blob: 5ffb1f24ad97eca0e1a66ed10cb9a57625c93be8 [file] [log] [blame]
/* main.c - Application main entry point */
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define NET_LOG_LEVEL CONFIG_NET_TC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(net_test, NET_LOG_LEVEL);
#include <zephyr/types.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <errno.h>
#include <sys/printk.h>
#include <linker/sections.h>
#include <random/rand32.h>
#include <ztest.h>
#include <net/ethernet.h>
#include <net/dummy.h>
#include <net/buf.h>
#include <net/net_ip.h>
#include <net/net_l2.h>
#include <net/udp.h>
#include "ipv6.h"
#define NET_LOG_ENABLED 1
#include "net_private.h"
#if NET_LOG_LEVEL >= LOG_LEVEL_DBG
#define DBG(fmt, ...) printk(fmt, ##__VA_ARGS__)
#else
#define DBG(fmt, ...)
#endif
/* make this large enough so that we do not overflow the sent pkt array */
#define MAX_PKT_TO_SEND 4
#define MAX_PKT_TO_RECV 4
#define MAX_PRIORITIES 8
#define MAX_TC 8
static enum net_priority send_priorities[MAX_TC][MAX_PKT_TO_SEND];
static enum net_priority recv_priorities[MAX_TC][MAX_PKT_TO_RECV];
static enum net_priority tx_tc2prio[NET_TC_TX_COUNT];
static enum net_priority rx_tc2prio[NET_TC_RX_COUNT];
#define TEST_PORT 9999
static const char *test_data = "Test data to be sent";
/* Interface 1 addresses */
static struct in6_addr my_addr1 = { { { 0x20, 0x01, 0x0d, 0xb8, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Interface 2 addresses */
static struct in6_addr my_addr2 = { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Interface 3 addresses */
static struct in6_addr my_addr3 = { { { 0x20, 0x01, 0x0d, 0xb8, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Destination address for test packets */
static struct in6_addr dst_addr = { { { 0x20, 0x01, 0x0d, 0xb8, 9, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Extra address is assigned to ll_addr */
static struct in6_addr ll_addr = { { { 0xfe, 0x80, 0x43, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0xf2, 0xaa, 0x29, 0x02,
0x04 } } };
static struct sockaddr_in6 dst_addr6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(TEST_PORT),
};
static struct {
struct net_context *ctx;
} net_ctxs[NET_TC_COUNT];
static bool test_started;
static bool test_failed;
static bool start_receiving;
static bool recv_cb_called;
static struct k_sem wait_data;
#define WAIT_TIME K_SECONDS(1)
struct eth_context {
struct net_if *iface;
uint8_t mac_addr[6];
uint16_t expecting_tag;
};
static struct eth_context eth_context;
static void eth_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct eth_context *context = dev->data;
net_if_set_link_addr(iface, context->mac_addr,
sizeof(context->mac_addr),
NET_LINK_ETHERNET);
}
static bool check_higher_priority_pkt_sent(int tc, struct net_pkt *pkt)
{
/* If we have sent any higher priority packets, then
* this test fails as those packets should have been
* sent before this one.
*/
int j, k;
for (j = tc + 1; j < MAX_TC; j++) {
for (k = 0; k < MAX_PKT_TO_SEND; k++) {
if (send_priorities[j][k]) {
return true;
}
}
}
return false;
}
static bool check_higher_priority_pkt_recv(int tc, struct net_pkt *pkt)
{
/* If we have received any higher priority packets, then
* this test fails as those packets should have been
* received before this one.
*/
int j, k;
for (j = tc + 1; j < MAX_TC; j++) {
for (k = 0; k < MAX_PKT_TO_SEND; k++) {
if (recv_priorities[j][k]) {
return true;
}
}
}
return false;
}
/* The eth_tx() will handle both sent packets or and it will also
* simulate the receiving of the packets.
*/
static int eth_tx(const struct device *dev, struct net_pkt *pkt)
{
if (!pkt->buffer) {
DBG("No data to send!\n");
return -ENODATA;
}
if (start_receiving) {
struct in6_addr addr;
struct net_udp_hdr hdr, *udp_hdr;
uint16_t port;
DBG("Packet %p received\n", pkt);
/* Swap IP src and destination address so that we can receive
* the packet and the stack will not reject it.
*/
net_ipv6_addr_copy_raw((uint8_t *)&addr, NET_IPV6_HDR(pkt)->src);
net_ipv6_addr_copy_raw(NET_IPV6_HDR(pkt)->src,
NET_IPV6_HDR(pkt)->dst);
net_ipv6_addr_copy_raw(NET_IPV6_HDR(pkt)->dst, (uint8_t *)&addr);
udp_hdr = net_udp_get_hdr(pkt, &hdr);
zassert_not_null(udp_hdr, "UDP header missing");
port = udp_hdr->src_port;
udp_hdr->src_port = udp_hdr->dst_port;
udp_hdr->dst_port = port;
if (net_recv_data(net_pkt_iface(pkt),
net_pkt_clone(pkt, K_NO_WAIT)) < 0) {
test_failed = true;
zassert_true(false, "Packet %p receive failed\n", pkt);
}
return 0;
}
if (test_started) {
#if NET_LOG_LEVEL >= LOG_LEVEL_DBG
k_tid_t thread = k_current_get();
#endif
int i, prio, ret;
prio = net_pkt_priority(pkt);
for (i = 0; i < MAX_PKT_TO_SEND; i++) {
ret = check_higher_priority_pkt_sent(
net_tx_priority2tc(prio), pkt);
if (ret) {
DBG("Current thread priority %d "
"pkt %p prio %d tc %d\n",
k_thread_priority_get(thread),
pkt, prio, net_tx_priority2tc(prio));
test_failed = true;
zassert_false(test_failed,
"Invalid priority sent %d TC %d,"
" expecting %d (pkt %p)\n",
prio,
net_tx_priority2tc(prio),
send_priorities[net_tx_priority2tc(prio)][i],
pkt);
goto fail;
}
send_priorities[net_tx_priority2tc(prio)][i] = 0;
}
DBG("Received pkt %p from TC %c (thread prio %d)\n", pkt,
*(pkt->frags->data +
sizeof(struct net_ipv6_hdr) +
sizeof(struct net_udp_hdr)),
k_thread_priority_get(thread));
k_sem_give(&wait_data);
}
fail:
return 0;
}
static struct dummy_api api_funcs = {
.iface_api.init = eth_iface_init,
.send = eth_tx,
};
static void generate_mac(uint8_t *mac_addr)
{
/* 00-00-5E-00-53-xx Documentation RFC 7042 */
mac_addr[0] = 0x00;
mac_addr[1] = 0x00;
mac_addr[2] = 0x5E;
mac_addr[3] = 0x00;
mac_addr[4] = 0x53;
mac_addr[5] = sys_rand32_get();
}
static int eth_init(const struct device *dev)
{
struct eth_context *context = dev->data;
generate_mac(context->mac_addr);
return 0;
}
/* Create one ethernet interface that does not have VLAN support. This
* is quite unlikely that this would be done in real life but for testing
* purposes create it here.
*/
NET_DEVICE_INIT(eth_test, "eth_test", eth_init, NULL,
&eth_context, NULL, CONFIG_ETH_INIT_PRIORITY, &api_funcs,
DUMMY_L2, NET_L2_GET_CTX_TYPE(DUMMY_L2),
NET_ETH_MTU);
static void address_setup(void)
{
struct net_if_addr *ifaddr;
struct net_if *iface1;
iface1 = net_if_get_first_by_type(&NET_L2_GET_NAME(DUMMY));
zassert_not_null(iface1, "Interface 1");
ifaddr = net_if_ipv6_addr_add(iface1, &my_addr1,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&my_addr1));
zassert_not_null(ifaddr, "addr1");
}
/* For testing purposes we need to set the addresses preferred */
ifaddr->addr_state = NET_ADDR_PREFERRED;
ifaddr = net_if_ipv6_addr_add(iface1, &ll_addr,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&ll_addr));
zassert_not_null(ifaddr, "ll_addr");
}
ifaddr->addr_state = NET_ADDR_PREFERRED;
ifaddr = net_if_ipv6_addr_add(iface1, &my_addr2,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&my_addr2));
zassert_not_null(ifaddr, "addr2");
}
ifaddr->addr_state = NET_ADDR_PREFERRED;
ifaddr = net_if_ipv6_addr_add(iface1, &my_addr3,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&my_addr3));
zassert_not_null(ifaddr, "addr3");
}
net_if_up(iface1);
/* The interface might receive data which might fail the checks
* in the iface sending function, so we need to reset the failure
* flag.
*/
test_failed = false;
}
static void priority_setup(void)
{
int i;
for (i = 0; i < MAX_PRIORITIES; i++) {
tx_tc2prio[net_tx_priority2tc(i)] = i;
rx_tc2prio[net_rx_priority2tc(i)] = i;
}
}
#if defined(CONFIG_NET_IPV6_NBR_CACHE)
static bool add_neighbor(struct net_if *iface, struct in6_addr *addr)
{
struct net_linkaddr_storage llstorage;
struct net_linkaddr lladdr;
struct net_nbr *nbr;
llstorage.addr[0] = 0x01;
llstorage.addr[1] = 0x02;
llstorage.addr[2] = 0x33;
llstorage.addr[3] = 0x44;
llstorage.addr[4] = 0x05;
llstorage.addr[5] = 0x06;
lladdr.len = 6U;
lladdr.addr = llstorage.addr;
lladdr.type = NET_LINK_ETHERNET;
nbr = net_ipv6_nbr_add(iface, addr, &lladdr, false,
NET_IPV6_NBR_STATE_REACHABLE);
if (!nbr) {
DBG("Cannot add dst %s to neighbor cache\n",
net_sprint_ipv6_addr(addr));
return false;
}
return true;
}
#else
#define add_neighbor(iface, addr) true
#endif /* CONFIG_NET_IPV6_NBR_CACHE */
static void setup_net_context(struct net_context **ctx)
{
struct sockaddr_in6 src_addr6 = {
.sin6_family = AF_INET6,
.sin6_port = 0,
};
int ret;
struct net_if *iface1;
iface1 = net_if_get_first_by_type(&NET_L2_GET_NAME(DUMMY));
ret = net_context_get(AF_INET6, SOCK_DGRAM, IPPROTO_UDP, ctx);
zassert_equal(ret, 0, "Create IPv6 UDP context %p failed (%d)\n",
*ctx, ret);
memcpy(&src_addr6.sin6_addr, &my_addr1, sizeof(struct in6_addr));
memcpy(&dst_addr6.sin6_addr, &dst_addr, sizeof(struct in6_addr));
ret = add_neighbor(iface1, &dst_addr);
zassert_true(ret, "Cannot add neighbor");
ret = net_context_bind(*ctx, (struct sockaddr *)&src_addr6,
sizeof(struct sockaddr_in6));
zassert_equal(ret, 0,
"Context bind failure test failed (%d)\n", ret);
}
static void test_traffic_class_general_setup(void)
{
address_setup();
priority_setup();
}
static void traffic_class_setup(enum net_priority *tc2prio, int count)
{
uint8_t priority;
int i, ret;
for (i = 0; i < count; i++) {
setup_net_context(&net_ctxs[i].ctx);
priority = tc2prio[i];
ret = net_context_set_option(net_ctxs[i].ctx,
NET_OPT_PRIORITY,
&priority, sizeof(priority));
zassert_equal(ret, 0,
"Cannot set priority %d to ctx %p (%d)\n",
priority, net_ctxs[i].ctx, ret);
}
}
static void test_traffic_class_setup_tx(void)
{
traffic_class_setup(tx_tc2prio, NET_TC_TX_COUNT);
}
static void test_traffic_class_setup_rx(void)
{
traffic_class_setup(rx_tc2prio, NET_TC_RX_COUNT);
}
static void traffic_class_cleanup(int count)
{
int i;
for (i = 0; i < count; i++) {
if (net_ctxs[i].ctx) {
net_context_unref(net_ctxs[i].ctx);
net_ctxs[i].ctx = NULL;
}
}
}
static void test_traffic_class_cleanup_tx(void)
{
traffic_class_cleanup(NET_TC_TX_COUNT);
}
static void test_traffic_class_cleanup_rx(void)
{
traffic_class_cleanup(NET_TC_RX_COUNT);
}
static void traffic_class_send_packets_with_prio(enum net_priority prio,
int pkt_count)
{
/* Start to send data to each queue and verify that the data
* is received in correct order.
*/
uint8_t data[128];
int len, ret;
int tc = net_tx_priority2tc(prio);
/* Convert num to ascii */
data[0] = tc + 0x30;
len = strlen(test_data);
memcpy(data+1, test_data, strlen(test_data));
len += 1;
test_started = true;
DBG("Sending on TC %d priority %d\n", tc, prio);
send_priorities[net_tx_priority2tc(prio)][pkt_count - 1] = prio + 1;
ret = net_context_sendto(net_ctxs[tc].ctx, data, len,
(struct sockaddr *)&dst_addr6,
sizeof(struct sockaddr_in6),
NULL, K_NO_WAIT, NULL);
zassert_true(ret > 0, "Send UDP pkt failed");
}
static void traffic_class_send_priority(enum net_priority prio,
int num_packets,
bool wait_for_packets)
{
int i;
if (wait_for_packets) {
k_sem_init(&wait_data, MAX_PKT_TO_SEND, UINT_MAX);
}
for (i = 0; i < num_packets; i++) {
traffic_class_send_packets_with_prio(prio, i + 1);
}
if (wait_for_packets) {
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
/* This sleep is needed here so that the sending side
* can run properly.
*/
k_sleep(K_MSEC(1));
}
}
static void test_traffic_class_send_data_prio_bk(void)
{
/* Send number of packets with each priority and make sure
* they are sent properly.
*/
traffic_class_send_priority(NET_PRIORITY_BK, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_be(void)
{
traffic_class_send_priority(NET_PRIORITY_BE, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_ee(void)
{
traffic_class_send_priority(NET_PRIORITY_EE, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_ca(void)
{
traffic_class_send_priority(NET_PRIORITY_CA, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_vi(void)
{
traffic_class_send_priority(NET_PRIORITY_VI, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_vo(void)
{
traffic_class_send_priority(NET_PRIORITY_VO, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_ic(void)
{
traffic_class_send_priority(NET_PRIORITY_IC, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_prio_nc(void)
{
traffic_class_send_priority(NET_PRIORITY_NC, MAX_PKT_TO_SEND, true);
}
static void test_traffic_class_send_data_mix(void)
{
/* Start to send data to each queue and verify that the data
* is received in correct order.
*/
int total_packets = 0;
(void)memset(send_priorities, 0, sizeof(send_priorities));
traffic_class_send_priority(NET_PRIORITY_BK, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_BE, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
/* The semaphore is released as many times as we have sent packets */
k_sem_init(&wait_data, total_packets, UINT_MAX);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
zassert_false(test_failed, "Traffic class verification failed.");
}
static void test_traffic_class_send_data_mix_all_1(void)
{
int total_packets = 0;
(void)memset(send_priorities, 0, sizeof(send_priorities));
traffic_class_send_priority(NET_PRIORITY_BK, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_BE, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_EE, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_CA, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_VI, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_VO, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_IC, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
traffic_class_send_priority(NET_PRIORITY_NC, MAX_PKT_TO_SEND, false);
total_packets += MAX_PKT_TO_SEND;
/* The semaphore is released as many times as we have sent packets */
k_sem_init(&wait_data, total_packets, UINT_MAX);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
zassert_false(test_failed, "Traffic class verification failed.");
}
static void test_traffic_class_send_data_mix_all_2(void)
{
/* Start to send data to each queue and verify that the data
* is received in correct order.
*/
int total_packets = 0;
int i;
(void)memset(send_priorities, 0, sizeof(send_priorities));
/* In this test send one packet for each queue instead of sending
* n packets to same queue at a time.
*/
for (i = 0; i < MAX_PKT_TO_SEND; i++) {
traffic_class_send_priority(NET_PRIORITY_BK, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_BE, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_EE, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_CA, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_VI, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_VO, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_IC, 1, false);
total_packets += 1;
traffic_class_send_priority(NET_PRIORITY_NC, 1, false);
total_packets += 1;
}
/* The semaphore is released as many times as we have sent packets */
k_sem_init(&wait_data, total_packets, UINT_MAX);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
zassert_false(test_failed, "Traffic class verification failed.");
}
static void recv_cb(struct net_context *context,
struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status,
void *user_data)
{
#if NET_LOG_LEVEL >= LOG_LEVEL_DBG
k_tid_t thread = k_current_get();
#endif
int i, prio, ret;
DBG("Data received in priority %d\n", k_thread_priority_get(thread));
prio = net_pkt_priority(pkt);
for (i = 0; i < MAX_PKT_TO_RECV; i++) {
ret = check_higher_priority_pkt_recv(net_rx_priority2tc(prio),
pkt);
if (ret) {
DBG("Current thread priority %d "
"pkt %p prio %d tc %d\n",
k_thread_priority_get(thread),
pkt, prio, net_rx_priority2tc(prio));
test_failed = true;
zassert_false(test_failed,
"Invalid priority received %d TC %d,"
" expecting %d (pkt %p)\n",
prio,
net_rx_priority2tc(prio),
recv_priorities[net_rx_priority2tc(prio)][i],
pkt);
goto fail;
}
recv_priorities[net_rx_priority2tc(prio)][i] = 0;
}
fail:
recv_cb_called = true;
k_sem_give(&wait_data);
net_pkt_unref(pkt);
}
static void test_traffic_class_setup_recv(void)
{
int ret, i;
recv_cb_called = false;
for (i = 0; i < NET_TC_RX_COUNT; i++) {
ret = net_context_recv(net_ctxs[i].ctx, recv_cb,
K_NO_WAIT, NULL);
zassert_equal(ret, 0,
"[%d] Context recv UDP setup failed (%d)\n",
i, ret);
}
}
static void traffic_class_recv_packets_with_prio(enum net_priority prio,
int pkt_count)
{
/* Start to receive data to each queue and verify that the data
* is received in correct order.
*/
uint8_t data[128];
int len, ret;
int tc = net_rx_priority2tc(prio);
const struct in6_addr *src_addr;
struct net_if_addr *ifaddr;
struct net_if *iface = NULL;
/* Convert num to ascii */
data[0] = tc + 0x30;
len = strlen(test_data);
memcpy(data+1, test_data, strlen(test_data));
len += 1;
test_started = true;
start_receiving = true;
DBG("Receiving on TC %d priority %d\n", tc, prio);
recv_priorities[net_rx_priority2tc(prio)][pkt_count - 1] = prio + 1;
src_addr = net_if_ipv6_select_src_addr(NULL, &dst_addr);
zassert_not_null(src_addr, "Cannot select source address");
ifaddr = net_if_ipv6_addr_lookup(src_addr, &iface);
zassert_not_null(ifaddr, "Cannot find source address");
zassert_not_null(iface, "Interface not found");
/* We cannot use net_recv_data() here as the packet does not have
* UDP header.
*/
ret = net_context_sendto(net_ctxs[tc].ctx, data, len,
(struct sockaddr *)&dst_addr6,
sizeof(struct sockaddr_in6),
NULL, K_NO_WAIT, NULL);
zassert_true(ret > 0, "Send UDP pkt failed");
/* Let the receiver to receive the packets */
k_sleep(K_MSEC(1));
}
static void traffic_class_recv_priority(enum net_priority prio,
int num_packets,
bool wait_for_packets)
{
int i;
if (wait_for_packets) {
k_sem_init(&wait_data, MAX_PKT_TO_RECV, UINT_MAX);
}
for (i = 0; i < num_packets; i++) {
traffic_class_recv_packets_with_prio(prio, i + 1);
}
if (wait_for_packets) {
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
/* This sleep is needed here so that the receiving side
* can run properly.
*/
k_sleep(K_MSEC(1));
}
}
static void test_traffic_class_recv_data_prio_bk(void)
{
/* Receive number of packets with each priority and make sure
* they are received properly.
*/
traffic_class_recv_priority(NET_PRIORITY_BK, MAX_PKT_TO_RECV, true);
zassert_false(test_failed, "Traffic class verification failed.");
}
static void test_traffic_class_recv_data_prio_be(void)
{
traffic_class_recv_priority(NET_PRIORITY_BE, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_prio_ee(void)
{
traffic_class_recv_priority(NET_PRIORITY_EE, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_prio_ca(void)
{
traffic_class_recv_priority(NET_PRIORITY_CA, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_prio_vi(void)
{
traffic_class_recv_priority(NET_PRIORITY_VI, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_prio_vo(void)
{
traffic_class_recv_priority(NET_PRIORITY_VO, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_prio_ic(void)
{
traffic_class_recv_priority(NET_PRIORITY_IC, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_prio_nc(void)
{
traffic_class_recv_priority(NET_PRIORITY_NC, MAX_PKT_TO_RECV, true);
}
static void test_traffic_class_recv_data_mix(void)
{
/* Start to receive data to each queue and verify that the data
* is received in correct order.
*/
int total_packets = 0;
(void)memset(recv_priorities, 0, sizeof(recv_priorities));
traffic_class_recv_priority(NET_PRIORITY_BK, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_BE, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
/* The semaphore is released as many times as we have sent packets */
k_sem_init(&wait_data, total_packets, UINT_MAX);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
zassert_false(test_failed, "Traffic class verification failed.");
}
static void test_traffic_class_recv_data_mix_all_1(void)
{
int total_packets = 0;
(void)memset(recv_priorities, 0, sizeof(recv_priorities));
traffic_class_recv_priority(NET_PRIORITY_BK, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_BE, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_EE, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_CA, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_VI, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_VO, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_IC, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
traffic_class_recv_priority(NET_PRIORITY_NC, MAX_PKT_TO_RECV, false);
total_packets += MAX_PKT_TO_RECV;
/* The semaphore is released as many times as we have sent packets */
k_sem_init(&wait_data, total_packets, UINT_MAX);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
zassert_false(test_failed, "Traffic class verification failed.");
}
static void test_traffic_class_recv_data_mix_all_2(void)
{
/* Start to receive data to each queue and verify that the data
* is received in correct order.
*/
int total_packets = 0;
int i;
(void)memset(recv_priorities, 0, sizeof(recv_priorities));
/* In this test receive one packet for each queue instead of receiving
* n packets to same queue at a time.
*/
for (i = 0; i < MAX_PKT_TO_RECV; i++) {
traffic_class_recv_priority(NET_PRIORITY_BK, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_BE, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_EE, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_CA, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_VI, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_VO, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_IC, 1, false);
total_packets += 1;
traffic_class_recv_priority(NET_PRIORITY_NC, 1, false);
total_packets += 1;
}
/* The semaphore is released as many times as we have sent packets */
k_sem_init(&wait_data, total_packets, UINT_MAX);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting ok status\n");
zassert_false(true, "Timeout");
}
zassert_false(test_failed, "Traffic class verification failed.");
}
void test_main(void)
{
ztest_test_suite(net_traffic_class_test,
ztest_unit_test(test_traffic_class_general_setup),
ztest_unit_test(test_traffic_class_setup_tx),
/* Send only same priority packets and verify that
* all are sent with proper traffic class.
*/
ztest_unit_test(test_traffic_class_send_data_prio_bk),
ztest_unit_test(test_traffic_class_send_data_prio_be),
ztest_unit_test(test_traffic_class_send_data_prio_ee),
ztest_unit_test(test_traffic_class_send_data_prio_ca),
ztest_unit_test(test_traffic_class_send_data_prio_vi),
ztest_unit_test(test_traffic_class_send_data_prio_vo),
ztest_unit_test(test_traffic_class_send_data_prio_ic),
ztest_unit_test(test_traffic_class_send_data_prio_nc),
/* Then mix traffic classes and verify that higher
* class packets are sent first.
*/
ztest_unit_test(test_traffic_class_send_data_mix),
ztest_unit_test(test_traffic_class_send_data_mix_all_1),
ztest_unit_test(test_traffic_class_send_data_mix_all_2),
ztest_unit_test(test_traffic_class_cleanup_tx),
/* Same tests for received packets */
ztest_unit_test(test_traffic_class_setup_rx),
ztest_unit_test(test_traffic_class_setup_recv),
ztest_unit_test(test_traffic_class_recv_data_prio_bk),
ztest_unit_test(test_traffic_class_recv_data_prio_be),
ztest_unit_test(test_traffic_class_recv_data_prio_ee),
ztest_unit_test(test_traffic_class_recv_data_prio_ca),
ztest_unit_test(test_traffic_class_recv_data_prio_vi),
ztest_unit_test(test_traffic_class_recv_data_prio_vo),
ztest_unit_test(test_traffic_class_recv_data_prio_ic),
ztest_unit_test(test_traffic_class_recv_data_prio_nc),
ztest_unit_test(test_traffic_class_recv_data_mix),
ztest_unit_test(test_traffic_class_recv_data_mix_all_1),
ztest_unit_test(test_traffic_class_recv_data_mix_all_2),
ztest_unit_test(test_traffic_class_cleanup_rx)
);
ztest_run_test_suite(net_traffic_class_test);
}