blob: e3036cddaccb49b0c5884fa4a4f1217c71cb2d76 [file] [log] [blame]
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "test_uart.h"
K_SEM_DEFINE(tx_done, 0, 1);
K_SEM_DEFINE(tx_aborted, 0, 1);
K_SEM_DEFINE(rx_rdy, 0, 1);
K_SEM_DEFINE(rx_buf_released, 0, 1);
K_SEM_DEFINE(rx_disabled, 0, 1);
ZTEST_BMEM volatile bool failed_in_isr;
ZTEST_BMEM static const struct device *uart_dev;
static void read_abort_timeout(struct k_timer *timer);
K_TIMER_DEFINE(read_abort_timer, read_abort_timeout, NULL);
void init_test(void)
{
uart_dev = device_get_binding(UART_DEVICE_NAME);
}
#ifdef CONFIG_USERSPACE
void set_permissions(void)
{
k_thread_access_grant(k_current_get(), &tx_done, &tx_aborted,
&rx_rdy, &rx_buf_released, &rx_disabled,
uart_dev, &read_abort_timer);
}
#endif
void test_single_read_callback(const struct device *dev,
struct uart_event *evt, void *user_data)
{
ARG_UNUSED(dev);
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
(*(uint32_t *)user_data)++;
break;
case UART_RX_RDY:
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
ZTEST_BMEM volatile uint32_t tx_aborted_count;
void test_single_read_setup(void)
{
uart_callback_set(uart_dev,
test_single_read_callback,
(void *) &tx_aborted_count);
}
void test_single_read(void)
{
uint8_t rx_buf[10] = {0};
/* Check also if sending from read only memory (e.g. flash) works. */
static const uint8_t tx_buf[5] = "test";
zassert_not_equal(memcmp(tx_buf, rx_buf, 5), 0,
"Initial buffer check failed");
uart_rx_enable(uart_dev, rx_buf, 10, 50 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"RX_RDY not expected at this point");
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"Extra RX_RDY received");
zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");
zassert_not_equal(memcmp(tx_buf, rx_buf+5, 5), 0, "Buffers not equal");
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(1000)), 0,
"RX_DISABLED timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"Extra RX_RDY received");
zassert_equal(memcmp(tx_buf, rx_buf+5, 5), 0, "Buffers not equal");
zassert_equal(tx_aborted_count, 0, "TX aborted triggered");
}
void test_multiple_rx_enable_setup(void)
{
tx_aborted_count = 0;
/* Reuse the callback from the single_read test case, as this test case
* does not need anything extra in this regard.
*/
uart_callback_set(uart_dev,
test_single_read_callback,
(void *)&tx_aborted_count);
k_sem_reset(&rx_rdy);
k_sem_reset(&rx_buf_released);
k_sem_reset(&rx_disabled);
k_sem_reset(&tx_done);
}
void test_multiple_rx_enable(void)
{
/* Check also if sending from read only memory (e.g. flash) works. */
static const uint8_t tx_buf[] = "test";
uint8_t rx_buf[sizeof(tx_buf)] = {0};
int ret;
/* Enable RX without a timeout. */
ret = uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), SYS_FOREVER_US);
zassert_equal(ret, 0, "uart_rx_enable failed");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"RX_RDY not expected at this point");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), -EAGAIN,
"RX_DISABLED not expected at this point");
/* Disable RX before any data has been received. */
ret = uart_rx_disable(uart_dev);
zassert_equal(ret, 0, "uart_rx_disable failed");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"RX_RDY not expected at this point");
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)), 0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
k_sem_reset(&rx_buf_released);
k_sem_reset(&rx_disabled);
/* Check that RX can be reenabled after "manual" disabling. */
ret = uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf),
50 * USEC_PER_MSEC);
zassert_equal(ret, 0, "uart_rx_enable failed");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"RX_RDY not expected at this point");
/* Send enough data to completely fill RX buffer, so that RX ends. */
ret = uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
zassert_equal(ret, 0, "uart_tx failed");
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"Extra RX_RDY received");
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)), 0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
zassert_equal(tx_aborted_count, 0, "Unexpected TX abort");
zassert_equal(memcmp(tx_buf, rx_buf, sizeof(tx_buf)), 0,
"Buffers not equal");
k_sem_reset(&rx_rdy);
k_sem_reset(&rx_buf_released);
k_sem_reset(&rx_disabled);
k_sem_reset(&tx_done);
memset(rx_buf, 0, sizeof(rx_buf));
/* Check that RX can be reenabled after automatic disabling. */
ret = uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf),
50 * USEC_PER_MSEC);
zassert_equal(ret, 0, "uart_rx_enable failed");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"RX_RDY not expected at this point");
/* Fill RX buffer again to confirm that RX still works properly. */
ret = uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
zassert_equal(ret, 0, "uart_tx failed");
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
"Extra RX_RDY received");
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)), 0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
zassert_equal(tx_aborted_count, 0, "Unexpected TX abort");
zassert_equal(memcmp(tx_buf, rx_buf, sizeof(tx_buf)), 0,
"Buffers not equal");
}
ZTEST_BMEM uint8_t chained_read_buf0[10];
ZTEST_BMEM uint8_t chained_read_buf1[20];
ZTEST_BMEM uint8_t chained_read_buf2[30];
ZTEST_DMEM uint8_t buf_num = 1U;
ZTEST_BMEM uint8_t *read_ptr;
ZTEST_BMEM volatile size_t read_len;
void test_chained_read_callback(const struct device *uart_dev,
struct uart_event *evt, void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_RX_RDY:
read_ptr = evt->data.rx.buf + evt->data.rx.offset;
read_len = evt->data.rx.len;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_REQUEST:
if (buf_num == 1U) {
uart_rx_buf_rsp(uart_dev,
chained_read_buf1,
sizeof(chained_read_buf1));
buf_num = 2U;
} else if (buf_num == 2U) {
uart_rx_buf_rsp(uart_dev,
chained_read_buf2,
sizeof(chained_read_buf2));
buf_num = 0U;
}
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_chained_read_setup(void)
{
uart_callback_set(uart_dev, test_chained_read_callback, NULL);
}
void test_chained_read(void)
{
uint8_t tx_buf[10];
uart_rx_enable(uart_dev, chained_read_buf0, 10, 50 * USEC_PER_MSEC);
for (int i = 0; i < 6; i++) {
zassert_not_equal(k_sem_take(&rx_disabled, K_MSEC(10)),
0,
"RX_DISABLED occurred");
snprintf(tx_buf, sizeof(tx_buf), "Message %d", i);
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0,
"TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(1000)), 0,
"RX_RDY timeout");
size_t read_len_temp = read_len;
zassert_equal(read_len_temp, sizeof(tx_buf),
"Incorrect read length");
zassert_equal(memcmp(tx_buf, read_ptr, sizeof(tx_buf)),
0,
"Buffers not equal");
}
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
}
ZTEST_BMEM uint8_t double_buffer[2][12];
ZTEST_DMEM uint8_t *next_buf = double_buffer[1];
void test_double_buffer_callback(const struct device *uart_dev,
struct uart_event *evt, void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_RX_RDY:
read_ptr = evt->data.rx.buf + evt->data.rx.offset;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_REQUEST:
uart_rx_buf_rsp(uart_dev, next_buf, sizeof(double_buffer[0]));
break;
case UART_RX_BUF_RELEASED:
next_buf = evt->data.rx_buf.buf;
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_double_buffer_setup(void)
{
uart_callback_set(uart_dev, test_double_buffer_callback, NULL);
}
void test_double_buffer(void)
{
uint8_t tx_buf[4];
zassert_equal(uart_rx_enable(uart_dev,
double_buffer[0],
sizeof(double_buffer[0]),
50 * USEC_PER_MSEC),
0,
"Failed to enable receiving");
for (int i = 0; i < 100; i++) {
snprintf(tx_buf, sizeof(tx_buf), "%03d", i);
uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0,
"TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0,
"RX_RDY timeout");
zassert_equal(memcmp(tx_buf, read_ptr, sizeof(tx_buf)),
0,
"Buffers not equal");
}
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
}
void test_read_abort_callback(const struct device *dev,
struct uart_event *evt, void *user_data)
{
int err;
ARG_UNUSED(dev);
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_RX_RDY:
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
err = k_sem_take(&rx_rdy, K_NO_WAIT);
failed_in_isr |= (err < 0);
break;
case UART_RX_DISABLED:
err = k_sem_take(&rx_buf_released, K_NO_WAIT);
failed_in_isr |= (err < 0);
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
static void read_abort_timeout(struct k_timer *timer)
{
int err;
err = uart_rx_disable(uart_dev);
zassert_equal(err, 0, "Unexpected err:%d", err);
}
void test_read_abort_setup(void)
{
failed_in_isr = false;
uart_callback_set(uart_dev, test_read_abort_callback, NULL);
k_sem_reset(&rx_rdy);
k_sem_reset(&rx_buf_released);
k_sem_reset(&rx_disabled);
k_sem_reset(&tx_done);
}
void test_read_abort(void)
{
uint8_t rx_buf[100];
uint8_t tx_buf[100];
memset(rx_buf, 0, sizeof(rx_buf));
memset(tx_buf, 1, sizeof(tx_buf));
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);
uart_tx(uart_dev, tx_buf, 5, 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");
uart_tx(uart_dev, tx_buf, 95, 100 * USEC_PER_MSEC);
k_timer_start(&read_abort_timer, K_USEC(300), K_NO_WAIT);
/* RX will be aborted from k_timer timeout */
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
zassert_false(failed_in_isr, "Unexpected order of uart events");
zassert_not_equal(memcmp(tx_buf, rx_buf, 100), 0, "Buffers equal");
/* Read out possible other RX bytes
* that may affect following test on RX
*/
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);
while (k_sem_take(&rx_rdy, K_MSEC(1000)) != -EAGAIN)
;
uart_rx_disable(uart_dev);
}
ZTEST_BMEM volatile size_t sent;
ZTEST_BMEM volatile size_t received;
void test_write_abort_callback(const struct device *dev,
struct uart_event *evt, void *user_data)
{
ARG_UNUSED(dev);
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
sent = evt->data.tx.len;
k_sem_give(&tx_aborted);
break;
case UART_RX_RDY:
received = evt->data.rx.len;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_write_abort_setup(void)
{
uart_callback_set(uart_dev, test_write_abort_callback, NULL);
}
void test_write_abort(void)
{
uint8_t rx_buf[100];
uint8_t tx_buf[100];
memset(rx_buf, 0, sizeof(rx_buf));
memset(tx_buf, 1, sizeof(tx_buf));
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);
uart_tx(uart_dev, tx_buf, 5, 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");
uart_tx(uart_dev, tx_buf, 95, 100 * USEC_PER_MSEC);
uart_tx_abort(uart_dev);
zassert_equal(k_sem_take(&tx_aborted, K_MSEC(100)), 0,
"TX_ABORTED timeout");
if (sent != 0) {
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0,
"RX_RDY timeout");
zassert_equal(sent, received, "Sent is not equal to received.");
}
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
}
void test_forever_timeout_callback(const struct device *dev,
struct uart_event *evt, void *user_data)
{
ARG_UNUSED(dev);
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
sent = evt->data.tx.len;
k_sem_give(&tx_aborted);
break;
case UART_RX_RDY:
received = evt->data.rx.len;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_forever_timeout_setup(void)
{
uart_callback_set(uart_dev, test_forever_timeout_callback, NULL);
}
void test_forever_timeout(void)
{
uint8_t rx_buf[100];
uint8_t tx_buf[100];
memset(rx_buf, 0, sizeof(rx_buf));
memset(tx_buf, 1, sizeof(tx_buf));
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), SYS_FOREVER_US);
uart_tx(uart_dev, tx_buf, 5, SYS_FOREVER_US);
zassert_not_equal(k_sem_take(&tx_aborted, K_MSEC(1000)), 0,
"TX_ABORTED timeout");
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_not_equal(k_sem_take(&rx_rdy, K_MSEC(1000)), 0,
"RX_RDY timeout");
uart_tx(uart_dev, tx_buf, 95, SYS_FOREVER_US);
zassert_not_equal(k_sem_take(&tx_aborted, K_MSEC(1000)), 0,
"TX_ABORTED timeout");
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(memcmp(tx_buf, rx_buf, 100), 0, "Buffers not equal");
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
}
ZTEST_DMEM uint8_t chained_write_tx_bufs[2][10] = {"Message 1", "Message 2"};
ZTEST_DMEM bool chained_write_next_buf = true;
ZTEST_BMEM volatile uint8_t tx_sent;
void test_chained_write_callback(const struct device *uart_dev,
struct uart_event *evt, void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
if (chained_write_next_buf) {
uart_tx(uart_dev, chained_write_tx_bufs[1], 10, 100 * USEC_PER_MSEC);
chained_write_next_buf = false;
}
tx_sent = 1;
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
sent = evt->data.tx.len;
k_sem_give(&tx_aborted);
break;
case UART_RX_RDY:
received = evt->data.rx.len;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_chained_write_setup(void)
{
uart_callback_set(uart_dev, test_chained_write_callback, NULL);
}
void test_chained_write(void)
{
uint8_t rx_buf[20];
memset(rx_buf, 0, sizeof(rx_buf));
uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);
uart_tx(uart_dev, chained_write_tx_bufs[0], 10, 100 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
zassert_equal(chained_write_next_buf, false, "Sent no message");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
zassert_equal(memcmp(chained_write_tx_bufs[0], rx_buf, 10),
0,
"Buffers not equal");
zassert_equal(memcmp(chained_write_tx_bufs[1], rx_buf + 10, 10),
0,
"Buffers not equal");
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
}
ZTEST_BMEM uint8_t long_rx_buf[1024];
ZTEST_BMEM uint8_t long_rx_buf2[1024];
ZTEST_BMEM uint8_t long_tx_buf[1000];
ZTEST_BMEM volatile uint8_t evt_num;
ZTEST_BMEM size_t long_received[2];
void test_long_buffers_callback(const struct device *uart_dev,
struct uart_event *evt, void *user_data)
{
static bool next_buf = true;
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&tx_done);
break;
case UART_TX_ABORTED:
sent = evt->data.tx.len;
k_sem_give(&tx_aborted);
break;
case UART_RX_RDY:
long_received[evt_num] = evt->data.rx.len;
evt_num++;
k_sem_give(&rx_rdy);
break;
case UART_RX_BUF_RELEASED:
k_sem_give(&rx_buf_released);
break;
case UART_RX_DISABLED:
k_sem_give(&rx_disabled);
break;
case UART_RX_BUF_REQUEST:
if (next_buf) {
uart_rx_buf_rsp(uart_dev, long_rx_buf2, 1024);
next_buf = false;
}
k_sem_give(&rx_disabled);
break;
default:
break;
}
}
void test_long_buffers_setup(void)
{
uart_callback_set(uart_dev, test_long_buffers_callback, NULL);
}
void test_long_buffers(void)
{
memset(long_rx_buf, 0, sizeof(long_rx_buf));
memset(long_tx_buf, 1, sizeof(long_tx_buf));
uart_rx_enable(uart_dev, long_rx_buf, sizeof(long_rx_buf), 10 * USEC_PER_MSEC);
uart_tx(uart_dev, long_tx_buf, 500, 200 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(200)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(200)), 0, "RX_RDY timeout");
zassert_equal(long_received[0], 500, "Wrong number of bytes received.");
zassert_equal(memcmp(long_tx_buf, long_rx_buf, 500),
0,
"Buffers not equal");
evt_num = 0;
uart_tx(uart_dev, long_tx_buf, 1000, 200 * USEC_PER_MSEC);
zassert_equal(k_sem_take(&tx_done, K_MSEC(200)), 0, "TX_DONE timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(200)), 0, "RX_RDY timeout");
zassert_equal(k_sem_take(&rx_rdy, K_MSEC(200)), 0, "RX_RDY timeout");
zassert_equal(long_received[0], 524, "Wrong number of bytes received.");
zassert_equal(long_received[1], 476, "Wrong number of bytes received.");
zassert_equal(memcmp(long_tx_buf, long_rx_buf + 500, long_received[0]),
0,
"Buffers not equal");
zassert_equal(memcmp(long_tx_buf, long_rx_buf2, long_received[1]),
0,
"Buffers not equal");
uart_rx_disable(uart_dev);
zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
0,
"RX_BUF_RELEASED timeout");
zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
"RX_DISABLED timeout");
}