blob: 8863c3cf548e55d88a4090d98098d0f173961001 [file] [log] [blame]
/**
* @file
*
* @brief Public APIs for the CAN drivers.
*/
/*
* Copyright (c) 2018 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_DRIVERS_CAN_H_
#define ZEPHYR_INCLUDE_DRIVERS_CAN_H_
/**
* @brief CAN Interface
* @defgroup can_interface CAN Interface
* @ingroup io_interfaces
* @{
*/
#include <zephyr/types.h>
#include <device.h>
#include <string.h>
#include <sys/util.h>
#ifdef __cplusplus
extern "C" {
#endif
#define CAN_EX_ID (1 << 31)
#define CAN_MAX_STD_ID (0x7FF)
#define CAN_STD_ID_MASK CAN_MAX_STD_ID
#define CAN_EXT_ID_MASK (0x1FFFFFFF)
#define CAN_MAX_DLC (8)
#define CANFD_MAX_DLC CONFIG_CANFD_MAX_DLC
#ifndef CONFIG_CANFD_MAX_DLC
#define CAN_MAX_DLEN 8
#else
#if CONFIG_CANFD_MAX_DLC <= 8
#define CAN_MAX_DLEN CONFIG_CANFD_MAX_DLC
#elif CONFIG_CANFD_MAX_DLC <= 12
#define CAN_MAX_DLEN CONFIG_CANFD_MAX_DLC + (CONFIG_CANFD_MAX_DLC - 8) * 4
#elif CONFIG_CANFD_MAX_DLC == 13
#define CAN_MAX_DLEN 32
#elif CONFIG_CANFD_MAX_DLC == 14
#define CAN_MAX_DLEN 48
#elif CONFIG_CANFD_MAX_DLC == 15
#define CAN_MAX_DLEN 64
#endif
#endif /* CONFIG_CANFD_MAX_DLC */
/* CAN_TX_* are the error flags from tx_callback and send.*/
/** send successfully */
#define CAN_TX_OK (0)
/** general send error */
#define CAN_TX_ERR (-2)
/** bus arbitration lost during sending */
#define CAN_TX_ARB_LOST (-3)
/** controller is in bus off state */
#define CAN_TX_BUS_OFF (-4)
/** unexpected error */
#define CAN_TX_UNKNOWN (-5)
/** invalid parameter */
#define CAN_TX_EINVAL (-22)
/** attach_* failed because there is no unused filter left*/
#define CAN_NO_FREE_FILTER (-1)
/** operation timed out*/
#define CAN_TIMEOUT (-1)
/**
* @brief Statically define and initialize a can message queue.
*
* The message queue's ring buffer contains space for @a size messages.
*
* @param name Name of the message queue.
* @param size Number of can messages.
*/
#define CAN_DEFINE_MSGQ(name, size) \
K_MSGQ_DEFINE(name, sizeof(struct zcan_frame), size, 4)
/**
* @brief can_ide enum
* Define if the message has a standard (11bit) or extended (29bit)
* identifier
*/
enum can_ide {
CAN_STANDARD_IDENTIFIER,
CAN_EXTENDED_IDENTIFIER
};
/**
* @brief can_rtr enum
* Define if the message is a data or remote frame
*/
enum can_rtr {
CAN_DATAFRAME,
CAN_REMOTEREQUEST
};
/**
* @brief can_mode enum
* Defines the mode of the can controller
*/
enum can_mode {
/*Normal mode*/
CAN_NORMAL_MODE,
/*Controller is not allowed to send dominant bits*/
CAN_SILENT_MODE,
/*Controller is in loopback mode (receive own messages)*/
CAN_LOOPBACK_MODE,
/*Combination of loopback and silent*/
CAN_SILENT_LOOPBACK_MODE
};
/**
* @brief can_state enum
* Defines the possible states of the CAN bus
*/
enum can_state {
CAN_ERROR_ACTIVE,
CAN_ERROR_PASSIVE,
CAN_BUS_OFF,
CAN_BUS_UNKNOWN
};
/*
* Controller Area Network Identifier structure for Linux compatibility.
*
* The fields in this type are:
*
* bit 0-28 : CAN identifier (11/29 bit)
* bit 29 : error message frame flag (0 = data frame, 1 = error message)
* bit 30 : remote transmission request flag (1 = rtr frame)
* bit 31 : frame format flag (0 = standard 11 bit, 1 = extended 29 bit)
*/
typedef uint32_t canid_t;
/**
* @brief CAN frame structure that is compatible with Linux. This is mainly
* used by Socket CAN code.
*
* @details Used to pass CAN messages from userspace to the socket CAN and vice
* versa.
*/
struct can_frame {
/** 32 bit CAN_ID + EFF/RTR/ERR flags */
canid_t can_id;
/** The length of the message */
uint8_t can_dlc;
/** @cond INTERNAL_HIDDEN */
uint8_t pad; /* padding */
uint8_t res0; /* reserved / padding */
uint8_t res1; /* reserved / padding */
/** @endcond */
/** The message data */
uint8_t data[CAN_MAX_DLEN];
};
/**
* @brief CAN filter that is compatible with Linux. This is mainly used by
* Socket CAN code.
*
* @details A filter matches, when "received_can_id & mask == can_id & mask"
*/
struct can_filter {
canid_t can_id;
canid_t can_mask;
};
/**
* @brief CAN message structure
*
* Used to pass can messages from userspace to the driver and
* from driver to userspace
*
*/
struct zcan_frame {
/** Message identifier*/
uint32_t id : 29;
/** Frame is in the CAN-FD frame format */
uint32_t fd : 1;
/** Set the message to a transmission request instead of data frame
* use can_rtr enum for assignment
*/
uint32_t rtr : 1;
/** Indicates the identifier type (standard or extended)
* use can_ide enum for assignment
*/
uint32_t id_type : 1;
/** The length of the message (max. 8) in byte */
uint8_t dlc;
/** Baud Rate Switch. Frame transfer with different timing during
* the data phase. Only valid for CAN-FD
*/
uint8_t brs : 1;
/** Reserved for future flags */
uint8_t res : 7;
#if defined(CONFIG_CAN_RX_TIMESTAMP)
/** Timer value of the CAN free-running timer.
* The timer is incremented every bit time and captured at the start
* of frame bit (SOF).
*/
uint16_t timestamp;
#else
/** @cond INTERNAL_HIDDEN */
uint8_t res0; /* reserved / padding */
uint8_t res1; /* reserved / padding */
/** @endcond */
#endif
/** The frame payload data. */
union {
uint8_t data[CAN_MAX_DLEN];
uint32_t data_32[ceiling_fraction(CAN_MAX_DLEN, sizeof(uint32_t))];
};
};
/**
* @brief CAN filter structure
*
* Used to pass can identifier filter information to the driver.
* rtr_mask and *_id_mask are used to mask bits of the rtr and id fields.
* If the mask bit is 0, the value of the corresponding bit in the id or rtr
* field don't care for the filter matching.
*
*/
struct zcan_filter {
/** target state of the identifier */
uint32_t id : 29;
uint32_t res0 : 1;
/** target state of the rtr bit */
uint32_t rtr : 1;
/** Indicates the identifier type (standard or extended)
* use can_ide enum for assignment
*/
uint32_t id_type : 1;
/** identifier mask*/
uint32_t id_mask : 29;
uint32_t res1 : 1;
/** rtr bit mask */
uint32_t rtr_mask : 1;
uint32_t res2 : 1;
};
/**
* @brief can bus error count structure
*
* Used to pass the bus error counters to userspace
*/
struct can_bus_err_cnt {
uint8_t tx_err_cnt;
uint8_t rx_err_cnt;
};
/** SWJ value to indicate that the SJW should not be changed */
#define CAN_SJW_NO_CHANGE 0
/**
* @brief canbus timings
*
* Used to pass bus timing values to the config and bitrate calculator function.
*
* The propagation segment represents the time of the signal propagation.
* Phase segment 1 and phase segment 2 define the sampling point.
* prop_seg and phase_seg1 affect the sampling-point in the same way and some
* controllers only have a register for the sum of those two. The sync segment
* always has a length of 1 tq
* +---------+----------+------------+------------+
* |sync_seg | prop_seg | phase_seg1 | phase_seg2 |
* +---------+----------+------------+------------+
* ^
* Sampling-Point
* 1 tq (time quantum) has the length of 1/(core_clock / prescaler)
* The bitrate is defined by the core clock divided by the prescaler and the
* sum of the segments.
* br = (core_clock / prescaler) / (1 + prop_seg + phase_seg1 + phase_seg2)
* The resynchronization jump width (SJW) defines the amount of time quantum
* the sample point can be moved.
* The sample point is moved when resynchronization is needed.
*/
struct can_timing {
/** Synchronisation jump width*/
uint16_t sjw;
/** Propagation Segment */
uint16_t prop_seg;
/** Phase Segment 1 */
uint16_t phase_seg1;
/** Phase Segment 2 */
uint16_t phase_seg2;
/** Prescaler value */
uint16_t prescaler;
};
/**
* @typedef can_tx_callback_t
* @brief Define the application callback handler function signature
*
* @param error_flags status of the performed send operation
* @param arg argument that was passed when the message was sent
*/
typedef void (*can_tx_callback_t)(uint32_t error_flags, void *arg);
/**
* @typedef can_rx_callback_t
* @brief Define the application callback handler function signature
* for receiving.
*
* @param msg received message
* @param arg argument that was passed when the filter was attached
*/
typedef void (*can_rx_callback_t)(struct zcan_frame *msg, void *arg);
/**
* @typedef can_state_change_isr_t
* @brief Defines the state change isr handler function signature
*
* @param state state of the node
* @param err_cnt struct with the error counter values
*/
typedef void(*can_state_change_isr_t)(enum can_state state,
struct can_bus_err_cnt err_cnt);
typedef int (*can_set_timing_t)(const struct device *dev,
const struct can_timing *timing,
const struct can_timing *timing_data);
typedef int (*can_set_mode_t)(const struct device *dev, enum can_mode mode);
typedef int (*can_send_t)(const struct device *dev,
const struct zcan_frame *msg,
k_timeout_t timeout, can_tx_callback_t callback_isr,
void *callback_arg);
typedef int (*can_attach_msgq_t)(const struct device *dev,
struct k_msgq *msg_q,
const struct zcan_filter *filter);
typedef int (*can_attach_isr_t)(const struct device *dev,
can_rx_callback_t isr,
void *callback_arg,
const struct zcan_filter *filter);
typedef void (*can_detach_t)(const struct device *dev, int filter_id);
typedef int (*can_recover_t)(const struct device *dev, k_timeout_t timeout);
typedef enum can_state (*can_get_state_t)(const struct device *dev,
struct can_bus_err_cnt *err_cnt);
typedef void(*can_register_state_change_isr_t)(const struct device *dev,
can_state_change_isr_t isr);
typedef int (*can_get_core_clock_t)(const struct device *dev, uint32_t *rate);
#ifndef CONFIG_CAN_WORKQ_FRAMES_BUF_CNT
#define CONFIG_CAN_WORKQ_FRAMES_BUF_CNT 4
#endif
struct can_frame_buffer {
struct zcan_frame buf[CONFIG_CAN_WORKQ_FRAMES_BUF_CNT];
uint16_t head;
uint16_t tail;
};
/**
* @brief CAN work structure
*
* Used to attach a work queue to a filter.
*/
struct zcan_work {
struct k_work work_item;
struct k_work_q *work_queue;
struct can_frame_buffer buf;
can_rx_callback_t cb;
void *cb_arg;
};
__subsystem struct can_driver_api {
can_set_mode_t set_mode;
can_set_timing_t set_timing;
can_send_t send;
can_attach_isr_t attach_isr;
can_detach_t detach;
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
can_recover_t recover;
#endif
can_get_state_t get_state;
can_register_state_change_isr_t register_state_change_isr;
can_get_core_clock_t get_core_clock;
/* Min values for the timing registers */
struct can_timing timing_min;
/* Max values for the timing registers */
struct can_timing timing_max;
#ifdef CONFIG_CAN_FD_MODE
/* Min values for the timing registers during the data phase */
struct can_timing timing_min_data;
/* Max values for the timing registers during the data phase */
struct can_timing timing_max_data;
#endif
};
/**
* @brief Convert the DLC to the number of bytes
*
* This function converts a the Data Length Code to the number of bytes.
*
* @param dlc The Data Length Code
*
* @retval Number of bytes
*/
static inline uint8_t can_dlc_to_bytes(uint8_t dlc)
{
static const uint8_t dlc_table[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12,
16, 20, 24, 32, 48, 64};
return dlc > 0x0F ? 64 : dlc_table[dlc];
}
/**
* @brief Convert a number of bytes to the DLC
*
* This function converts a number of bytes to the Data Length Code
*
* @param num_bytes The number of bytes
*
* @retval The DLC
*/
static inline uint8_t can_bytes_to_dlc(uint8_t num_bytes)
{
return num_bytes <= 8 ? num_bytes :
num_bytes <= 12 ? 9 :
num_bytes <= 16 ? 10 :
num_bytes <= 20 ? 11 :
num_bytes <= 24 ? 12 :
num_bytes <= 32 ? 13 :
num_bytes <= 48 ? 14 :
15;
}
/**
* @brief Perform data transfer to CAN bus.
*
* This routine provides a generic interface to perform data transfer
* to the can bus. Use can_write() for simple write.
* *
* @param dev Pointer to the device structure for the driver instance.
* @param msg Message to transfer.
* @param timeout Waiting for empty tx mailbox timeout or K_FOREVER.
* @param callback_isr Is called when message was sent or a transmission error
* occurred. If NULL, this function is blocking until
* message is sent. This must be NULL if called from user
* mode.
* @param callback_arg This will be passed whenever the isr is called.
*
* @retval 0 If successful.
* @retval CAN_TX_* on failure.
*/
__syscall int can_send(const struct device *dev, const struct zcan_frame *msg,
k_timeout_t timeout, can_tx_callback_t callback_isr,
void *callback_arg);
static inline int z_impl_can_send(const struct device *dev,
const struct zcan_frame *msg,
k_timeout_t timeout,
can_tx_callback_t callback_isr,
void *callback_arg)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->send(dev, msg, timeout, callback_isr, callback_arg);
}
/*
* Derived can APIs -- all implemented in terms of can_send()
*/
/**
* @brief Write a set amount of data to the can bus.
*
* This routine writes a set amount of data synchronously.
*
* @param dev Pointer to the device structure for the driver instance.
* @param data Data to send.
* @param length Number of bytes to write (max. 8).
* @param id Identifier of the can message.
* @param rtr Send remote transmission request or data frame
* @param timeout Waiting for empty tx mailbox timeout or K_FOREVER
*
* @retval 0 If successful.
* @retval -EIO General input / output error.
* @retval -EINVAL if length > 8.
*/
static inline int can_write(const struct device *dev, const uint8_t *data,
uint8_t length,
uint32_t id, enum can_rtr rtr, k_timeout_t timeout)
{
struct zcan_frame msg;
if (length > 8) {
return -EINVAL;
}
msg.id = id;
if (id > CAN_MAX_STD_ID) {
msg.id_type = CAN_EXTENDED_IDENTIFIER;
} else {
msg.id_type = CAN_STANDARD_IDENTIFIER;
}
msg.dlc = length;
msg.rtr = rtr;
memcpy(msg.data, data, length);
return can_send(dev, &msg, timeout, NULL, NULL);
}
/**
* @brief Attach a CAN work queue to a single or group of identifiers.
*
* This routine attaches a work queue to identifiers specified by a filter.
* Whenever the filter matches, the message is pushed to the buffer
* of the zcan_work structure and the work element is put to the workqueue.
* If a message passes more than one filter the priority of the match
* is hardware dependent.
* A CAN work queue can be attached to more than one filter.
* The work queue must be initialized before and the caller must have
* appropriate permissions on it.
*
* @param dev Pointer to the device structure for the driver instance.
* @param work_q Pointer to the already initialized work queue.
* @param work Pointer to a zcan_work. The work will be initialized.
* @param callback This function is called by workq whenever a message arrives.
* @param callback_arg Is passed to the callback when called.
* @param filter Pointer to a zcan_filter structure defining the id
* filtering.
*
* @retval filter_id on success.
* @retval CAN_NO_FREE_FILTER if there is no filter left.
*/
int can_attach_workq(const struct device *dev, struct k_work_q *work_q,
struct zcan_work *work,
can_rx_callback_t callback, void *callback_arg,
const struct zcan_filter *filter);
/**
* @brief Attach a message queue to a single or group of identifiers.
*
* This routine attaches a message queue to identifiers specified by
* a filter. Whenever the filter matches, the message is pushed to the queue
* If a message passes more than one filter the priority of the match
* is hardware dependent.
* A message queue can be attached to more than one filter.
* The message queue must me initialized before, and the caller must have
* appropriate permissions on it.
*
* @param dev Pointer to the device structure for the driver instance.
* @param msg_q Pointer to the already initialized message queue.
* @param filter Pointer to a zcan_filter structure defining the id
* filtering.
*
* @retval filter_id on success.
* @retval CAN_NO_FREE_FILTER if there is no filter left.
*/
__syscall int can_attach_msgq(const struct device *dev, struct k_msgq *msg_q,
const struct zcan_filter *filter);
/**
* @brief Attach an isr callback function to a single or group of identifiers.
*
* This routine attaches an isr callback to identifiers specified by
* a filter. Whenever the filter matches, the callback function is called
* with isr context.
* If a message passes more than one filter the priority of the match
* is hardware dependent.
* A callback function can be attached to more than one filter.
* *
* @param dev Pointer to the device structure for the driver instance.
* @param isr Callback function pointer.
* @param callback_arg This will be passed whenever the isr is called.
* @param filter Pointer to a zcan_filter structure defining the id
* filtering.
*
* @retval filter_id on success.
* @retval CAN_NO_FREE_FILTER if there is no filter left.
*/
static inline int can_attach_isr(const struct device *dev,
can_rx_callback_t isr,
void *callback_arg,
const struct zcan_filter *filter)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->attach_isr(dev, isr, callback_arg, filter);
}
/**
* @brief Detach an isr or message queue from the identifier filtering.
*
* This routine detaches an isr callback or message queue from the identifier
* filtering.
* *
* @param dev Pointer to the device structure for the driver instance.
* @param filter_id filter id returned by can_attach_isr or can_attach_msgq.
*
* @retval none
*/
__syscall void can_detach(const struct device *dev, int filter_id);
static inline void z_impl_can_detach(const struct device *dev, int filter_id)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->detach(dev, filter_id);
}
/**
* @brief Read the core clock value
*
* Returns the core clock value. One time quantum is 1/core clock.
*
* @param dev Pointer to the device structure for the driver instance.
* @param[out] rate controller clock rate
*
* @retval 0 on success
* @retval negative on error
*/
__syscall int can_get_core_clock(const struct device *dev, uint32_t *rate);
static inline int z_impl_can_get_core_clock(const struct device *dev,
uint32_t *rate)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->get_core_clock(dev, rate);
}
/**
* @brief Calculate timing parameters from bitrate and sample point
*
* Calculate the timing parameters from a given bitrate in bits/s and the
* sampling point in permill (1/1000) of the entire bit time.
* The bitrate must alway match perfectly. If no result can be given for the,
* give parameters, -EINVAL is returned.
* The sample_pnt does not always match perfectly. The algorithm tries to find
* the best match possible.
*
* @param dev Pointer to the device structure for the driver instance.
* @param res Result is written into the can_timing struct provided.
* @param bitrate Target bitrate in bits/s
* @param sample_pnt Sampling point in permill of the entire bit time.
*
* @retval Positive sample point error on success
* @retval -EINVAL if there is no solution for the desired values
* @retval -EIO if core_clock is not available
*/
int can_calc_timing(const struct device *dev, struct can_timing *res,
uint32_t bitrate, uint16_t sample_pnt);
#ifdef CONFIG_CAN_FD_MODE
/**
* @brief Calculate timing parameters for the data phase
*
* Same as can_calc_timing but with the max and min values from the data phase.
*
* @param dev Pointer to the device structure for the driver instance.
* @param res Result is written into the can_timing struct provided.
* @param bitrate Target bitrate for the data phase in bits/s
* @param sample_pnt Sampling point data phase in permille of the entire bit time.
*
* @retval Positive sample point error on success
* @retval -EINVAL if there is no solution for the desired values
* @retval -EIO if core_clock is not available
*/
int can_calc_timing_data(const struct device *dev, struct can_timing *res,
uint32_t bitrate, uint16_t sample_pnt);
#endif
/**
* @brief Fill in the prescaler value for a given bitrate and timing
*
* Fill the prescaler value in the timing struct.
* sjw, prop_seg, phase_seg1 and phase_seg2 must be given.
* The returned bitrate error is reminder of the devision of the clockrate by
* the bitrate times the timing segments.
*
* @param dev Pointer to the device structure for the driver instance.
* @param timing Result is written into the can_timing struct provided.
* @param bitrate Target bitrate.
*
* @retval bitrate error
* @retval negative on error
*/
int can_calc_prescaler(const struct device *dev, struct can_timing *timing,
uint32_t bitrate);
/**
* @brief Set the controller to the given mode
*
* @param dev Pointer to the device structure for the driver instance.
* @param mode Operation mode
*
* @retval 0 If successful.
* @retval -EIO General input / output error, failed to configure device.
*/
__syscall int can_set_mode(const struct device *dev, enum can_mode mode);
static inline int z_impl_can_set_mode(const struct device *dev,
enum can_mode mode)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->set_mode(dev, mode);
}
/**
* @brief Configure timing of a host controller.
*
* If the sjw equals CAN_SJW_NO_CHANGE, the sjw parameter is not changed.
*
* The second parameter timing_data is only relevant for CAN-FD.
* If the controller does not support CAN-FD or the FD mode is not enabled,
* this parameter is ignored.
*
* @param dev Pointer to the device structure for the driver instance.
* @param timing Bus timings
* @param timing_data Bus timings for data phase (CAN-FD only)
*
* @retval 0 If successful.
* @retval -EIO General input / output error, failed to configure device.
*/
__syscall int can_set_timing(const struct device *dev,
const struct can_timing *timing,
const struct can_timing *timing_data);
static inline int z_impl_can_set_timing(const struct device *dev,
const struct can_timing *timing,
const struct can_timing *timing_data)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->set_timing(dev, timing, timing_data);
}
/**
* @brief Set the bitrate of the CAN controller
*
* The second parameter bitrate_data is only relevant for CAN-FD.
* If the controller does not support CAN-FD or the FD mode is not enabled,
* this parameter is ignored.
* The sample point is set to the CiA DS 301 reccommended value of 87.5%
*
* @param dev Pointer to the device structure for the driver instance.
* @param bitrate Desired arbitration phase bitrate
* @param bitrate_data Desired data phase bitrate
*
* @retval 0 If successful.
* @retval -EINVAL bitrate cannot be reached.
* @retval -EIO General input / output error, failed to set bitrate.
*/
static inline int can_set_bitrate(const struct device *dev,
uint32_t bitrate,
uint32_t bitrate_data)
{
struct can_timing timing;
#ifdef CONFIG_CAN_FD_MODE
struct can_timing timing_data;
#endif
int ret;
ret = can_calc_timing(dev, &timing, bitrate, 875);
if (ret < 0) {
return -EINVAL;
}
timing.sjw = CAN_SJW_NO_CHANGE;
#ifdef CONFIG_CAN_FD_MODE
ret = can_calc_timing_data(dev, &timing_data, bitrate_data, 875);
if (ret < 0) {
return -EINVAL;
}
timing_data.sjw = CAN_SJW_NO_CHANGE;
return can_set_timing(dev, &timing, &timing_data);
#else
return can_set_timing(dev, &timing, NULL);
#endif /* CONFIG_CAN_FD_MODE */
}
/**
* @brief Configure operation of a host controller.
*
* @param dev Pointer to the device structure for the driver instance.
* @param mode Operation mode
* @param bitrate bus-speed in Baud/s
*
* @retval 0 If successful.
* @retval -EIO General input / output error, failed to configure device.
*/
static inline int can_configure(const struct device *dev, enum can_mode mode,
uint32_t bitrate)
{
if (bitrate > 0) {
int err = can_set_bitrate(dev, bitrate, 0);
if (err != 0) {
return err;
}
}
return can_set_mode(dev, mode);
}
/**
* @brief Get current state
*
* Returns the actual state of the CAN controller.
*
* @param dev Pointer to the device structure for the driver instance.
* @param err_cnt Pointer to the err_cnt destination structure or NULL.
*
* @retval state
*/
__syscall enum can_state can_get_state(const struct device *dev,
struct can_bus_err_cnt *err_cnt);
static inline
enum can_state z_impl_can_get_state(const struct device *dev,
struct can_bus_err_cnt *err_cnt)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->get_state(dev, err_cnt);
}
/**
* @brief Recover from bus-off state
*
* Recover the CAN controller from bus-off state to error-active state.
*
* @param dev Pointer to the device structure for the driver instance.
* @param timeout Timeout for waiting for the recovery or K_FOREVER.
*
* @retval 0 on success.
* @retval CAN_TIMEOUT on timeout.
*/
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
__syscall int can_recover(const struct device *dev, k_timeout_t timeout);
static inline int z_impl_can_recover(const struct device *dev,
k_timeout_t timeout)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->recover(dev, timeout);
}
#else
/* This implementation prevents inking errors for auto recovery */
static inline int z_impl_can_recover(const struct device *dev,
k_timeout_t timeout)
{
return 0;
}
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */
/**
* @brief Register an ISR callback for state change interrupt
*
* Only one callback can be registered per controller.
* Calling this function again, overrides the previous call.
*
* @param dev Pointer to the device structure for the driver instance.
* @param isr Pointer to ISR
*/
static inline
void can_register_state_change_isr(const struct device *dev,
can_state_change_isr_t isr)
{
const struct can_driver_api *api =
(const struct can_driver_api *)dev->api;
return api->register_state_change_isr(dev, isr);
}
/**
* @brief Converter that translates between can_frame and zcan_frame structs.
*
* @param frame Pointer to can_frame struct.
* @param zframe Pointer to zcan_frame struct.
*/
static inline void can_copy_frame_to_zframe(const struct can_frame *frame,
struct zcan_frame *zframe)
{
zframe->id_type = (frame->can_id & BIT(31)) >> 31;
zframe->rtr = (frame->can_id & BIT(30)) >> 30;
zframe->id = frame->can_id & BIT_MASK(29);
zframe->dlc = frame->can_dlc;
memcpy(zframe->data, frame->data, sizeof(zframe->data));
}
/**
* @brief Converter that translates between zcan_frame and can_frame structs.
*
* @param zframe Pointer to zcan_frame struct.
* @param frame Pointer to can_frame struct.
*/
static inline void can_copy_zframe_to_frame(const struct zcan_frame *zframe,
struct can_frame *frame)
{
frame->can_id = (zframe->id_type << 31) | (zframe->rtr << 30) |
zframe->id;
frame->can_dlc = zframe->dlc;
memcpy(frame->data, zframe->data, sizeof(frame->data));
}
/**
* @brief Converter that translates between can_filter and zcan_frame_filter
* structs.
*
* @param filter Pointer to can_filter struct.
* @param zfilter Pointer to zcan_frame_filter struct.
*/
static inline
void can_copy_filter_to_zfilter(const struct can_filter *filter,
struct zcan_filter *zfilter)
{
zfilter->id_type = (filter->can_id & BIT(31)) >> 31;
zfilter->rtr = (filter->can_id & BIT(30)) >> 30;
zfilter->id = filter->can_id & BIT_MASK(29);
zfilter->rtr_mask = (filter->can_mask & BIT(30)) >> 30;
zfilter->id_mask = filter->can_mask & BIT_MASK(29);
}
/**
* @brief Converter that translates between zcan_filter and can_filter
* structs.
*
* @param zfilter Pointer to zcan_filter struct.
* @param filter Pointer to can_filter struct.
*/
static inline
void can_copy_zfilter_to_filter(const struct zcan_filter *zfilter,
struct can_filter *filter)
{
filter->can_id = (zfilter->id_type << 31) |
(zfilter->rtr << 30) | zfilter->id;
filter->can_mask = (zfilter->rtr_mask << 30) |
(zfilter->id_type << 31) | zfilter->id_mask;
}
#ifdef __cplusplus
}
#endif
/**
* @}
*/
#include <syscalls/can.h>
#endif /* ZEPHYR_INCLUDE_DRIVERS_CAN_H_ */