blob: 563dfa76447a243e259e45b1a1aebbbf7cfe619b [file] [log] [blame]
/*
* Copyright (c) 2017, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL CORPORATION OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "power_states.h"
#include "ss_power_states.h"
#include "qm_isr.h"
#include "qm_sensor_regs.h"
#include "soc_watch.h"
#include "qm_common.h"
/* Sensor Subsystem sleep operand definition.
* Only a subset applies as internal sensor RTC
* is not available.
*
* OP | Core | Timers | RTC
* 000 | 0 | 1 | 1 <-- used for SS1
* 001 | 0 | 0 | 1
* 010 | 0 | 1 | 0
* 011 | 0 | 0 | 0 <-- used for SS2
* 100 | 0 | 0 | 0
* 101 | 0 | 0 | 0
* 110 | 0 | 0 | 0
* 111 | 0 | 0 | 0
*
* sleep opcode argument:
* - [7:5] : Sleep Operand
* - [4] : Interrupt enable
* - [3:0] : Interrupt threshold value
*/
#define SLEEP_INT_EN BIT(4)
#define SLEEP_TIMER_ON (0x0)
#define SLEEP_TIMER_OFF (0x20)
#define SLEEP_TIMER_RTC_OFF (0x60)
#define SS_STATE_1_TIMER_ON (SLEEP_TIMER_ON | SLEEP_INT_EN)
#define SS_STATE_1_TIMER_OFF (SLEEP_TIMER_OFF | SLEEP_INT_EN)
#define SS_STATE_2 (SLEEP_TIMER_RTC_OFF | SLEEP_INT_EN)
void qm_ss_power_soc_lpss_enable()
{
uint32_t creg_mst0_ctrl = 0;
creg_mst0_ctrl = __builtin_arc_lr(QM_SS_CREG_BASE);
/*
* Clock gate the sensor peripherals at CREG level.
* This clock gating is independent of the peripheral-specific clock
* gating provided in ss_clk.h .
*/
creg_mst0_ctrl |= (QM_SS_IO_CREG_MST0_CTRL_ADC_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_I2C1_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_I2C0_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_SPI1_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_SPI0_CLK_GATE);
__builtin_arc_sr(creg_mst0_ctrl, QM_SS_CREG_BASE);
QM_SCSS_CCU->ccu_lp_clk_ctl |= QM_SCSS_CCU_SS_LPS_EN;
SOC_WATCH_LOG_EVENT(SOCW_EVENT_REGISTER, SOCW_REG_CCU_LP_CLK_CTL);
}
void qm_ss_power_soc_lpss_disable()
{
uint32_t creg_mst0_ctrl = 0;
creg_mst0_ctrl = __builtin_arc_lr(QM_SS_CREG_BASE);
/*
* Restore clock gate of the sensor peripherals at CREG level.
* CREG is not used anywhere else so we can safely restore
* the configuration to its POR default.
*/
creg_mst0_ctrl &= ~(QM_SS_IO_CREG_MST0_CTRL_ADC_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_I2C1_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_I2C0_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_SPI1_CLK_GATE |
QM_SS_IO_CREG_MST0_CTRL_SPI0_CLK_GATE);
__builtin_arc_sr(creg_mst0_ctrl, QM_SS_CREG_BASE);
QM_SCSS_CCU->ccu_lp_clk_ctl &= ~QM_SCSS_CCU_SS_LPS_EN;
SOC_WATCH_LOG_EVENT(SOCW_EVENT_REGISTER, SOCW_REG_CCU_LP_CLK_CTL);
}
/* Enter SS1 :
* SLEEP + sleep operand
* __builtin_arc_sleep is not used here as it does not propagate sleep operand.
*/
void qm_ss_power_cpu_ss1(const qm_ss_power_cpu_ss1_mode_t mode)
{
uint32_t priority;
priority =
(__builtin_arc_lr(QM_SS_AUX_STATUS32) & QM_SS_STATUS32_E_MASK) >> 1;
SOC_WATCH_LOG_EVENT(SOCW_ARC_EVENT_SS1, 0);
/* Enter SS1 */
switch (mode) {
case QM_SS_POWER_CPU_SS1_TIMER_OFF:
__asm__ __volatile__("sleep %0"
:
: "r"(SS_STATE_1_TIMER_OFF | priority)
: "memory", "cc");
break;
case QM_SS_POWER_CPU_SS1_TIMER_ON:
default:
__asm__ __volatile__("sleep %0"
:
: "r"(SS_STATE_1_TIMER_ON | priority)
: "memory", "cc");
break;
}
}
/* Enter SS2 :
* SLEEP + sleep operand
* __builtin_arc_sleep is not used here as it does not propagate sleep operand.
*/
void qm_ss_power_cpu_ss2(void)
{
uint32_t priority;
priority =
(__builtin_arc_lr(QM_SS_AUX_STATUS32) & QM_SS_STATUS32_E_MASK) >> 1;
SOC_WATCH_LOG_EVENT(SOCW_ARC_EVENT_SS2, 0);
/* Enter SS2 */
__asm__ __volatile__("sleep %0"
:
: "r"(SS_STATE_2 | priority)
: "memory", "cc");
}
#if (ENABLE_RESTORE_CONTEXT)
extern uint32_t arc_restore_addr;
uint32_t cpu_context[33];
void qm_ss_power_soc_sleep_restore(void)
{
/*
* Save sensor restore trap address.
* The first parameter in this macro represents the label defined in
* the qm_ss_restore_context() macro, which is actually the restore
* trap address.
*/
qm_ss_set_resume_vector(sleep_restore_trap, arc_restore_addr);
/* Save ARC execution context. */
qm_ss_save_context(cpu_context);
/* Set restore flags. */
qm_power_soc_set_ss_restore_flag();
/* Enter sleep. */
qm_power_soc_sleep();
/*
* Restore sensor execution context.
* The sensor startup code will jump to this location after waking up
* from sleep. The restore trap address is the label defined in the
* macro and the label is exposed here through the first parameter.
*/
qm_ss_restore_context(sleep_restore_trap, cpu_context);
}
void qm_ss_power_soc_deep_sleep_restore(void)
{
/*
* Save sensor restore trap address.
* The first parameter in this macro represents the label defined in
* the qm_ss_restore_context() macro, which is actually the restore
* trap address.
*/
qm_ss_set_resume_vector(deep_sleep_restore_trap, arc_restore_addr);
/* Save ARC execution context. */
qm_ss_save_context(cpu_context);
/* Set restore flags. */
qm_power_soc_set_ss_restore_flag();
/* Enter sleep. */
qm_power_soc_deep_sleep();
/*
* Restore sensor execution context.
* The sensor startup code will jump to this location after waking up
* from sleep. The restore trap address is the label defined in the
* macro and the label is exposed here through the first parameter.
*/
qm_ss_restore_context(deep_sleep_restore_trap, cpu_context);
}
void qm_ss_power_sleep_wait(void)
{
/*
* Save sensor restore trap address.
* The first parameter in this macro represents the label defined in
* the qm_ss_restore_context() macro, which is actually the restore
* trap address.
*/
qm_ss_set_resume_vector(sleep_restore_trap, arc_restore_addr);
/* Save ARC execution context. */
qm_ss_save_context(cpu_context);
/* Set restore flags. */
qm_power_soc_set_ss_restore_flag();
/* Enter SS1 and stay in it until sleep and wake-up. */
while (1) {
qm_ss_power_cpu_ss1(QM_SS_POWER_CPU_SS1_TIMER_ON);
}
/*
* Restore sensor execution context.
* The sensor startup code will jump to this location after waking up
* from sleep. The restore trap address is the label defined in the
* macro and the label is exposed here through the first parameter.
*/
qm_ss_restore_context(sleep_restore_trap, cpu_context);
}
void qm_power_soc_set_ss_restore_flag(void)
{
QM_SCSS_GP->gps0 |= BIT(QM_GPS0_BIT_SENSOR_WAKEUP);
}
#endif /* ENABLE_RESTORE_CONTEXT */