blob: e86f028538866ecf7514d84e49c78b16155be079 [file] [log] [blame]
/*
* Copyright (c) 2022 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <ztest.h>
#include "test_sched.h"
#ifdef CONFIG_TIMESLICING
/* nrf 51 has lower ram, so creating less number of threads */
#if CONFIG_SRAM_SIZE <= 24
#define NUM_THREAD 2
#elif (CONFIG_SRAM_SIZE <= 32) \
|| defined(CONFIG_SOC_EMSK_EM7D)
#define NUM_THREAD 3
#else
#define NUM_THREAD 10
#endif
#define BASE_PRIORITY 0
#define ITRERATION_COUNT 5
BUILD_ASSERT(NUM_THREAD <= MAX_NUM_THREAD);
/* slice size in millisecond */
#define SLICE_SIZE 200
#define PERTHREAD_SLICE_TICKS 64
#define TICK_SLOP 4
/* busy for more than one slice */
#define BUSY_MS (SLICE_SIZE + 20)
static struct k_thread t[NUM_THREAD];
static K_SEM_DEFINE(sema1, 0, NUM_THREAD);
/* elapsed_slice taken by last thread */
static int64_t elapsed_slice;
static int thread_idx;
static void thread_tslice(void *p1, void *p2, void *p3)
{
int idx = POINTER_TO_INT(p1);
/* Print New line for last thread */
int thread_parameter = (idx == (NUM_THREAD - 1)) ? '\n' :
(idx + 'A');
int64_t expected_slice_min = k_ticks_to_ms_floor64(k_ms_to_ticks_ceil32(SLICE_SIZE) - 1);
int64_t expected_slice_max = k_ticks_to_ms_ceil64(k_ms_to_ticks_ceil32(SLICE_SIZE) + 1);
/* Clumsy, but need to handle the precision loss with
* submillisecond ticks. It's always possible to alias and
* produce a tdelta of "1", no matter how fast ticks are.
*/
if (expected_slice_max == expected_slice_min) {
expected_slice_max = expected_slice_min + 1;
}
while (1) {
int64_t tdelta = k_uptime_delta(&elapsed_slice);
TC_PRINT("%c", thread_parameter);
/* Test Fails if thread exceed allocated time slice or
* Any thread is scheduled out of order.
*/
zassert_true(((tdelta >= expected_slice_min) &&
(tdelta <= expected_slice_max) &&
(idx == thread_idx)), NULL);
thread_idx = (thread_idx + 1) % (NUM_THREAD);
/* Keep the current thread busy for more than one slice,
* even though, when timeslice used up the next thread
* should be scheduled in.
*/
spin_for_ms(BUSY_MS);
k_sem_give(&sema1);
}
}
/* test cases */
/**
* @brief Check the behavior of preemptive threads when the
* time slice is disabled and enabled
*
* @details Create multiple preemptive threads with same priorities
* and few with same priorities and enable the time slice.
* Ensure that each thread is given the time slice period to execute.
*
* @ingroup kernel_sched_tests
*/
void test_slice_scheduling(void)
{
k_tid_t tid[NUM_THREAD];
int old_prio = k_thread_priority_get(k_current_get());
int count = 0;
/* disable timeslice */
k_sched_time_slice_set(0, K_PRIO_PREEMPT(0));
/* update priority for current thread */
k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(BASE_PRIORITY));
/* create threads with equal preemptive priority */
for (int i = 0; i < NUM_THREAD; i++) {
tid[i] = k_thread_create(&t[i], tstacks[i], STACK_SIZE,
thread_tslice,
INT_TO_POINTER(i), NULL, NULL,
K_PRIO_PREEMPT(BASE_PRIORITY), 0,
K_NO_WAIT);
}
/* enable time slice */
k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(BASE_PRIORITY));
while (count < ITRERATION_COUNT) {
k_uptime_delta(&elapsed_slice);
/* Keep the current thread busy for more than one slice,
* even though, when timeslice used up the next thread
* should be scheduled in.
*/
spin_for_ms(BUSY_MS);
/* relinquish CPU and wait for each thread to complete */
for (int i = 0; i < NUM_THREAD; i++) {
k_sem_take(&sema1, K_FOREVER);
}
count++;
}
/* test case teardown */
for (int i = 0; i < NUM_THREAD; i++) {
k_thread_abort(tid[i]);
}
/* disable time slice */
k_sched_time_slice_set(0, K_PRIO_PREEMPT(0));
k_thread_priority_set(k_current_get(), old_prio);
}
static volatile int32_t perthread_count;
static volatile uint32_t last_cyc;
static volatile bool perthread_running;
static K_SEM_DEFINE(perthread_sem, 0, 1);
static void slice_expired(struct k_thread *thread, void *data)
{
zassert_equal(thread, data, "wrong callback data pointer");
uint32_t now = k_cycle_get_32();
uint32_t dt = k_cyc_to_ticks_near32(now - last_cyc);
zassert_true(perthread_running, "thread didn't start");
zassert_true(dt >= (PERTHREAD_SLICE_TICKS - TICK_SLOP),
"slice expired >%d ticks too soon (dt=%d)", TICK_SLOP, dt);
zassert_true((dt - PERTHREAD_SLICE_TICKS) <= TICK_SLOP,
"slice expired >%d ticks late (dt=%d)", TICK_SLOP, dt);
last_cyc = now;
/* First time through, just let the slice expire and keep
* running. Second time, abort the thread and wake up the
* main test function.
*/
if (perthread_count++ != 0) {
k_thread_abort(thread);
perthread_running = false;
k_sem_give(&perthread_sem);
}
}
static void slice_perthread_fn(void *a, void *b, void *c)
{
ARG_UNUSED(a); ARG_UNUSED(b); ARG_UNUSED(c);
while (true) {
perthread_running = true;
k_busy_wait(10);
}
}
void test_slice_perthread(void)
{
if (!IS_ENABLED(CONFIG_TIMESLICE_PER_THREAD)) {
ztest_test_skip();
return;
}
/* Create the thread but don't start it */
k_thread_create(&t[0], tstacks[0], STACK_SIZE,
slice_perthread_fn, NULL, NULL, NULL,
1, 0, K_FOREVER);
k_thread_time_slice_set(&t[0], PERTHREAD_SLICE_TICKS, slice_expired, &t[0]);
/* Tick align, set up, then start */
k_usleep(1);
last_cyc = k_cycle_get_32();
k_thread_start(&t[0]);
k_sem_take(&perthread_sem, K_FOREVER);
zassert_false(perthread_running, "thread failed to suspend");
}
#else /* CONFIG_TIMESLICING */
void test_slice_scheduling(void)
{
ztest_test_skip();
}
void test_slice_perthread(void)
{
ztest_test_skip();
}
#endif /* CONFIG_TIMESLICING */