blob: 66183f62fdefd5b2e3d67c415548fb20026ca0d2 [file] [log] [blame]
/*
* Copyright (c) 2018 Alexander Wachter
* Copyright (c) 2022 Martin Jäger <martin@libre.solar>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/can/transceiver.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/sys/util.h>
#include <string.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <errno.h>
#include <stdbool.h>
#include <zephyr/drivers/can.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include "can_stm32.h"
LOG_MODULE_REGISTER(can_stm32, CONFIG_CAN_LOG_LEVEL);
#define CAN_INIT_TIMEOUT (10 * sys_clock_hw_cycles_per_sec() / MSEC_PER_SEC)
#define DT_DRV_COMPAT st_stm32_can
#define SP_IS_SET(inst) DT_INST_NODE_HAS_PROP(inst, sample_point) ||
/* Macro to exclude the sample point algorithm from compilation if not used
* Without the macro, the algorithm would always waste ROM
*/
#define USE_SP_ALGO (DT_INST_FOREACH_STATUS_OKAY(SP_IS_SET) 0)
#define SP_AND_TIMING_NOT_SET(inst) \
(!DT_INST_NODE_HAS_PROP(inst, sample_point) && \
!(DT_INST_NODE_HAS_PROP(inst, prop_seg) && \
DT_INST_NODE_HAS_PROP(inst, phase_seg1) && \
DT_INST_NODE_HAS_PROP(inst, phase_seg2))) ||
#if DT_INST_FOREACH_STATUS_OKAY(SP_AND_TIMING_NOT_SET) 0
#error You must either set a sampling-point or timings (phase-seg* and prop-seg)
#endif
#if (CONFIG_CAN_MAX_STD_ID_FILTER + CONFIG_CAN_MAX_EXT_ID_FILTER * 2) > \
(CAN_STM32_NUM_FILTER_BANKS * 2)
#error Number of configured filters exceeds available filter bank slots.
#endif
/*
* Mutex to prevent simultaneous access to filter registers shared between CAN1
* and CAN2.
*/
static struct k_mutex filter_mutex;
static void can_stm32_signal_tx_complete(const struct device *dev, struct can_stm32_mailbox *mb,
int status)
{
can_tx_callback_t callback = mb->tx_callback;
if (callback != NULL) {
callback(dev, status, mb->callback_arg);
mb->tx_callback = NULL;
}
}
static void can_stm32_rx_fifo_pop(CAN_FIFOMailBox_TypeDef *mbox, struct can_frame *frame)
{
memset(frame, 0, sizeof(*frame));
if (mbox->RIR & CAN_RI0R_IDE) {
frame->id = mbox->RIR >> CAN_RI0R_EXID_Pos;
frame->flags |= CAN_FRAME_IDE;
} else {
frame->id = mbox->RIR >> CAN_RI0R_STID_Pos;
}
if ((mbox->RIR & CAN_RI0R_RTR) != 0) {
frame->flags |= CAN_FRAME_RTR;
}
frame->dlc = mbox->RDTR & (CAN_RDT0R_DLC >> CAN_RDT0R_DLC_Pos);
frame->data_32[0] = mbox->RDLR;
frame->data_32[1] = mbox->RDHR;
#ifdef CONFIG_CAN_RX_TIMESTAMP
frame->timestamp = ((mbox->RDTR & CAN_RDT0R_TIME) >> CAN_RDT0R_TIME_Pos);
#endif
}
static inline void can_stm32_rx_isr_handler(const struct device *dev)
{
struct can_stm32_data *data = dev->data;
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
CAN_FIFOMailBox_TypeDef *mbox;
int filter_id, index;
struct can_frame frame;
can_rx_callback_t callback = NULL;
void *cb_arg;
while (can->RF0R & CAN_RF0R_FMP0) {
mbox = &can->sFIFOMailBox[0];
filter_id = ((mbox->RDTR & CAN_RDT0R_FMI) >> CAN_RDT0R_FMI_Pos);
LOG_DBG("Message on filter_id %d", filter_id);
can_stm32_rx_fifo_pop(mbox, &frame);
if (filter_id < CONFIG_CAN_MAX_EXT_ID_FILTER) {
callback = data->rx_cb_ext[filter_id];
cb_arg = data->cb_arg_ext[filter_id];
} else if (filter_id < CAN_STM32_MAX_FILTER_ID) {
index = filter_id - CONFIG_CAN_MAX_EXT_ID_FILTER;
callback = data->rx_cb_std[index];
cb_arg = data->cb_arg_std[index];
}
if (callback) {
callback(dev, &frame, cb_arg);
}
/* Release message */
can->RF0R |= CAN_RF0R_RFOM0;
}
if (can->RF0R & CAN_RF0R_FOVR0) {
LOG_ERR("RX FIFO Overflow");
CAN_STATS_RX_OVERRUN_INC(dev);
}
}
static int can_stm32_get_state(const struct device *dev, enum can_state *state,
struct can_bus_err_cnt *err_cnt)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
if (state != NULL) {
if (!data->started) {
*state = CAN_STATE_STOPPED;
} else if (can->ESR & CAN_ESR_BOFF) {
*state = CAN_STATE_BUS_OFF;
} else if (can->ESR & CAN_ESR_EPVF) {
*state = CAN_STATE_ERROR_PASSIVE;
} else if (can->ESR & CAN_ESR_EWGF) {
*state = CAN_STATE_ERROR_WARNING;
} else {
*state = CAN_STATE_ERROR_ACTIVE;
}
}
if (err_cnt != NULL) {
err_cnt->tx_err_cnt =
((can->ESR & CAN_ESR_TEC) >> CAN_ESR_TEC_Pos);
err_cnt->rx_err_cnt =
((can->ESR & CAN_ESR_REC) >> CAN_ESR_REC_Pos);
}
return 0;
}
static inline void can_stm32_bus_state_change_isr(const struct device *dev)
{
struct can_stm32_data *data = dev->data;
struct can_bus_err_cnt err_cnt;
enum can_state state;
const can_state_change_callback_t cb = data->state_change_cb;
void *state_change_cb_data = data->state_change_cb_data;
#ifdef CONFIG_CAN_STATS
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
switch (can->ESR & CAN_ESR_LEC) {
case (CAN_ESR_LEC_0):
CAN_STATS_STUFF_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_1):
CAN_STATS_FORM_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
CAN_STATS_ACK_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_2):
CAN_STATS_BIT1_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
CAN_STATS_BIT0_ERROR_INC(dev);
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
CAN_STATS_CRC_ERROR_INC(dev);
break;
default:
break;
}
/* Clear last error code flag */
can->ESR |= CAN_ESR_LEC;
#endif /* CONFIG_CAN_STATS */
(void)can_stm32_get_state(dev, &state, &err_cnt);
if (state != data->state) {
data->state = state;
if (cb != NULL) {
cb(dev, state, err_cnt, state_change_cb_data);
}
}
}
static inline void can_stm32_tx_isr_handler(const struct device *dev)
{
struct can_stm32_data *data = dev->data;
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
uint32_t bus_off;
int status;
bus_off = can->ESR & CAN_ESR_BOFF;
if ((can->TSR & CAN_TSR_RQCP0) | bus_off) {
status = can->TSR & CAN_TSR_TXOK0 ? 0 :
can->TSR & CAN_TSR_TERR0 ? -EIO :
can->TSR & CAN_TSR_ALST0 ? -EBUSY :
bus_off ? -ENETUNREACH :
-EIO;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP0;
can_stm32_signal_tx_complete(dev, &data->mb0, status);
}
if ((can->TSR & CAN_TSR_RQCP1) | bus_off) {
status = can->TSR & CAN_TSR_TXOK1 ? 0 :
can->TSR & CAN_TSR_TERR1 ? -EIO :
can->TSR & CAN_TSR_ALST1 ? -EBUSY :
bus_off ? -ENETUNREACH :
-EIO;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP1;
can_stm32_signal_tx_complete(dev, &data->mb1, status);
}
if ((can->TSR & CAN_TSR_RQCP2) | bus_off) {
status = can->TSR & CAN_TSR_TXOK2 ? 0 :
can->TSR & CAN_TSR_TERR2 ? -EIO :
can->TSR & CAN_TSR_ALST2 ? -EBUSY :
bus_off ? -ENETUNREACH :
-EIO;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP2;
can_stm32_signal_tx_complete(dev, &data->mb2, status);
}
if (can->TSR & CAN_TSR_TME) {
k_sem_give(&data->tx_int_sem);
}
}
#ifdef CONFIG_SOC_SERIES_STM32F0X
static void can_stm32_isr(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
can_stm32_tx_isr_handler(dev);
can_stm32_rx_isr_handler(dev);
if (can->MSR & CAN_MSR_ERRI) {
can_stm32_bus_state_change_isr(dev);
can->MSR |= CAN_MSR_ERRI;
}
}
#else
static void can_stm32_rx_isr(const struct device *dev)
{
can_stm32_rx_isr_handler(dev);
}
static void can_stm32_tx_isr(const struct device *dev)
{
can_stm32_tx_isr_handler(dev);
}
static void can_stm32_state_change_isr(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
/* Signal bus-off to waiting tx */
if (can->MSR & CAN_MSR_ERRI) {
can_stm32_tx_isr_handler(dev);
can_stm32_bus_state_change_isr(dev);
can->MSR |= CAN_MSR_ERRI;
}
}
#endif
static int can_stm32_enter_init_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR |= CAN_MCR_INRQ;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_INAK) == 0U) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
can->MCR &= ~CAN_MCR_INRQ;
return -EAGAIN;
}
}
return 0;
}
static int can_stm32_leave_init_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR &= ~CAN_MCR_INRQ;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_INAK) != 0U) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
return -EAGAIN;
}
}
return 0;
}
static int can_stm32_leave_sleep_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR &= ~CAN_MCR_SLEEP;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_SLAK) != 0) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
return -EAGAIN;
}
}
return 0;
}
static int can_stm32_get_capabilities(const struct device *dev, can_mode_t *cap)
{
ARG_UNUSED(dev);
*cap = CAN_MODE_NORMAL | CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY | CAN_MODE_ONE_SHOT;
return 0;
}
static int can_stm32_start(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
int ret = 0;
k_mutex_lock(&data->inst_mutex, K_FOREVER);
if (data->started) {
ret = -EALREADY;
goto unlock;
}
if (cfg->phy != NULL) {
ret = can_transceiver_enable(cfg->phy);
if (ret != 0) {
LOG_ERR("failed to enable CAN transceiver (err %d)", ret);
goto unlock;
}
}
CAN_STATS_RESET(dev);
ret = can_stm32_leave_init_mode(can);
if (ret < 0) {
LOG_ERR("Failed to leave init mode");
if (cfg->phy != NULL) {
/* Attempt to disable the CAN transceiver in case of error */
(void)can_transceiver_disable(cfg->phy);
}
ret = -EIO;
goto unlock;
}
data->started = true;
unlock:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
static int can_stm32_stop(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
int ret = 0;
k_mutex_lock(&data->inst_mutex, K_FOREVER);
if (!data->started) {
ret = -EALREADY;
goto unlock;
}
ret = can_stm32_enter_init_mode(can);
if (ret < 0) {
LOG_ERR("Failed to enter init mode");
ret = -EIO;
goto unlock;
}
/* Abort any pending transmissions */
can_stm32_signal_tx_complete(dev, &data->mb0, -ENETDOWN);
can_stm32_signal_tx_complete(dev, &data->mb1, -ENETDOWN);
can_stm32_signal_tx_complete(dev, &data->mb2, -ENETDOWN);
can->TSR |= CAN_TSR_ABRQ2 | CAN_TSR_ABRQ1 | CAN_TSR_ABRQ0;
if (cfg->phy != NULL) {
ret = can_transceiver_disable(cfg->phy);
if (ret != 0) {
LOG_ERR("failed to enable CAN transceiver (err %d)", ret);
goto unlock;
}
}
data->started = false;
unlock:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
static int can_stm32_set_mode(const struct device *dev, can_mode_t mode)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
struct can_stm32_data *data = dev->data;
LOG_DBG("Set mode %d", mode);
if ((mode & ~(CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY | CAN_MODE_ONE_SHOT)) != 0) {
LOG_ERR("unsupported mode: 0x%08x", mode);
return -ENOTSUP;
}
if (data->started) {
return -EBUSY;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
if ((mode & CAN_MODE_LOOPBACK) != 0) {
/* Loopback mode */
can->BTR |= CAN_BTR_LBKM;
} else {
can->BTR &= ~CAN_BTR_LBKM;
}
if ((mode & CAN_MODE_LISTENONLY) != 0) {
/* Silent mode */
can->BTR |= CAN_BTR_SILM;
} else {
can->BTR &= ~CAN_BTR_SILM;
}
if ((mode & CAN_MODE_ONE_SHOT) != 0) {
/* No automatic retransmission */
can->MCR |= CAN_MCR_NART;
} else {
can->MCR &= ~CAN_MCR_NART;
}
k_mutex_unlock(&data->inst_mutex);
return 0;
}
static int can_stm32_set_timing(const struct device *dev,
const struct can_timing *timing)
{
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
struct can_stm32_data *data = dev->data;
k_mutex_lock(&data->inst_mutex, K_FOREVER);
if (data->started) {
k_mutex_unlock(&data->inst_mutex);
return -EBUSY;
}
can->BTR = (can->BTR & ~(CAN_BTR_BRP_Msk | CAN_BTR_TS1_Msk | CAN_BTR_TS2_Msk)) |
(((timing->phase_seg1 - 1) << CAN_BTR_TS1_Pos) & CAN_BTR_TS1_Msk) |
(((timing->phase_seg2 - 1) << CAN_BTR_TS2_Pos) & CAN_BTR_TS2_Msk) |
(((timing->prescaler - 1) << CAN_BTR_BRP_Pos) & CAN_BTR_BRP_Msk);
if (timing->sjw != CAN_SJW_NO_CHANGE) {
can->BTR = (can->BTR & ~CAN_BTR_SJW_Msk) |
(((timing->sjw - 1) << CAN_BTR_SJW_Pos) & CAN_BTR_SJW_Msk);
}
k_mutex_unlock(&data->inst_mutex);
return 0;
}
static int can_stm32_get_core_clock(const struct device *dev, uint32_t *rate)
{
const struct can_stm32_config *cfg = dev->config;
const struct device *clock;
int ret;
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
ret = clock_control_get_rate(clock,
(clock_control_subsys_t) &cfg->pclken,
rate);
if (ret != 0) {
LOG_ERR("Failed call clock_control_get_rate: return [%d]", ret);
return -EIO;
}
return 0;
}
static int can_stm32_get_max_bitrate(const struct device *dev, uint32_t *max_bitrate)
{
const struct can_stm32_config *config = dev->config;
*max_bitrate = config->max_bitrate;
return 0;
}
static int can_stm32_get_max_filters(const struct device *dev, bool ide)
{
ARG_UNUSED(dev);
if (ide) {
return CONFIG_CAN_MAX_EXT_ID_FILTER;
} else {
return CONFIG_CAN_MAX_STD_ID_FILTER;
}
}
static int can_stm32_init(const struct device *dev)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
struct can_timing timing;
const struct device *clock;
uint32_t bank_offset;
int ret;
k_mutex_init(&filter_mutex);
k_mutex_init(&data->inst_mutex);
k_sem_init(&data->tx_int_sem, 0, 1);
if (cfg->phy != NULL) {
if (!device_is_ready(cfg->phy)) {
LOG_ERR("CAN transceiver not ready");
return -ENODEV;
}
}
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clock)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
ret = clock_control_on(clock, (clock_control_subsys_t) &cfg->pclken);
if (ret != 0) {
LOG_ERR("HAL_CAN_Init clock control on failed: %d", ret);
return -EIO;
}
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("CAN pinctrl setup failed (%d)", ret);
return ret;
}
ret = can_stm32_leave_sleep_mode(can);
if (ret) {
LOG_ERR("Failed to exit sleep mode");
return ret;
}
ret = can_stm32_enter_init_mode(can);
if (ret) {
LOG_ERR("Failed to enter init mode");
return ret;
}
/* configure scale of filter banks < CONFIG_CAN_MAX_EXT_ID_FILTER for ext ids */
bank_offset = (cfg->can == cfg->master_can) ? 0 : CAN_STM32_NUM_FILTER_BANKS;
cfg->master_can->FMR |= CAN_FMR_FINIT;
cfg->master_can->FS1R |= ((1U << CONFIG_CAN_MAX_EXT_ID_FILTER) - 1) << bank_offset;
cfg->master_can->FMR &= ~CAN_FMR_FINIT;
can->MCR &= ~CAN_MCR_TTCM & ~CAN_MCR_ABOM & ~CAN_MCR_AWUM &
~CAN_MCR_NART & ~CAN_MCR_RFLM & ~CAN_MCR_TXFP;
#ifdef CONFIG_CAN_RX_TIMESTAMP
can->MCR |= CAN_MCR_TTCM;
#endif
#ifdef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
can->MCR |= CAN_MCR_ABOM;
#endif
timing.sjw = cfg->sjw;
if (cfg->sample_point && USE_SP_ALGO) {
ret = can_calc_timing(dev, &timing, cfg->bus_speed,
cfg->sample_point);
if (ret == -EINVAL) {
LOG_ERR("Can't find timing for given param");
return -EIO;
}
LOG_DBG("Presc: %d, TS1: %d, TS2: %d",
timing.prescaler, timing.phase_seg1, timing.phase_seg2);
LOG_DBG("Sample-point err : %d", ret);
} else {
timing.prop_seg = 0;
timing.phase_seg1 = cfg->prop_ts1;
timing.phase_seg2 = cfg->ts2;
ret = can_calc_prescaler(dev, &timing, cfg->bus_speed);
if (ret) {
LOG_WRN("Bitrate error: %d", ret);
}
}
ret = can_stm32_set_timing(dev, &timing);
if (ret) {
return ret;
}
ret = can_stm32_set_mode(dev, CAN_MODE_NORMAL);
if (ret) {
return ret;
}
(void)can_stm32_get_state(dev, &data->state, NULL);
cfg->config_irq(can);
can->IER |= CAN_IER_TMEIE;
return 0;
}
static void can_stm32_set_state_change_callback(const struct device *dev,
can_state_change_callback_t cb,
void *user_data)
{
struct can_stm32_data *data = dev->data;
const struct can_stm32_config *cfg = dev->config;
CAN_TypeDef *can = cfg->can;
data->state_change_cb = cb;
data->state_change_cb_data = user_data;
if (cb == NULL) {
can->IER &= ~(CAN_IER_BOFIE | CAN_IER_EPVIE | CAN_IER_EWGIE);
} else {
can->IER |= CAN_IER_BOFIE | CAN_IER_EPVIE | CAN_IER_EWGIE;
}
}
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
static int can_stm32_recover(const struct device *dev, k_timeout_t timeout)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
int ret = -EAGAIN;
int64_t start_time;
if (!data->started) {
return -ENETDOWN;
}
if (!(can->ESR & CAN_ESR_BOFF)) {
return 0;
}
if (k_mutex_lock(&data->inst_mutex, K_FOREVER)) {
return -EAGAIN;
}
ret = can_stm32_enter_init_mode(can);
if (ret) {
goto done;
}
can_stm32_leave_init_mode(can);
start_time = k_uptime_ticks();
while (can->ESR & CAN_ESR_BOFF) {
if (!K_TIMEOUT_EQ(timeout, K_FOREVER) &&
k_uptime_ticks() - start_time >= timeout.ticks) {
goto done;
}
}
ret = 0;
done:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */
static int can_stm32_send(const struct device *dev, const struct can_frame *frame,
k_timeout_t timeout, can_tx_callback_t callback,
void *user_data)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->can;
uint32_t transmit_status_register = can->TSR;
CAN_TxMailBox_TypeDef *mailbox = NULL;
struct can_stm32_mailbox *mb = NULL;
LOG_DBG("Sending %d bytes on %s. "
"Id: 0x%x, "
"ID type: %s, "
"Remote Frame: %s"
, frame->dlc, dev->name
, frame->id
, (frame->flags & CAN_FRAME_IDE) != 0 ? "extended" : "standard"
, (frame->flags & CAN_FRAME_RTR) != 0 ? "yes" : "no");
__ASSERT_NO_MSG(callback != NULL);
__ASSERT(frame->dlc == 0U || frame->data != NULL, "Dataptr is null");
if (frame->dlc > CAN_MAX_DLC) {
LOG_ERR("DLC of %d exceeds maximum (%d)", frame->dlc, CAN_MAX_DLC);
return -EINVAL;
}
if ((frame->flags & ~(CAN_FRAME_IDE | CAN_FRAME_RTR)) != 0) {
LOG_ERR("unsupported CAN frame flags 0x%02x", frame->flags);
return -ENOTSUP;
}
if (!data->started) {
return -ENETDOWN;
}
if (can->ESR & CAN_ESR_BOFF) {
return -ENETUNREACH;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
while (!(transmit_status_register & CAN_TSR_TME)) {
k_mutex_unlock(&data->inst_mutex);
LOG_DBG("Transmit buffer full");
if (k_sem_take(&data->tx_int_sem, timeout)) {
return -EAGAIN;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
transmit_status_register = can->TSR;
}
if (transmit_status_register & CAN_TSR_TME0) {
LOG_DBG("Using TX mailbox 0");
mailbox = &can->sTxMailBox[0];
mb = &(data->mb0);
} else if (transmit_status_register & CAN_TSR_TME1) {
LOG_DBG("Using TX mailbox 1");
mailbox = &can->sTxMailBox[1];
mb = &data->mb1;
} else if (transmit_status_register & CAN_TSR_TME2) {
LOG_DBG("Using TX mailbox 2");
mailbox = &can->sTxMailBox[2];
mb = &data->mb2;
}
mb->tx_callback = callback;
mb->callback_arg = user_data;
/* mailbox identifier register setup */
mailbox->TIR &= CAN_TI0R_TXRQ;
if ((frame->flags & CAN_FRAME_IDE) != 0) {
mailbox->TIR |= (frame->id << CAN_TI0R_EXID_Pos)
| CAN_TI0R_IDE;
} else {
mailbox->TIR |= (frame->id << CAN_TI0R_STID_Pos);
}
if ((frame->flags & CAN_FRAME_RTR) != 0) {
mailbox->TIR |= CAN_TI1R_RTR;
}
mailbox->TDTR = (mailbox->TDTR & ~CAN_TDT1R_DLC) |
((frame->dlc & 0xF) << CAN_TDT1R_DLC_Pos);
mailbox->TDLR = frame->data_32[0];
mailbox->TDHR = frame->data_32[1];
mailbox->TIR |= CAN_TI0R_TXRQ;
k_mutex_unlock(&data->inst_mutex);
return 0;
}
static void can_stm32_set_filter_bank(int filter_id, CAN_FilterRegister_TypeDef *filter_reg,
bool ide, uint32_t id, uint32_t mask)
{
if (ide) {
filter_reg->FR1 = id;
filter_reg->FR2 = mask;
} else {
if ((filter_id - CONFIG_CAN_MAX_EXT_ID_FILTER) % 2 == 0) {
/* even std filter id: first 1/2 bank */
filter_reg->FR1 = id | (mask << 16);
} else {
/* uneven std filter id: first 1/2 bank */
filter_reg->FR2 = id | (mask << 16);
}
}
}
static inline uint32_t can_stm32_filter_to_std_mask(const struct can_filter *filter)
{
uint32_t rtr_mask = (filter->flags & (CAN_FILTER_DATA | CAN_FILTER_RTR)) !=
(CAN_FILTER_DATA | CAN_FILTER_RTR) ? 1U : 0U;
return (filter->mask << CAN_STM32_FIRX_STD_ID_POS) |
(rtr_mask << CAN_STM32_FIRX_STD_RTR_POS) |
(1U << CAN_STM32_FIRX_STD_IDE_POS);
}
static inline uint32_t can_stm32_filter_to_ext_mask(const struct can_filter *filter)
{
uint32_t rtr_mask = (filter->flags & (CAN_FILTER_DATA | CAN_FILTER_RTR)) !=
(CAN_FILTER_DATA | CAN_FILTER_RTR) ? 1U : 0U;
return (filter->mask << CAN_STM32_FIRX_EXT_EXT_ID_POS) |
(rtr_mask << CAN_STM32_FIRX_EXT_RTR_POS) |
(1U << CAN_STM32_FIRX_EXT_IDE_POS);
}
static inline uint32_t can_stm32_filter_to_std_id(const struct can_filter *filter)
{
return (filter->id << CAN_STM32_FIRX_STD_ID_POS) |
(((filter->flags & CAN_FILTER_RTR) != 0) ? (1U << CAN_STM32_FIRX_STD_RTR_POS) : 0U);
}
static inline uint32_t can_stm32_filter_to_ext_id(const struct can_filter *filter)
{
return (filter->id << CAN_STM32_FIRX_EXT_EXT_ID_POS) |
(((filter->flags & CAN_FILTER_RTR) != 0) ?
(1U << CAN_STM32_FIRX_EXT_RTR_POS) : 0U) |
(1U << CAN_STM32_FIRX_EXT_IDE_POS);
}
static inline int can_stm32_set_filter(const struct device *dev, const struct can_filter *filter)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->master_can;
uint32_t mask = 0U;
uint32_t id = 0U;
int filter_id = -ENOSPC;
int bank_offset = 0;
int bank_num;
if (cfg->can != cfg->master_can) {
/* CAN slave instance: start with offset */
bank_offset = CAN_STM32_NUM_FILTER_BANKS;
}
if ((filter->flags & CAN_FILTER_IDE) != 0) {
for (int i = 0; i < CONFIG_CAN_MAX_EXT_ID_FILTER; i++) {
if (data->rx_cb_ext[i] == NULL) {
id = can_stm32_filter_to_ext_id(filter);
mask = can_stm32_filter_to_ext_mask(filter);
filter_id = i;
bank_num = bank_offset + i;
break;
}
}
} else {
for (int i = 0; i < CONFIG_CAN_MAX_STD_ID_FILTER; i++) {
if (data->rx_cb_std[i] == NULL) {
id = can_stm32_filter_to_std_id(filter);
mask = can_stm32_filter_to_std_mask(filter);
filter_id = CONFIG_CAN_MAX_EXT_ID_FILTER + i;
bank_num = bank_offset + CONFIG_CAN_MAX_EXT_ID_FILTER + i / 2;
break;
}
}
}
if (filter_id != -ENOSPC) {
LOG_DBG("Adding filter_id %d, CAN ID: 0x%x, mask: 0x%x",
filter_id, filter->id, filter->mask);
/* set the filter init mode */
can->FMR |= CAN_FMR_FINIT;
can_stm32_set_filter_bank(filter_id, &can->sFilterRegister[bank_num],
(filter->flags & CAN_FILTER_IDE) != 0,
id, mask);
can->FA1R |= 1U << bank_num;
can->FMR &= ~(CAN_FMR_FINIT);
} else {
LOG_WRN("No free filter left");
}
return filter_id;
}
/*
* This driver uses masked mode for all filters (CAN_FM1R left at reset value
* 0x00) in order to simplify mapping between filter match index from the FIFOs
* and array index for the callbacks. All ext ID filters are stored in the
* banks below CONFIG_CAN_MAX_EXT_ID_FILTER, followed by the std ID filters,
* which consume only 1/2 bank per filter.
*
* The more complicated list mode must be implemented if someone requires more
* than 28 std ID or 14 ext ID filters.
*
* Currently, all filter banks are assigned to FIFO 0 and FIFO 1 is not used.
*/
static int can_stm32_add_rx_filter(const struct device *dev, can_rx_callback_t cb,
void *cb_arg, const struct can_filter *filter)
{
struct can_stm32_data *data = dev->data;
int filter_id;
if ((filter->flags & ~(CAN_FILTER_IDE | CAN_FILTER_DATA | CAN_FILTER_RTR)) != 0) {
LOG_ERR("unsupported CAN filter flags 0x%02x", filter->flags);
return -ENOTSUP;
}
k_mutex_lock(&filter_mutex, K_FOREVER);
k_mutex_lock(&data->inst_mutex, K_FOREVER);
filter_id = can_stm32_set_filter(dev, filter);
if (filter_id >= 0) {
if ((filter->flags & CAN_FILTER_IDE) != 0) {
data->rx_cb_ext[filter_id] = cb;
data->cb_arg_ext[filter_id] = cb_arg;
} else {
data->rx_cb_std[filter_id - CONFIG_CAN_MAX_EXT_ID_FILTER] = cb;
data->cb_arg_std[filter_id - CONFIG_CAN_MAX_EXT_ID_FILTER] = cb_arg;
}
}
k_mutex_unlock(&data->inst_mutex);
k_mutex_unlock(&filter_mutex);
return filter_id;
}
static void can_stm32_remove_rx_filter(const struct device *dev, int filter_id)
{
const struct can_stm32_config *cfg = dev->config;
struct can_stm32_data *data = dev->data;
CAN_TypeDef *can = cfg->master_can;
bool ide;
int bank_offset = 0;
int bank_num;
bool bank_unused;
__ASSERT_NO_MSG(filter_id >= 0 && filter_id < CAN_STM32_MAX_FILTER_ID);
k_mutex_lock(&filter_mutex, K_FOREVER);
k_mutex_lock(&data->inst_mutex, K_FOREVER);
if (cfg->can != cfg->master_can) {
bank_offset = CAN_STM32_NUM_FILTER_BANKS;
}
if (filter_id < CONFIG_CAN_MAX_EXT_ID_FILTER) {
ide = true;
bank_num = bank_offset + filter_id;
data->rx_cb_ext[filter_id] = NULL;
data->cb_arg_ext[filter_id] = NULL;
bank_unused = true;
} else {
int filter_index = filter_id - CONFIG_CAN_MAX_EXT_ID_FILTER;
ide = false;
bank_num = bank_offset + CONFIG_CAN_MAX_EXT_ID_FILTER +
(filter_id - CONFIG_CAN_MAX_EXT_ID_FILTER) / 2;
data->rx_cb_std[filter_index] = NULL;
data->cb_arg_std[filter_index] = NULL;
if (filter_index % 2 == 1) {
bank_unused = data->rx_cb_std[filter_index - 1] == NULL;
} else if (filter_index + 1 < CONFIG_CAN_MAX_STD_ID_FILTER) {
bank_unused = data->rx_cb_std[filter_index + 1] == NULL;
} else {
bank_unused = true;
}
}
LOG_DBG("Removing filter_id %d, ide %d", filter_id, ide);
can->FMR |= CAN_FMR_FINIT;
can_stm32_set_filter_bank(filter_id, &can->sFilterRegister[bank_num],
ide, 0, 0xFFFFFFFF);
if (bank_unused) {
can->FA1R &= ~(1U << bank_num);
LOG_DBG("Filter bank %d is unused -> deactivate", bank_num);
}
can->FMR &= ~(CAN_FMR_FINIT);
k_mutex_unlock(&data->inst_mutex);
k_mutex_unlock(&filter_mutex);
}
static const struct can_driver_api can_api_funcs = {
.get_capabilities = can_stm32_get_capabilities,
.start = can_stm32_start,
.stop = can_stm32_stop,
.set_mode = can_stm32_set_mode,
.set_timing = can_stm32_set_timing,
.send = can_stm32_send,
.add_rx_filter = can_stm32_add_rx_filter,
.remove_rx_filter = can_stm32_remove_rx_filter,
.get_state = can_stm32_get_state,
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
.recover = can_stm32_recover,
#endif
.set_state_change_callback = can_stm32_set_state_change_callback,
.get_core_clock = can_stm32_get_core_clock,
.get_max_bitrate = can_stm32_get_max_bitrate,
.get_max_filters = can_stm32_get_max_filters,
.timing_min = {
.sjw = 0x1,
.prop_seg = 0x00,
.phase_seg1 = 0x01,
.phase_seg2 = 0x01,
.prescaler = 0x01
},
.timing_max = {
.sjw = 0x07,
.prop_seg = 0x00,
.phase_seg1 = 0x0F,
.phase_seg2 = 0x07,
.prescaler = 0x400
}
};
#ifdef CONFIG_SOC_SERIES_STM32F0X
#define CAN_STM32_IRQ_INST(inst) \
static void config_can_##inst##_irq(CAN_TypeDef *can) \
{ \
IRQ_CONNECT(DT_INST_IRQN(inst), \
DT_INST_IRQ(inst, priority), \
can_stm32_isr, DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQN(inst)); \
can->IER |= CAN_IER_TMEIE | CAN_IER_ERRIE | CAN_IER_FMPIE0 | \
CAN_IER_FMPIE1 | CAN_IER_BOFIE; \
if (IS_ENABLED(CONFIG_CAN_STATS)) { \
can->IER |= CAN_IER_LECIE; \
} \
}
#else
#define CAN_STM32_IRQ_INST(inst) \
static void config_can_##inst##_irq(CAN_TypeDef *can) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, rx0, irq), \
DT_INST_IRQ_BY_NAME(inst, rx0, priority), \
can_stm32_rx_isr, DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, rx0, irq)); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, tx, irq), \
DT_INST_IRQ_BY_NAME(inst, tx, priority), \
can_stm32_tx_isr, DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, tx, irq)); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, sce, irq), \
DT_INST_IRQ_BY_NAME(inst, sce, priority), \
can_stm32_state_change_isr, \
DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, sce, irq)); \
can->IER |= CAN_IER_TMEIE | CAN_IER_ERRIE | CAN_IER_FMPIE0 | \
CAN_IER_FMPIE1 | CAN_IER_BOFIE; \
if (IS_ENABLED(CONFIG_CAN_STATS)) { \
can->IER |= CAN_IER_LECIE; \
} \
}
#endif /* CONFIG_SOC_SERIES_STM32F0X */
#define CAN_STM32_CONFIG_INST(inst) \
PINCTRL_DT_INST_DEFINE(inst); \
static const struct can_stm32_config can_stm32_cfg_##inst = { \
.can = (CAN_TypeDef *)DT_INST_REG_ADDR(inst), \
.master_can = (CAN_TypeDef *)DT_INST_PROP_OR(inst, \
master_can_reg, DT_INST_REG_ADDR(inst)), \
.bus_speed = DT_INST_PROP(inst, bus_speed), \
.sample_point = DT_INST_PROP_OR(inst, sample_point, 0), \
.sjw = DT_INST_PROP_OR(inst, sjw, 1), \
.prop_ts1 = DT_INST_PROP_OR(inst, prop_seg, 0) + \
DT_INST_PROP_OR(inst, phase_seg1, 0), \
.ts2 = DT_INST_PROP_OR(inst, phase_seg2, 0), \
.pclken = { \
.enr = DT_INST_CLOCKS_CELL(inst, bits), \
.bus = DT_INST_CLOCKS_CELL(inst, bus), \
}, \
.config_irq = config_can_##inst##_irq, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
.phy = DEVICE_DT_GET_OR_NULL(DT_INST_PHANDLE(id, phys)), \
.max_bitrate = DT_INST_CAN_TRANSCEIVER_MAX_BITRATE(id, 1000000), \
};
#define CAN_STM32_DATA_INST(inst) \
static struct can_stm32_data can_stm32_dev_data_##inst;
#define CAN_STM32_DEFINE_INST(inst) \
DEVICE_DT_INST_DEFINE(inst, &can_stm32_init, NULL, \
&can_stm32_dev_data_##inst, &can_stm32_cfg_##inst, \
POST_KERNEL, CONFIG_CAN_INIT_PRIORITY, \
&can_api_funcs);
#define CAN_STM32_INST(inst) \
CAN_STM32_IRQ_INST(inst) \
CAN_STM32_CONFIG_INST(inst) \
CAN_STM32_DATA_INST(inst) \
CAN_STM32_DEFINE_INST(inst)
DT_INST_FOREACH_STATUS_OKAY(CAN_STM32_INST)