blob: 1a2c666057a02f18bfb2b6fca74a3e6fde838b63 [file] [log] [blame]
/***************************************************************************//**
* @file em_iadc.c
* @brief Incremental Analog to Digital Converter (IADC) Peripheral API
* @version 5.6.0
*******************************************************************************
* # License
* <b>Copyright 2017 Silicon Laboratories, Inc. http://www.silabs.com</b>
*******************************************************************************
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
* obligation to support this Software. Silicon Labs is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Silicon Labs will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "em_iadc.h"
#if defined(IADC_COUNT) && (IADC_COUNT > 0)
#include "em_assert.h"
#include "em_cmu.h"
#include "em_common.h"
#include <stddef.h>
/***************************************************************************//**
* @addtogroup emlib
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup IADC
* @brief Incremental Analog to Digital Converter (IADC) Peripheral API
* @details
* This module contains functions to control the IADC peripheral of Silicon
* Labs 32-bit MCUs and SoCs. The IADC is used to convert analog signals into a
* digital representation.
* @{
******************************************************************************/
/*******************************************************************************
******************************* DEFINES ***********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
// Validation of IADC register block pointer reference for assert statements.
#if (IADC_COUNT == 1)
#define IADC_REF_VALID(ref) ((ref) == IADC0)
#elif (IADC_COUNT == 2)
#define IADC_REF_VALID(ref) (((ref) == IADC0) || ((ref) == IADC1))
#endif
// Max IADC clock rates
#define IADC_CLK_MAX_FREQ 40000000UL
#define IADC_ANA_CLK_HIGH_SPEED_MAX_FREQ 20000000UL
#define IADC_ANA_CLK_NORMAL_MAX_FREQ 10000000UL
#define IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ 5000000UL
#define IADC_ANA_CLK_MAX_FREQ(adcMode) ( \
(adcMode) == iadcCfgModeNormal ? IADC_ANA_CLK_NORMAL_MAX_FREQ \
: IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ \
)
// TODO these should be defined in device headers somewhere
#define IADC0_SCANENTRIES IADC0_ENTRIES
#define IADC0_FIFOENTRIES 0x4UL
#define IADC1_SCANENTRIES IADC1_ENTRIES
#define IADC1_FIFOENTRIES 0x4UL
#define IADC_SCANENTRIES(iadc) ( \
(iadc) == IADC0 ? IADC0_SCANENTRIES \
: 0UL)
#define IADC_CONFIGNUM(iadc) ( \
(iadc) == IADC0 ? IADC0_CONFIGNUM \
: 0UL)
#define IADC_FIFOENTRIES(iadc) ( \
(iadc) == IADC0 ? IADC0_FIFOENTRIES \
: 0UL)
#define IADC_CMU_CLOCK(iadc) ( \
(iadc) == IADC0 ? cmuClock_IADC0 \
: cmuClock_IADC0)
// Gain and offset correction
// TODO These defines must be replaced with production calibrated values
// from the DI page once these are defined
// High speed and normal mode gain correction
// Same value is used for all oversampling rates
#define IADC_OSRHS_GAIN_CORRECTION 0x8000UL
// High speed and normal mode offset correction
static const uint32_t highSpeedOffsetCorrection[6] =
{
0x2C000, /* 2x */
0x36000, /* 4x */
0x3B000, /* 8x */
0x3D800, /* 16x */
0x3EC00, /* 32x */
0x3F600 /* 64x */
};
/** @endcond */
/*******************************************************************************
*************************** LOCAL FUNCTIONS *******************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
static void IADC_disable(IADC_TypeDef *iadc)
{
iadc->EN_CLR = IADC_EN_EN;
}
static void IADC_enable(IADC_TypeDef *iadc)
{
iadc->EN_SET = IADC_EN_EN;
}
static IADC_Result_t IADC_ConvertRawDataToResult(uint32_t rawData,
IADC_Alignment_t alignment)
{
IADC_Result_t result;
switch (alignment) {
case iadcAlignRight12:
// Mask out ID and replace with sign extension
result.data = (rawData & 0x00FFFFFFUL)
| ((rawData & 0x00800000UL) != 0x0UL ? 0xFF000000UL : 0x0UL);
// Mask out data and shift down
result.id = (uint8_t) (rawData & 0xFF000000UL) >> 24;
break;
case iadcAlignLeft12:
result.data = rawData & 0xFFFFFF00UL;
result.id = (uint8_t) (rawData & 0x000000FFUL);
break;
default:
break;
}
return result;
}
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
/***************************************************************************//**
* @brief
* Initialize IADC.
*
* @details
* Initializes common parts for both single conversion and scan sequence.
* In addition, single and/or scan control configuration must be done, please
* refer to @ref IADC_initSingle() and @ref IADC_initScan() respectively.
*
* @note
* This function will stop any ongoing conversions.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] init
* Pointer to IADC initialization structure.
*
* @param[in] allConfigs
* Pointer to structure holding all configs.
******************************************************************************/
void IADC_init(IADC_TypeDef *iadc,
const IADC_Init_t *init,
const IADC_AllConfigs_t *allConfigs)
{
uint32_t tmp;
uint32_t config;
uint8_t wantedPrescale;
uint8_t srcClkPrescale;
uint8_t adcClkPrescale;
uint8_t timebase;
IADC_CfgAdcMode_t adcMode;
EFM_ASSERT(IADC_REF_VALID(iadc));
// Calculate min allowed SRC_CLK prescaler setting
srcClkPrescale = IADC_calcSrcClkPrescale(iadc, IADC_CLK_MAX_FREQ, 0);
wantedPrescale = init->srcClkPrescale;
// Use wanted SRC_CLK prescaler setting instead if it is high enough
if (wantedPrescale >= srcClkPrescale) {
srcClkPrescale = wantedPrescale;
}
IADC_disable(iadc);
timebase = init->timebase;
if (timebase == 0) {
// Calculate timebase based on CMU_IADCCLKCTRL
timebase = IADC_calcTimebase(iadc, 0);
}
tmp = (((uint32_t)(init->warmup) << _IADC_CTRL_WARMUPMODE_SHIFT)
& _IADC_CTRL_WARMUPMODE_MASK)
| (((uint32_t)(timebase) << _IADC_CTRL_TIMEBASE_SHIFT)
& _IADC_CTRL_TIMEBASE_MASK)
| (((uint32_t)(srcClkPrescale) << _IADC_CTRL_HSCLKRATE_SHIFT)
& _IADC_CTRL_HSCLKRATE_MASK);
if (init->iadcClkSuspend0) {
tmp |= IADC_CTRL_ADCCLKSUSPEND0;
}
if (init->iadcClkSuspend1) {
tmp |= IADC_CTRL_ADCCLKSUSPEND1;
}
if (init->debugHalt) {
tmp |= IADC_CTRL_DBGHALT;
}
iadc->CTRL = tmp;
iadc->TIMER = ((uint32_t) (init->timerCycles) << _IADC_TIMER_TIMER_SHIFT)
& _IADC_TIMER_TIMER_MASK;
iadc->CMPTHR = (((uint32_t) (init->greaterThanEqualThres) << _IADC_CMPTHR_ADGT_SHIFT)
& _IADC_CMPTHR_ADGT_MASK)
| (((uint32_t) (init->lessThanEqualThres) << _IADC_CMPTHR_ADLT_SHIFT)
& _IADC_CMPTHR_ADLT_MASK);
// Write configurations
for (config = 0; config < IADC_CONFIGNUM(iadc); config++) {
// Find min allowed ADC_CLK prescaler setting for given mode
adcMode = allConfigs->configs[config].adcMode;
wantedPrescale = allConfigs->configs[config].adcClkPrescale;
adcClkPrescale = IADC_calcAdcClkPrescale(iadc,
IADC_ANA_CLK_MAX_FREQ(adcMode),
0,
adcMode,
srcClkPrescale);
// Use wanted ADC_CLK prescaler setting instead if it is high enough
adcClkPrescale = SL_MAX(adcClkPrescale, wantedPrescale);
tmp = iadc->CFG[config].CFG & ~(_IADC_CFG_ADCMODE_MASK | _IADC_CFG_OSRHS_MASK
| _IADC_CFG_ANALOGGAIN_MASK | _IADC_CFG_REFSEL_MASK
| _IADC_CFG_TWOSCOMPL_MASK);
iadc->CFG[config].CFG = tmp
| (((uint32_t)(adcMode) << _IADC_CFG_ADCMODE_SHIFT) & _IADC_CFG_ADCMODE_MASK)
| (((uint32_t)(allConfigs->configs[config].osrHighSpeed) << _IADC_CFG_OSRHS_SHIFT)
& _IADC_CFG_OSRHS_MASK)
| (((uint32_t)(allConfigs->configs[config].analogGain) << _IADC_CFG_ANALOGGAIN_SHIFT)
& _IADC_CFG_ANALOGGAIN_MASK)
| (((uint32_t)(allConfigs->configs[config].reference) << _IADC_CFG_REFSEL_SHIFT)
& _IADC_CFG_REFSEL_MASK)
| (((uint32_t)(allConfigs->configs[config].twosComplement) << _IADC_CFG_TWOSCOMPL_SHIFT)
& _IADC_CFG_TWOSCOMPL_MASK);
// Gain and offset correction is applied according to adcMode and oversampling rate.
switch (adcMode) {
case iadcCfgModeNormal:
iadc->CFG[config].SCALE = (((uint32_t) highSpeedOffsetCorrection[allConfigs->configs[config].osrHighSpeed] << _IADC_SCALE_OFFSET_SHIFT)
& _IADC_SCALE_OFFSET_MASK)
| (((uint32_t) (IADC_OSRHS_GAIN_CORRECTION & 0x1FFFUL) << _IADC_SCALE_GAIN13LSB_SHIFT)
& _IADC_SCALE_GAIN13LSB_MASK)
| (((uint32_t) ((IADC_OSRHS_GAIN_CORRECTION & 0x8000UL) >> 15) << _IADC_SCALE_GAIN3MSB_SHIFT)
& _IADC_SCALE_GAIN3MSB_MASK);
break;
default:
break;
}
iadc->CFG[config].SCHED = (((uint32_t)(adcClkPrescale) << _IADC_SCHED_PRESCALE_SHIFT)
& _IADC_SCHED_PRESCALE_MASK);
}
IADC_enable(iadc);
}
/***************************************************************************//**
* @brief
* Initialize IADC scan sequence.
*
* @details
* This function will configure scan mode and set up entries in the scan
* table. The scan table mask can be updated by calling IADC_updateScanMask.
*
* @note
* This function will stop any ongoing conversions.
*
* @note If an even numbered pin is selected for the positive input, the
* negative input must use an odd numbered pin and vice versa.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] init
* Pointer to IADC initialization structure.
*
* @param[in] scanTable
* Pointer to IADC scan table structure.
******************************************************************************/
void IADC_initScan(IADC_TypeDef *iadc,
const IADC_InitScan_t *init,
const IADC_ScanTable_t *scanTable)
{
uint32_t i;
uint32_t tmp;
EFM_ASSERT(IADC_REF_VALID(iadc));
IADC_disable(iadc);
iadc->SCANFIFOCFG = (((uint32_t) (init->alignment) << _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT)
& _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
| (init->showId ? IADC_SCANFIFOCFG_SHOWID : 0UL)
| (((uint32_t) (init->dataValidLevel) << _IADC_SCANFIFOCFG_DVL_SHIFT)
& _IADC_SCANFIFOCFG_DVL_MASK)
| (init->fifoDmaWakeup ? IADC_SCANFIFOCFG_DMAWUFIFOSCAN : 0UL);
// Clear bitfields for scan conversion in IADCn->TRIGGER and set new values
iadc->TRIGGER = (iadc->TRIGGER & ~(_IADC_TRIGGER_SCANTRIGSEL_MASK
| _IADC_TRIGGER_SCANTRIGACTION_MASK))
| (((uint32_t) (init->triggerSelect) << _IADC_TRIGGER_SCANTRIGSEL_SHIFT)
& _IADC_TRIGGER_SCANTRIGSEL_MASK)
| (((uint32_t) (init->triggerAction) << _IADC_TRIGGER_SCANTRIGACTION_SHIFT)
& _IADC_TRIGGER_SCANTRIGACTION_MASK);
// Write scan table
for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
iadc->SCANTABLE[i].SCAN = (((uint32_t) (scanTable->entries[i].negInput) << _IADC_SCAN_PINNEG_SHIFT)
& (_IADC_SCAN_PORTNEG_MASK | _IADC_SCAN_PINNEG_MASK))
| (((uint32_t) (scanTable->entries[i].posInput) << _IADC_SCAN_PINPOS_SHIFT)
& (_IADC_SCAN_PORTPOS_MASK | _IADC_SCAN_PINPOS_MASK))
| (((uint32_t) (scanTable->entries[i].configId) << _IADC_SCAN_CFG_SHIFT)
& _IADC_SCAN_CFG_MASK)
| (scanTable->entries[i].compare ? IADC_SCAN_CMP : 0UL);
}
IADC_enable(iadc);
// Set scan mask
tmp = 0;
for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
if (scanTable->entries[i].includeInScan) {
tmp |= (1UL << i) << _IADC_MASKREQ_MASKREQ_SHIFT;
}
}
iadc->MASKREQ = tmp;
if (init->start) {
IADC_command(iadc, iadcCmdStartScan);
}
}
/***************************************************************************//**
* @brief
* Initialize single IADC conversion.
*
* @details
* This function will initialize the single conversion and configure the
* single input selection.
*
* @note
* This function will stop any ongoing conversions.
*
* @note If an even numbered pin is selected for the positive input, the
* negative input must use an odd numbered pin and vice versa.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] init
* Pointer to IADC single initialization structure.
*
* @param[in] singleInput
* Pointer to IADC single input selection initialization structure.
******************************************************************************/
void IADC_initSingle(IADC_TypeDef *iadc,
const IADC_InitSingle_t *init,
const IADC_SingleInput_t *input)
{
EFM_ASSERT(IADC_REF_VALID(iadc));
IADC_disable(iadc);
iadc->SINGLEFIFOCFG = (((uint32_t) (init->alignment) << _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT)
& _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
| (init->showId ? IADC_SINGLEFIFOCFG_SHOWID : 0UL)
| (((uint32_t) (init->dataValidLevel) << _IADC_SINGLEFIFOCFG_DVL_SHIFT)
& _IADC_SINGLEFIFOCFG_DVL_MASK)
| (init->fifoDmaWakeup ? IADC_SINGLEFIFOCFG_DMAWUFIFOSINGLE : 0UL);
// Clear bitfields for single conversion in IADCn->TRIGGER and set new values
iadc->TRIGGER = (iadc->TRIGGER & (_IADC_TRIGGER_SINGLETRIGSEL_MASK
| _IADC_TRIGGER_SINGLETRIGACTION_MASK
| _IADC_TRIGGER_SINGLETAILGATE_MASK))
| (((uint32_t) (init->triggerSelect) << _IADC_TRIGGER_SINGLETRIGSEL_SHIFT)
& _IADC_TRIGGER_SINGLETRIGSEL_MASK)
| (((uint32_t) (init->triggerAction) << _IADC_TRIGGER_SINGLETRIGACTION_SHIFT)
& _IADC_TRIGGER_SINGLETRIGACTION_MASK)
| (init->singleTailgate ? IADC_TRIGGER_SINGLETAILGATE : 0UL);
IADC_updateSingleInput(iadc, input);
IADC_enable(iadc);
if (init->start) {
IADC_command(iadc, iadcCmdStartSingle);
}
}
/***************************************************************************//**
* @brief
* Update IADC single input selection.
*
* @details
* This function updates the single input selection. The function can be
* called while single and/or scan conversions are ongoing and the new input
* configuration will take place on the next single conversion.
*
* @note If an even numbered pin is selected for the positive input, the
* negative input must use an odd numbered pin and vice versa.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] input
* Pointer to single input selection structure.
******************************************************************************/
void IADC_updateSingleInput(IADC_TypeDef *iadc,
const IADC_SingleInput_t *input)
{
bool enabled;
EFM_ASSERT(IADC_REF_VALID(iadc));
enabled = (iadc->EN & IADC_EN_EN) != 0UL;
// IADCn->SINGLE has WSYNC type and can only be written while enabled
IADC_enable(iadc);
iadc->SINGLE = (((uint32_t) (input->negInput) << _IADC_SINGLE_PINNEG_SHIFT)
& (_IADC_SINGLE_PORTNEG_MASK | _IADC_SINGLE_PINNEG_MASK))
| (((uint32_t) (input->posInput) << _IADC_SINGLE_PINPOS_SHIFT)
& (_IADC_SINGLE_PORTPOS_MASK | _IADC_SINGLE_PINPOS_MASK))
| (((uint32_t) (input->configId) << _IADC_SINGLE_CFG_SHIFT)
& _IADC_SINGLE_CFG_MASK)
| (input->compare ? IADC_SINGLE_CMP : 0UL);
// Restore enabled state
if (!enabled) {
IADC_disable(iadc);
}
}
/***************************************************************************//**
* @brief
* Set mask of IADC scan table entries to include in scan.
*
* @details
* Set mask of scan table entries to include in next scan. This function
* can be called while scan conversions are ongoing, but the new scan mask
* will take effect once the ongoing scan is completed.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] mask
* Mask of scan table entries to include in scan.
******************************************************************************/
void IADC_setScanMask(IADC_TypeDef *iadc, uint32_t mask)
{
bool enabled;
EFM_ASSERT(IADC_REF_VALID(iadc));
EFM_ASSERT(mask <= ((1UL << IADC_SCANENTRIES(iadc)) - 1UL));
enabled = (iadc->EN & IADC_EN_EN) != 0UL;
// IADC must be enabled to update scan table mask
IADC_enable(iadc);
iadc->MASKREQ = (mask << _IADC_MASKREQ_MASKREQ_SHIFT)
& _IADC_MASKREQ_MASKREQ_MASK;
// Restore enabled state
if (!enabled) {
IADC_disable(iadc);
}
}
/***************************************************************************//**
* @brief
* Add/update entry in scan table.
*
* @details
* This function will update or add an entry in the scan table with a specific
* ID.
*
* @note
* This function will stop any ongoing conversions.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] id
* Id of scan table entry to add.
*
* @param[in] entry
* Pointer to scan table entry structure.
******************************************************************************/
void IADC_updateScanEntry(IADC_TypeDef *iadc,
uint8_t id,
IADC_ScanTableEntry_t *entry)
{
bool enabled;
EFM_ASSERT(IADC_REF_VALID(iadc));
enabled = (iadc->EN & IADC_EN_EN) != 0UL;
// IADC must be disabled to update scan table
IADC_disable(iadc);
// Update entry in scan table
iadc->SCANTABLE[id].SCAN = (((uint32_t) (entry->negInput) << _IADC_SCAN_PINNEG_SHIFT)
& (_IADC_SCAN_PORTNEG_MASK | _IADC_SCAN_PINNEG_MASK))
| (((uint32_t) (entry->posInput) << _IADC_SCAN_PINPOS_SHIFT)
& (_IADC_SCAN_PORTPOS_MASK | _IADC_SCAN_PINPOS_MASK))
| (((uint32_t) (entry->configId) << _IADC_SCAN_CFG_SHIFT)
& _IADC_SCAN_CFG_MASK)
| (entry->compare ? IADC_SCAN_CMP : 0UL);
// IADC must be enabled to update scan table mask
IADC_enable(iadc);
if (entry->includeInScan) {
iadc->MASKREQ_SET = (1UL << (id & 0x1FUL)) << _IADC_MASKREQ_MASKREQ_SHIFT;
} else {
iadc->MASKREQ_CLR = (1UL << (id & 0x1FUL)) << _IADC_MASKREQ_MASKREQ_SHIFT;
}
// Restore enabled state
if (!enabled) {
IADC_disable(iadc);
}
}
/***************************************************************************//**
* @brief
* Reset IADC to same state as after a HW reset.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
******************************************************************************/
void IADC_reset(IADC_TypeDef *iadc)
{
uint32_t i;
EFM_ASSERT(IADC_REF_VALID(iadc));
// Write all WSYNC registers to reset value while enabled
IADC_enable(iadc);
// Stop conversions and timer, before resetting other registers.
iadc->CMD = IADC_CMD_SINGLESTOP | IADC_CMD_SCANSTOP | IADC_CMD_TIMERDIS;
// Wait for all IADC operations to stop
while ((iadc->STATUS & (IADC_STATUS_CONVERTING
| IADC_STATUS_SCANQUEUEPENDING
| IADC_STATUS_SINGLEQUEUEPENDING
| IADC_STATUS_TIMERACTIVE))
!= 0UL) {
}
// Reset all WSYNC registers
iadc->MASKREQ = _IADC_MASKREQ_RESETVALUE;
iadc->SINGLE = _IADC_SINGLE_RESETVALUE;
// Wait for SINGLE and MASQREQ writes to propagate to working registers
while ((iadc->STATUS & (IADC_STATUS_MASKREQWRITEPENDING
| IADC_STATUS_SINGLEWRITEPENDING))
!= 0UL) {
}
// Pull from FIFOs until they are empty
while ((iadc->STATUS & IADC_STATUS_SINGLEFIFODV) != 0UL) {
(void) IADC_pullSingleFifoData(iadc);
}
while ((iadc->STATUS & IADC_STATUS_SCANFIFODV) != 0UL) {
(void) IADC_pullScanFifoData(iadc);
}
// Read data registers to clear data valid flags
(void) IADC_readSingleData(iadc);
(void) IADC_readScanData(iadc);
// Write all WSTATIC registers to reset value while disabled
IADC_disable(iadc);
// Reset all WSTATIC registers
iadc->CTRL = _IADC_CTRL_RESETVALUE;
iadc->TIMER = _IADC_TIMER_RESETVALUE;
iadc->TRIGGER = _IADC_TRIGGER_RESETVALUE;
iadc->CMPTHR = _IADC_CMPTHR_RESETVALUE;
iadc->SINGLEFIFOCFG = _IADC_SINGLEFIFOCFG_RESETVALUE;
iadc->SCANFIFOCFG = _IADC_SCANFIFOCFG_RESETVALUE;
for (i = 0; i < IADC_CONFIGNUM(iadc); i++) {
iadc->CFG[i].CFG = _IADC_CFG_RESETVALUE;
iadc->CFG[i].SCALE = _IADC_SCALE_RESETVALUE;
iadc->CFG[i].SCHED = _IADC_SCHED_RESETVALUE;
}
for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
iadc->SCANTABLE[i].SCAN = _IADC_SCAN_RESETVALUE;
}
// Clear interrupt flags and disable interrupts
IADC_clearInt(iadc, _IADC_IF_MASK);
IADC_disableInt(iadc, _IADC_IEN_MASK);
}
/***************************************************************************//**
* @brief
* Calculate timebase value in order to get a timebase providing at least 1us.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] cmuClkFreq Frequency in Hz of reference CLK_CMU_ADC clock. Set to 0 to
* use currently defined CMU clock setting for the IADC.
*
* @return
* Timebase value to use for IADC in order to achieve at least 1 us.
******************************************************************************/
uint8_t IADC_calcTimebase(IADC_TypeDef *iadc, uint32_t cmuClkFreq)
{
EFM_ASSERT(IADC_REF_VALID(iadc));
if (cmuClkFreq == 0UL) {
cmuClkFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
// Just in case, make sure we get non-zero freq for below calculation
if (cmuClkFreq == 0UL) {
cmuClkFreq = 1;
}
}
// Determine number of ADCCLK cycle >= 1us
cmuClkFreq += 999999UL;
cmuClkFreq /= 1000000UL;
// Convert to N+1 format
cmuClkFreq -= 1UL;
// Limit to max allowed register setting
cmuClkFreq = SL_MIN(cmuClkFreq, (_IADC_CTRL_TIMEBASE_MASK >> _IADC_CTRL_TIMEBASE_SHIFT));
// Return timebase value
return (uint8_t) cmuClkFreq;
}
/***************************************************************************//**
* @brief
* Calculate prescaler for CLK_SRC_ADC high speed clock
*
* @details
* The IADC high speed clock is given by: CLK_SRC_ADC / (srcClkPrescaler + 1).
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] srcClkFreq CLK_SRC_ADC frequency wanted. The frequency will
* automatically be adjusted to be within valid range according to reference
* manual.
*
* @param[in] cmuClkFreq Frequency in Hz of reference CLK_CMU_ADC. Set to 0
* to use currently defined CMU clock setting for the IADC.
*
* @return
* Divider value to use for IADC in order to achieve a high speed clock value
* <= @p srcClkFreq.
******************************************************************************/
uint8_t IADC_calcSrcClkPrescale(IADC_TypeDef *iadc,
uint32_t srcClkFreq,
uint32_t cmuClkFreq)
{
uint32_t ret;
EFM_ASSERT(IADC_REF_VALID(iadc));
// Make sure wanted CLK_SRC_ADC clock is below max allowed frequency
srcClkFreq = SL_MIN(srcClkFreq, IADC_CLK_MAX_FREQ);
// Use current CLK_CMU_ADC frequency?
if (cmuClkFreq == 0UL) {
cmuClkFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
}
ret = (cmuClkFreq + srcClkFreq - 1UL) / srcClkFreq;
if (ret != 0UL) {
ret--;
}
// Limit to max allowed register setting
if (ret > _IADC_CTRL_HSCLKRATE_DIV4) {
ret = _IADC_CTRL_HSCLKRATE_DIV4;
}
return (uint8_t)ret;
}
/***************************************************************************//**
* @brief
* Calculate prescaler for ADC_CLK clock.
*
* @details
* The ADC_CLK is given by: CLK_SRC_ADC / (adcClkprescale + 1).
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @param[in] adcClkFreq ADC_CLK frequency wanted. The frequency will
* automatically be adjusted to be within valid range according to reference
* manual.
*
* @param[in] CmuClkFreq Frequency in Hz of CLK_CMU_ADC Set to 0 to
* use currently defined IADC clock setting (in CMU).
*
* @param[in] adcMode Mode for IADC config.
*
* @param[in] srcClkPrescaler Precaler setting for ADC_CLK
*
* @return
* Divider value to use for IADC in order to achieve a ADC_CLK frequency
* <= @p adcClkFreq.
******************************************************************************/
uint8_t IADC_calcAdcClkPrescale(IADC_TypeDef *iadc,
uint32_t adcClkFreq,
uint32_t cmuClkFreq,
IADC_CfgAdcMode_t adcMode,
uint8_t srcClkPrescaler)
{
uint32_t ret;
uint32_t resFreq;
EFM_ASSERT(IADC_REF_VALID(iadc));
// Make sure wanted analog clock is below max allowed frequency for the given
// mode.
if (adcClkFreq > IADC_ANA_CLK_MAX_FREQ(adcMode)) {
adcClkFreq = IADC_ANA_CLK_MAX_FREQ(adcMode);
}
// Use current CLK_CMU_ADC frequency?
if (cmuClkFreq == 0UL) {
resFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
} else {
resFreq = cmuClkFreq;
}
// Apply CLK_SRC_ADC prescaler
resFreq /= srcClkPrescaler + 1UL;
ret = (resFreq + adcClkFreq - 1UL) / adcClkFreq;
if (ret != 0UL) {
ret--;
}
// Limit to max allowed register setting
ret = SL_MIN(ret, (_IADC_SCHED_PRESCALE_MASK >> _IADC_SCHED_PRESCALE_SHIFT));
return (uint8_t)ret;
}
/***************************************************************************//**
* @brief
* Pull result from single data FIFO. The result struct includes both the data
* and the ID (0x20) if showId was set when initializing single mode.
*
* @note
* Check data valid flag before calling this function.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @return
* Single conversion result struct holding data and id.
******************************************************************************/
IADC_Result_t IADC_pullSingleFifoResult(IADC_TypeDef *iadc)
{
uint32_t alignment = (iadc->SINGLEFIFOCFG & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
>> _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT;
return IADC_ConvertRawDataToResult(iadc->SINGLEFIFODATA,
(IADC_Alignment_t) alignment);
}
/***************************************************************************//**
* @brief
* Read most recent single conversion result. The result struct includes both
* the data and the ID (0x20) if showId was set when initializing single mode.
* Calling this function will not affect the state of the single data FIFO.
*
* @note
* Check data valid flag before calling this function.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @return
* Single conversion result struct holding data and id.
******************************************************************************/
IADC_Result_t IADC_readSingleResult(IADC_TypeDef *iadc)
{
uint32_t alignment = (iadc->SINGLEFIFOCFG & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
>> _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT;
return IADC_ConvertRawDataToResult(iadc->SINGLEDATA,
(IADC_Alignment_t) alignment);
}
/***************************************************************************//**
* @brief
* Pull result from scan data FIFO. The result struct includes both the data
* and the ID (0x20) if showId was set when initializing scan entry.
*
* @note
* Check data valid flag before calling this function.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @return
* Scan conversion result struct holding data and id.
******************************************************************************/
IADC_Result_t IADC_pullScanFifoResult(IADC_TypeDef *iadc)
{
uint32_t alignment = (iadc->SCANFIFOCFG & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
>> _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT;
return IADC_ConvertRawDataToResult(iadc->SCANFIFODATA,
(IADC_Alignment_t) alignment);
}
/***************************************************************************//**
* @brief
* Read most recent scan conversion result. The result struct includes both
* the data and the ID (0x20) if showId was set when initializing scan entry.
* Calling this function will not affect the state of the scan data FIFO.
*
* @note
* Check data valid flag before calling this function.
*
* @param[in] iadc
* Pointer to IADC peripheral register block.
*
* @return
* Scan conversion result struct holding data and id.
******************************************************************************/
IADC_Result_t IADC_readScanResult(IADC_TypeDef *iadc)
{
uint32_t alignment = (iadc->SCANFIFOCFG & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
>> _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT;
return IADC_ConvertRawDataToResult(iadc->SCANDATA,
(IADC_Alignment_t) alignment);
}
/** @} (end addtogroup IADC) */
/** @} (end addtogroup emlib) */
#endif /* defined(IADC_COUNT) && (IADC_COUNT > 0) */