds3231_get_syncpoint(dev, &syncpoint);
zassert_true(rc >= 0,
"%s: Failed to read syncpoint: %d", dev->name, rc);
zassert_equal(syncpoint.rtc.tv_nsec, 0,
"%s: Unexpected nanoseconds\n", dev->name);
TC_PRINT("Time %u at %u local\n", (uint32_t)syncpoint.rtc.tv_sec,
syncpoint.syncclock);
}
static void test_ds3231_req_syncpoint(void)
{
const struct device *dev = devices[0];
struct k_poll_event evt = K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY,
&sync_sig);
int rc;
k_poll_signal_reset(&sync_sig);
rc = maxim_ds3231_req_syncpoint(dev, &sync_sig);
zassert_true(rc >= 0,
"%s: Failed to request syncpoint: %d", dev->name, rc);
rc = k_poll(&evt, 1, K_SECONDS(2));
zassert_true(rc == 0,
"%s: Syncpoint poll failed: %d\n", dev->name, rc);
rc = sync_sig.result;
zassert_true(rc >= 0,
"%s: Syncpoint operation failed: %d\n", dev->name, rc);
}
ZTEST(counter_supervisor, test_ds3231_get_syncpoint)
{
test_ds3231_synchronize();
ds3231_get_syncpoint();
}
ZTEST_USER(counter_user, test_ds3231_get_syncpoint)
{
test_ds3231_req_syncpoint();
ds3231_get_syncpoint();
}
static void *counter_setup(void)
{
int i;
/* Give required clocks some time to stabilize. In particular, nRF SoCs
* need such delay for the Xtal LF clock source to start and for this
* test to use the correct timing.
*/
k_busy_wait(USEC_PER_MSEC * 300);
k_sem_init(&top_cnt_sem, 0, UINT_MAX);
k_object_access_grant(&top_cnt_sem, k_current_get());
k_sem_init(&alarm_cnt_sem, 0, UINT_MAX);
k_object_access_grant(&alarm_cnt_sem, k_current_get());
k_poll_signal_init(&sync_sig);
k_object_access_grant(&sync_sig, k_current_get());
for (i = 0; i < ARRAY_SIZE(devices); i++) {
zassert_true(device_is_ready(devices[i]),
"Device %s is not ready", devices[i]->name);
k_object_access_grant(devices[i], k_current_get());
}
return NULL;
}
/* Uses callbacks, run in supervisor mode */
ZTEST_SUITE(counter_callback, NULL, counter_setup, NULL, NULL, NULL);
/* Supervisor-mode driver-specific API */
ZTEST_SUITE(counter_supervisor, NULL, NULL, NULL, NULL, NULL);
/* User-mode-compatible driver-specific API*/
ZTEST_SUITE(counter_user, NULL, NULL, NULL, NULL, NULL);
/* Supervisor-mode test, takes 63 s so do it last */
ZTEST_SUITE(counter_z, NULL, NULL, NULL, NULL, NULL);