blob: 9cf7beddeb81801b7217d6ee0d30278b370313d3 [file] [log] [blame]
/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel thread support
*
* This module provides general purpose thread support.
*/
#include <kernel.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <spinlock.h>
#include <kernel_structs.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <ksched.h>
#include <wait_q.h>
#include <atomic.h>
#include <syscall_handler.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <init.h>
#include <tracing.h>
#include <stdbool.h>
extern struct _static_thread_data _static_thread_data_list_start[];
extern struct _static_thread_data _static_thread_data_list_end[];
static struct k_spinlock lock;
#define _FOREACH_STATIC_THREAD(thread_data) \
for (struct _static_thread_data *thread_data = \
_static_thread_data_list_start; \
thread_data < _static_thread_data_list_end; \
thread_data++)
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
{
#if defined(CONFIG_THREAD_MONITOR)
struct k_thread *thread;
k_spinlock_key_t key;
__ASSERT(user_cb != NULL, "user_cb can not be NULL");
/*
* Lock is needed to make sure that the _kernel.threads is not being
* modified by the user_cb either directly or indirectly.
* The indirect ways are through calling k_thread_create and
* k_thread_abort from user_cb.
*/
key = k_spin_lock(&lock);
for (thread = _kernel.threads; thread; thread = thread->next_thread) {
user_cb(thread, user_data);
}
k_spin_unlock(&lock, key);
#endif
}
bool k_is_in_isr(void)
{
return z_is_in_isr();
}
/*
* This function tags the current thread as essential to system operation.
* Exceptions raised by this thread will be treated as a fatal system error.
*/
void z_thread_essential_set(void)
{
_current->base.user_options |= K_ESSENTIAL;
}
/*
* This function tags the current thread as not essential to system operation.
* Exceptions raised by this thread may be recoverable.
* (This is the default tag for a thread.)
*/
void z_thread_essential_clear(void)
{
_current->base.user_options &= ~K_ESSENTIAL;
}
/*
* This routine indicates if the current thread is an essential system thread.
*
* Returns true if current thread is essential, false if it is not.
*/
bool z_is_thread_essential(void)
{
return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL;
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
void z_impl_k_busy_wait(u32_t usec_to_wait)
{
#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
/* use 64-bit math to prevent overflow when multiplying */
u32_t cycles_to_wait = (u32_t)(
(u64_t)usec_to_wait *
(u64_t)sys_clock_hw_cycles_per_sec() /
(u64_t)USEC_PER_SEC
);
u32_t start_cycles = k_cycle_get_32();
for (;;) {
u32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
#else
z_arch_busy_wait(usec_to_wait);
#endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_busy_wait, usec_to_wait)
{
z_impl_k_busy_wait(usec_to_wait);
return 0;
}
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_SYS_CLOCK_EXISTS */
#ifdef CONFIG_THREAD_CUSTOM_DATA
void z_impl_k_thread_custom_data_set(void *value)
{
_current->custom_data = value;
}
void *z_impl_k_thread_custom_data_get(void)
{
return _current->custom_data;
}
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#if defined(CONFIG_THREAD_MONITOR)
/*
* Remove a thread from the kernel's list of active threads.
*/
void z_thread_monitor_exit(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&lock);
if (thread == _kernel.threads) {
_kernel.threads = _kernel.threads->next_thread;
} else {
struct k_thread *prev_thread;
prev_thread = _kernel.threads;
while ((prev_thread != NULL) &&
(thread != prev_thread->next_thread)) {
prev_thread = prev_thread->next_thread;
}
if (prev_thread != NULL) {
prev_thread->next_thread = thread->next_thread;
}
}
k_spin_unlock(&lock, key);
}
#endif
#ifdef CONFIG_THREAD_NAME
void z_impl_k_thread_name_set(struct k_thread *thread, const char *value)
{
if (thread == NULL) {
_current->name = value;
} else {
thread->name = value;
}
}
const char *z_impl_k_thread_name_get(struct k_thread *thread)
{
return (const char *)thread->name;
}
#else
void z_impl_k_thread_name_set(k_tid_t thread_id, const char *value)
{
ARG_UNUSED(thread_id);
ARG_UNUSED(value);
}
const char *z_impl_k_thread_name_get(k_tid_t thread_id)
{
ARG_UNUSED(thread_id);
return NULL;
}
#endif /* CONFIG_THREAD_NAME */
#ifdef CONFIG_USERSPACE
#if defined(CONFIG_THREAD_NAME)
Z_SYSCALL_HANDLER(k_thread_name_set, thread, data)
{
char *name_copy = NULL;
name_copy = z_user_string_alloc_copy((char *)data, 64);
z_impl_k_thread_name_set((struct k_thread *)thread, name_copy);
return 0;
}
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_name_get, K_OBJ_THREAD, k_tid_t);
#endif
#ifdef CONFIG_THREAD_CUSTOM_DATA
Z_SYSCALL_HANDLER(k_thread_custom_data_set, data)
{
z_impl_k_thread_custom_data_set((void *)data);
return 0;
}
Z_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get);
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#endif
#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
*
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
* the thread's stack when the thread is initialized. This value gets checked
* in a few places:
*
* 1) In k_yield() if the current thread is not swapped out
* 2) After servicing a non-nested interrupt
* 3) In z_swap(), check the sentinel in the outgoing thread
*
* Item 2 requires support in arch/ code.
*
* If the check fails, the thread will be terminated appropriately through
* the system fatal error handler.
*/
void z_check_stack_sentinel(void)
{
u32_t *stack;
if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
return;
}
stack = (u32_t *)_current->stack_info.start;
if (*stack != STACK_SENTINEL) {
/* Restore it so further checks don't trigger this same error */
*stack = STACK_SENTINEL;
z_except_reason(_NANO_ERR_STACK_CHK_FAIL);
}
}
#endif
#ifdef CONFIG_MULTITHREADING
void z_impl_k_thread_start(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&lock); /* protect kernel queues */
if (z_has_thread_started(thread)) {
k_spin_unlock(&lock, key);
return;
}
z_mark_thread_as_started(thread);
z_ready_thread(thread);
z_reschedule(&lock, key);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *);
#endif
#endif
#ifdef CONFIG_MULTITHREADING
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (delay == 0) {
k_thread_start(thread);
} else {
s32_t ticks = _TICK_ALIGN + z_ms_to_ticks(delay);
z_add_thread_timeout(thread, ticks);
}
#else
ARG_UNUSED(delay);
k_thread_start(thread);
#endif
}
#endif
#if !CONFIG_STACK_POINTER_RANDOM
static inline size_t adjust_stack_size(size_t stack_size)
{
return stack_size;
}
#else
int z_stack_adjust_initialized;
static inline size_t adjust_stack_size(size_t stack_size)
{
size_t random_val;
if (!z_stack_adjust_initialized) {
random_val = z_early_boot_rand32_get();
} else {
random_val = sys_rand32_get();
}
/* Don't need to worry about alignment of the size here, z_new_thread()
* is required to do it
*
* FIXME: Not the best way to get a random number in a range.
* See #6493
*/
const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
if (unlikely(fuzz * 2 > stack_size)) {
return stack_size;
}
return stack_size - fuzz;
}
#if defined(CONFIG_STACK_GROWS_UP)
/* This is so rare not bothering for now */
#error "Stack pointer randomization not implemented for upward growing stacks"
#endif /* CONFIG_STACK_GROWS_UP */
#endif /* CONFIG_STACK_POINTER_RANDOM */
/*
* Note:
* The caller must guarantee that the stack_size passed here corresponds
* to the amount of stack memory available for the thread.
*/
void z_setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, u32_t options, const char *name)
{
stack_size = adjust_stack_size(stack_size);
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
#ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP
/* reserve space on top of stack for local data */
stack_size = STACK_ROUND_DOWN(stack_size
- sizeof(*new_thread->userspace_local_data));
#endif
#endif
z_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options);
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
#ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP
/* don't set again if the arch's own code in z_new_thread() has
* already set the pointer.
*/
new_thread->userspace_local_data =
(struct _thread_userspace_local_data *)
(K_THREAD_STACK_BUFFER(stack) + stack_size);
#endif
#endif
#ifdef CONFIG_THREAD_MONITOR
new_thread->entry.pEntry = entry;
new_thread->entry.parameter1 = p1;
new_thread->entry.parameter2 = p2;
new_thread->entry.parameter3 = p3;
k_spinlock_key_t key = k_spin_lock(&lock);
new_thread->next_thread = _kernel.threads;
_kernel.threads = new_thread;
k_spin_unlock(&lock, key);
#endif
#ifdef CONFIG_THREAD_NAME
new_thread->name = name;
#endif
#ifdef CONFIG_USERSPACE
z_object_init(new_thread);
z_object_init(stack);
new_thread->stack_obj = stack;
/* Any given thread has access to itself */
k_object_access_grant(new_thread, new_thread);
#endif
#ifdef CONFIG_SCHED_CPU_MASK
new_thread->base.cpu_mask = -1;
#endif
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
/* _current may be null if the dummy thread is not used */
if (!_current) {
new_thread->resource_pool = NULL;
return;
}
#endif
#ifdef CONFIG_USERSPACE
/* New threads inherit any memory domain membership by the parent */
if (_current->mem_domain_info.mem_domain != NULL) {
k_mem_domain_add_thread(_current->mem_domain_info.mem_domain,
new_thread);
}
if ((options & K_INHERIT_PERMS) != 0) {
z_thread_perms_inherit(_current, new_thread);
}
#endif
#ifdef CONFIG_SCHED_DEADLINE
new_thread->base.prio_deadline = 0;
#endif
new_thread->resource_pool = _current->resource_pool;
sys_trace_thread_create(new_thread);
}
#ifdef CONFIG_MULTITHREADING
k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, u32_t options, s32_t delay)
{
__ASSERT(!z_is_in_isr(), "Threads may not be created in ISRs");
z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options, NULL);
if (delay != K_FOREVER) {
schedule_new_thread(new_thread, delay);
}
return new_thread;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_create,
new_thread_p, stack_p, stack_size, entry, p1, more_args)
{
int prio;
u32_t options, delay;
u32_t total_size;
struct _k_object *stack_object;
struct k_thread *new_thread = (struct k_thread *)new_thread_p;
volatile struct _syscall_10_args *margs =
(volatile struct _syscall_10_args *)more_args;
k_thread_stack_t *stack = (k_thread_stack_t *)stack_p;
/* The thread and stack objects *must* be in an uninitialized state */
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
stack_object = z_object_find(stack);
Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack,
K_OBJ__THREAD_STACK_ELEMENT,
_OBJ_INIT_FALSE) == 0,
"bad stack object"));
/* Verify that the stack size passed in is OK by computing the total
* size and comparing it with the size value in the object metadata
*/
Z_OOPS(Z_SYSCALL_VERIFY_MSG(!__builtin_uadd_overflow(K_THREAD_STACK_RESERVED,
stack_size,
&total_size),
"stack size overflow (%u+%u)", stack_size,
K_THREAD_STACK_RESERVED));
/* Testing less-than-or-equal since additional room may have been
* allocated for alignment constraints
*/
Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_object->data,
"stack size %u is too big, max is %u",
total_size, stack_object->data));
/* Verify the struct containing args 6-10 */
Z_OOPS(Z_SYSCALL_MEMORY_READ(margs, sizeof(*margs)));
/* Stash struct arguments in local variables to prevent switcheroo
* attacks
*/
prio = margs->arg8;
options = margs->arg9;
delay = margs->arg10;
compiler_barrier();
/* User threads may only create other user threads and they can't
* be marked as essential
*/
Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER));
Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
/* Check validity of prio argument; must be the same or worse priority
* than the caller
*/
Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
_current->base.prio)));
z_setup_new_thread((struct k_thread *)new_thread, stack, stack_size,
(k_thread_entry_t)entry, (void *)p1,
(void *)margs->arg6, (void *)margs->arg7, prio,
options, NULL);
if (delay != K_FOREVER) {
schedule_new_thread(new_thread, delay);
}
return new_thread_p;
}
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_MULTITHREADING */
void z_thread_single_suspend(struct k_thread *thread)
{
if (z_is_thread_ready(thread)) {
z_remove_thread_from_ready_q(thread);
}
z_mark_thread_as_suspended(thread);
}
void z_impl_k_thread_suspend(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&lock);
z_thread_single_suspend(thread);
sys_trace_thread_suspend(thread);
if (thread == _current) {
z_reschedule(&lock, key);
} else {
k_spin_unlock(&lock, key);
}
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t);
#endif
void z_thread_single_resume(struct k_thread *thread)
{
z_mark_thread_as_not_suspended(thread);
z_ready_thread(thread);
}
void z_impl_k_thread_resume(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&lock);
z_thread_single_resume(thread);
sys_trace_thread_resume(thread);
z_reschedule(&lock, key);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t);
#endif
void z_thread_single_abort(struct k_thread *thread)
{
if (thread->fn_abort != NULL) {
thread->fn_abort();
}
if (IS_ENABLED(CONFIG_SMP)) {
z_sched_abort(thread);
}
if (z_is_thread_ready(thread)) {
z_remove_thread_from_ready_q(thread);
} else {
if (z_is_thread_pending(thread)) {
z_unpend_thread_no_timeout(thread);
}
if (z_is_thread_timeout_active(thread)) {
(void)z_abort_thread_timeout(thread);
}
}
thread->base.thread_state |= _THREAD_DEAD;
sys_trace_thread_abort(thread);
#ifdef CONFIG_USERSPACE
/* Clear initialized state so that this thread object may be re-used
* and triggers errors if API calls are made on it from user threads
*/
z_object_uninit(thread->stack_obj);
z_object_uninit(thread);
/* Revoke permissions on thread's ID so that it may be recycled */
z_thread_perms_all_clear(thread);
#endif
}
#ifdef CONFIG_MULTITHREADING
#ifdef CONFIG_USERSPACE
extern char __object_access_start[];
extern char __object_access_end[];
static void grant_static_access(void)
{
struct _k_object_assignment *pos;
for (pos = (struct _k_object_assignment *)__object_access_start;
pos < (struct _k_object_assignment *)__object_access_end;
pos++) {
for (int i = 0; pos->objects[i] != NULL; i++) {
k_object_access_grant(pos->objects[i],
pos->thread);
}
}
}
#endif /* CONFIG_USERSPACE */
void z_init_static_threads(void)
{
_FOREACH_STATIC_THREAD(thread_data) {
z_setup_new_thread(
thread_data->init_thread,
thread_data->init_stack,
thread_data->init_stack_size,
thread_data->init_entry,
thread_data->init_p1,
thread_data->init_p2,
thread_data->init_p3,
thread_data->init_prio,
thread_data->init_options,
thread_data->init_name);
thread_data->init_thread->init_data = thread_data;
}
#ifdef CONFIG_USERSPACE
grant_static_access();
#endif
/*
* Non-legacy static threads may be started immediately or
* after a previously specified delay. Even though the
* scheduler is locked, ticks can still be delivered and
* processed. Take a sched lock to prevent them from running
* until they are all started.
*
* Note that static threads defined using the legacy API have a
* delay of K_FOREVER.
*/
k_sched_lock();
_FOREACH_STATIC_THREAD(thread_data) {
if (thread_data->init_delay != K_FOREVER) {
schedule_new_thread(thread_data->init_thread,
thread_data->init_delay);
}
}
k_sched_unlock();
}
#endif
void z_init_thread_base(struct _thread_base *thread_base, int priority,
u32_t initial_state, unsigned int options)
{
/* k_q_node is initialized upon first insertion in a list */
thread_base->user_options = (u8_t)options;
thread_base->thread_state = (u8_t)initial_state;
thread_base->prio = priority;
thread_base->sched_locked = 0;
/* swap_data does not need to be initialized */
z_init_thread_timeout(thread_base);
}
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
_current->base.user_options |= K_USER;
z_thread_essential_clear();
#ifdef CONFIG_THREAD_MONITOR
_current->entry.pEntry = entry;
_current->entry.parameter1 = p1;
_current->entry.parameter2 = p2;
_current->entry.parameter3 = p3;
#endif
#ifdef CONFIG_USERSPACE
z_arch_user_mode_enter(entry, p1, p2, p3);
#else
/* XXX In this case we do not reset the stack */
z_thread_entry(entry, p1, p2, p3);
#endif
}
/* These spinlock assertion predicates are defined here because having
* them in spinlock.h is a giant header ordering headache.
*/
#ifdef SPIN_VALIDATE
int z_spin_lock_valid(struct k_spinlock *l)
{
if (l->thread_cpu) {
if ((l->thread_cpu & 3) == _current_cpu->id) {
return 0;
}
}
return 1;
}
int z_spin_unlock_valid(struct k_spinlock *l)
{
if (l->thread_cpu != (_current_cpu->id | (u32_t)_current)) {
return 0;
}
l->thread_cpu = 0;
return 1;
}
void z_spin_lock_set_owner(struct k_spinlock *l)
{
l->thread_cpu = _current_cpu->id | (u32_t)_current;
}
#endif