blob: b9e1c4504474e426ae3ace2bc26c2d58811ad655 [file] [log] [blame]
/* hci_spi_st.c - STMicroelectronics HCI SPI Bluetooth driver */
/*
* Copyright (c) 2017 Linaro Ltd.
* Copyright (c) 2024 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#if defined(CONFIG_DT_HAS_ST_HCI_SPI_V1_ENABLED)
#define DT_DRV_COMPAT st_hci_spi_v1
#elif defined(CONFIG_DT_HAS_ST_HCI_SPI_V2_ENABLED)
#define DT_DRV_COMPAT st_hci_spi_v2
#endif /* CONFIG_DT_HAS_ST_HCI_SPI_V1_ENABLED */
#include <zephyr/drivers/gpio.h>
#include <zephyr/init.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/util.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>
#include <zephyr/bluetooth/hci_raw.h>
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_driver);
#define HCI_CMD 0x01
#define HCI_ACL 0x02
#define HCI_SCO 0x03
#define HCI_EVT 0x04
/* ST Proprietary extended event */
#define HCI_EXT_EVT 0x82
/* Special Values */
#define SPI_WRITE 0x0A
#define SPI_READ 0x0B
#define READY_NOW 0x02
#define EVT_BLUE_INITIALIZED 0x01
/* Offsets */
#define STATUS_HEADER_READY 0
#define STATUS_HEADER_TOREAD 3
#define STATUS_HEADER_TOWRITE 1
#define PACKET_TYPE 0
#define EVT_HEADER_TYPE 0
#define EVT_HEADER_EVENT 1
#define EVT_HEADER_SIZE 2
#define EVT_LE_META_SUBEVENT 3
#define EVT_VENDOR_CODE_LSB 3
#define EVT_VENDOR_CODE_MSB 4
#define CMD_OGF 1
#define CMD_OCF 2
/* packet type (1) + opcode (2) + Parameter Total Length (1) + max parameter length (255) */
#define SPI_MAX_MSG_LEN 259
/* Single byte header denoting the buffer type */
#define H4_HDR_SIZE 1
/* Maximum L2CAP MTU that can fit in a single packet */
#define MAX_MTU (SPI_MAX_MSG_LEN - H4_HDR_SIZE - BT_L2CAP_HDR_SIZE - BT_HCI_ACL_HDR_SIZE)
#if CONFIG_BT_L2CAP_TX_MTU > MAX_MTU
#warning CONFIG_BT_L2CAP_TX_MTU is too large and can result in packets that cannot \
be transmitted across this HCI link
#endif /* CONFIG_BT_L2CAP_TX_MTU > MAX_MTU */
static uint8_t __noinit rxmsg[SPI_MAX_MSG_LEN];
static uint8_t __noinit txmsg[SPI_MAX_MSG_LEN];
static const struct gpio_dt_spec irq_gpio = GPIO_DT_SPEC_INST_GET(0, irq_gpios);
static const struct gpio_dt_spec rst_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios);
static struct gpio_callback gpio_cb;
static K_SEM_DEFINE(sem_initialised, 0, 1);
static K_SEM_DEFINE(sem_request, 0, 1);
static K_SEM_DEFINE(sem_busy, 1, 1);
static K_KERNEL_STACK_DEFINE(spi_rx_stack, CONFIG_BT_DRV_RX_STACK_SIZE);
static struct k_thread spi_rx_thread_data;
#define BLUENRG_ACI_WRITE_CONFIG_DATA BT_OP(BT_OGF_VS, 0x000C)
#define BLUENRG_CONFIG_PUBADDR_OFFSET 0x00
#define BLUENRG_CONFIG_PUBADDR_LEN 0x06
#define BLUENRG_CONFIG_LL_ONLY_OFFSET 0x2C
#define BLUENRG_CONFIG_LL_ONLY_LEN 0x01
static int bt_spi_send_aci_config(uint8_t offset, const uint8_t *value, size_t value_len);
static const struct spi_dt_spec bus = SPI_DT_SPEC_INST_GET(
0, SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | SPI_WORD_SET(8) | SPI_LOCK_ON, 0);
static struct spi_buf spi_tx_buf;
static struct spi_buf spi_rx_buf;
static const struct spi_buf_set spi_tx = {
.buffers = &spi_tx_buf,
.count = 1
};
static const struct spi_buf_set spi_rx = {
.buffers = &spi_rx_buf,
.count = 1
};
struct bt_hci_ext_evt_hdr {
uint8_t evt;
uint16_t len;
} __packed;
static inline int bt_spi_transceive(void *tx, uint32_t tx_len,
void *rx, uint32_t rx_len)
{
spi_tx_buf.buf = tx;
spi_tx_buf.len = (size_t)tx_len;
spi_rx_buf.buf = rx;
spi_rx_buf.len = (size_t)rx_len;
return spi_transceive_dt(&bus, &spi_tx, &spi_rx);
}
static inline uint16_t bt_spi_get_cmd(uint8_t *msg)
{
return (msg[CMD_OCF] << 8) | msg[CMD_OGF];
}
static inline uint16_t bt_spi_get_evt(uint8_t *msg)
{
return (msg[EVT_VENDOR_CODE_MSB] << 8) | msg[EVT_VENDOR_CODE_LSB];
}
static void bt_spi_isr(const struct device *unused1,
struct gpio_callback *unused2,
uint32_t unused3)
{
LOG_DBG("");
k_sem_give(&sem_request);
}
static bool bt_spi_handle_vendor_evt(uint8_t *msg)
{
bool handled = false;
switch (bt_spi_get_evt(msg)) {
case EVT_BLUE_INITIALIZED: {
k_sem_give(&sem_initialised);
#if defined(CONFIG_BT_BLUENRG_ACI)
handled = true;
#endif
}
default:
break;
}
return handled;
}
#define IS_IRQ_HIGH gpio_pin_get_dt(&irq_gpio)
#if DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v1)
/* Define a limit when reading IRQ high */
#define IRQ_HIGH_MAX_READ 15
/* On BlueNRG-MS, host is expected to read */
/* as long as IRQ pin is high */
#define READ_CONDITION IS_IRQ_HIGH
static void release_cs(bool data_transaction)
{
ARG_UNUSED(data_transaction);
spi_release_dt(&bus);
}
static int bt_spi_get_header(uint8_t op, uint16_t *size)
{
uint8_t header_master[5] = {op, 0, 0, 0, 0};
uint8_t header_slave[5];
uint8_t size_offset, attempts;
int ret;
if (op == SPI_READ) {
if (!IS_IRQ_HIGH) {
*size = 0;
return 0;
}
size_offset = STATUS_HEADER_TOREAD;
} else if (op == SPI_WRITE) {
size_offset = STATUS_HEADER_TOWRITE;
} else {
return -EINVAL;
}
attempts = IRQ_HIGH_MAX_READ;
do {
if (op == SPI_READ) {
/* Keep checking that IRQ is still high, if we need to read */
if (!IS_IRQ_HIGH) {
*size = 0;
return 0;
}
}
/* Make sure CS is raised before a new attempt */
gpio_pin_set_dt(&bus.config.cs.gpio, 0);
ret = bt_spi_transceive(header_master, 5, header_slave, 5);
if (ret) {
/* SPI transaction failed */
break;
}
*size = (header_slave[STATUS_HEADER_READY] == READY_NOW) ?
header_slave[size_offset] : 0;
attempts--;
} while ((*size == 0) && attempts);
return ret;
}
#elif DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v2)
#define READ_CONDITION false
static void release_cs(bool data_transaction)
{
/* Consume possible event signals */
while (k_sem_take(&sem_request, K_NO_WAIT) == 0) {
}
if (data_transaction) {
/* Wait for IRQ to become low only when data phase has been performed */
while (IS_IRQ_HIGH) {
}
}
gpio_pin_interrupt_configure_dt(&irq_gpio, GPIO_INT_EDGE_TO_ACTIVE);
spi_release_dt(&bus);
}
static int bt_spi_get_header(uint8_t op, uint16_t *size)
{
uint8_t header_master[5] = {op, 0, 0, 0, 0};
uint8_t header_slave[5];
uint16_t cs_delay;
uint8_t size_offset;
int ret;
if (op == SPI_READ) {
if (!IS_IRQ_HIGH) {
*size = 0;
return 0;
}
cs_delay = 0;
size_offset = STATUS_HEADER_TOREAD;
} else if (op == SPI_WRITE) {
/* To make sure we have a minimum delay from previous release cs */
cs_delay = 100;
size_offset = STATUS_HEADER_TOWRITE;
} else {
return -EINVAL;
}
if (cs_delay) {
k_sleep(K_USEC(cs_delay));
}
/* Perform a zero byte SPI transaction to acquire the SPI lock and lower CS
* while waiting for IRQ to be raised
*/
bt_spi_transceive(header_master, 0, header_slave, 0);
gpio_pin_interrupt_configure_dt(&irq_gpio, GPIO_INT_DISABLE);
/* Wait up to a maximum time of 100 ms */
if (!WAIT_FOR(IS_IRQ_HIGH, 100000, k_usleep(100))) {
LOG_ERR("IRQ pin did not raise");
return -EIO;
}
ret = bt_spi_transceive(header_master, 5, header_slave, 5);
*size = header_slave[size_offset] | (header_slave[size_offset + 1] << 8);
return ret;
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v1) */
#if defined(CONFIG_BT_BLUENRG_ACI)
static int bt_spi_send_aci_config(uint8_t offset, const uint8_t *value, size_t value_len)
{
struct net_buf *buf;
uint8_t *cmd_data;
size_t data_len = 2 + value_len;
#if defined(CONFIG_BT_HCI_RAW)
struct bt_hci_cmd_hdr hdr;
hdr.opcode = sys_cpu_to_le16(BLUENRG_ACI_WRITE_CONFIG_DATA);
hdr.param_len = data_len;
buf = bt_buf_get_tx(BT_BUF_CMD, K_NO_WAIT, &hdr, sizeof(hdr));
#else
buf = bt_hci_cmd_create(BLUENRG_ACI_WRITE_CONFIG_DATA, data_len);
#endif /* CONFIG_BT_HCI_RAW */
if (!buf) {
return -ENOBUFS;
}
cmd_data = net_buf_add(buf, data_len);
cmd_data[0] = offset;
cmd_data[1] = value_len;
memcpy(&cmd_data[2], value, value_len);
#if defined(CONFIG_BT_HCI_RAW)
return bt_send(buf);
#else
return bt_hci_cmd_send(BLUENRG_ACI_WRITE_CONFIG_DATA, buf);
#endif /* CONFIG_BT_HCI_RAW */
}
#if !defined(CONFIG_BT_HCI_RAW)
static int bt_spi_bluenrg_setup(const struct bt_hci_setup_params *params)
{
int ret;
const bt_addr_t *addr = &params->public_addr;
/* force BlueNRG to be on controller mode */
uint8_t data = 1;
bt_spi_send_aci_config(BLUENRG_CONFIG_LL_ONLY_OFFSET, &data, 1);
if (!bt_addr_eq(addr, BT_ADDR_NONE) && !bt_addr_eq(addr, BT_ADDR_ANY)) {
ret = bt_spi_send_aci_config(
BLUENRG_CONFIG_PUBADDR_OFFSET,
addr->val, sizeof(addr->val));
if (ret != 0) {
LOG_ERR("Failed to set BlueNRG public address (%d)", ret);
return ret;
}
}
return 0;
}
#endif /* !CONFIG_BT_HCI_RAW */
#endif /* CONFIG_BT_BLUENRG_ACI */
static struct net_buf *bt_spi_rx_buf_construct(uint8_t *msg)
{
bool discardable = false;
k_timeout_t timeout = K_FOREVER;
struct bt_hci_acl_hdr acl_hdr;
struct net_buf *buf;
int len;
switch (msg[PACKET_TYPE]) {
#if DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v2)
case HCI_EXT_EVT:
struct bt_hci_ext_evt_hdr *evt = (struct bt_hci_ext_evt_hdr *) (msg + 1);
struct bt_hci_evt_hdr *evt2 = (struct bt_hci_evt_hdr *) (msg + 1);
if (evt->len > 0xff) {
return NULL;
}
/* Use memmove instead of memcpy due to buffer overlapping */
memmove(msg + (1 + sizeof(*evt2)), msg + (1 + sizeof(*evt)), evt2->len);
/* Manage event as regular HCI_EVT */
__fallthrough;
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v2) */
case HCI_EVT:
switch (msg[EVT_HEADER_EVENT]) {
case BT_HCI_EVT_VENDOR:
/* Run event through interface handler */
if (bt_spi_handle_vendor_evt(msg)) {
return NULL;
}
/* Event has not yet been handled */
__fallthrough;
default:
if (msg[EVT_HEADER_EVENT] == BT_HCI_EVT_LE_META_EVENT &&
(msg[EVT_LE_META_SUBEVENT] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) {
discardable = true;
timeout = K_NO_WAIT;
}
buf = bt_buf_get_evt(msg[EVT_HEADER_EVENT],
discardable, timeout);
if (!buf) {
LOG_DBG("Discard adv report due to insufficient buf");
return NULL;
}
}
len = sizeof(struct bt_hci_evt_hdr) + msg[EVT_HEADER_SIZE];
if (len > net_buf_tailroom(buf)) {
LOG_ERR("Event too long: %d", len);
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, &msg[1], len);
break;
case HCI_ACL:
buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER);
memcpy(&acl_hdr, &msg[1], sizeof(acl_hdr));
len = sizeof(acl_hdr) + sys_le16_to_cpu(acl_hdr.len);
if (len > net_buf_tailroom(buf)) {
LOG_ERR("ACL too long: %d", len);
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, &msg[1], len);
break;
default:
LOG_ERR("Unknown BT buf type %d", msg[0]);
return NULL;
}
return buf;
}
static void bt_spi_rx_thread(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p1);
ARG_UNUSED(p2);
ARG_UNUSED(p3);
struct net_buf *buf;
uint16_t size = 0U;
int ret;
(void)memset(&txmsg, 0xFF, SPI_MAX_MSG_LEN);
while (true) {
/* Wait for interrupt pin to be active */
k_sem_take(&sem_request, K_FOREVER);
LOG_DBG("");
do {
/* Wait for SPI bus to be available */
k_sem_take(&sem_busy, K_FOREVER);
ret = bt_spi_get_header(SPI_READ, &size);
/* Read data */
if (ret == 0 && size != 0) {
ret = bt_spi_transceive(&txmsg, size, &rxmsg, size);
}
release_cs(size > 0);
k_sem_give(&sem_busy);
if (ret || size == 0) {
if (ret) {
LOG_ERR("Error %d", ret);
}
continue;
}
LOG_HEXDUMP_DBG(rxmsg, size, "SPI RX");
/* Construct net_buf from SPI data */
buf = bt_spi_rx_buf_construct(rxmsg);
if (buf) {
/* Handle the received HCI data */
bt_recv(buf);
}
} while (READ_CONDITION);
}
}
static int bt_spi_send(struct net_buf *buf)
{
uint16_t size;
uint8_t rx_first[1];
int ret;
uint8_t *data_ptr;
uint16_t remaining_bytes;
LOG_DBG("");
/* Buffer needs an additional byte for type */
if (buf->len >= SPI_MAX_MSG_LEN) {
LOG_ERR("Message too long (%d)", buf->len);
return -EINVAL;
}
switch (bt_buf_get_type(buf)) {
case BT_BUF_ACL_OUT:
net_buf_push_u8(buf, HCI_ACL);
break;
case BT_BUF_CMD:
net_buf_push_u8(buf, HCI_CMD);
break;
default:
LOG_ERR("Unsupported type");
return -EINVAL;
}
/* Wait for SPI bus to be available */
k_sem_take(&sem_busy, K_FOREVER);
data_ptr = buf->data;
remaining_bytes = buf->len;
do {
ret = bt_spi_get_header(SPI_WRITE, &size);
size = MIN(remaining_bytes, size);
#if DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v2)
if (size < remaining_bytes) {
LOG_WRN("Unable to write full data, skipping");
size = 0;
ret = -ECANCELED;
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v2) */
if (!ret) {
/* Transmit the message */
ret = bt_spi_transceive(data_ptr, size, rx_first, 1);
}
remaining_bytes -= size;
data_ptr += size;
} while (remaining_bytes > 0 && !ret);
release_cs(size > 0);
k_sem_give(&sem_busy);
if (ret) {
LOG_ERR("Error %d", ret);
return ret;
}
LOG_HEXDUMP_DBG(buf->data, buf->len, "SPI TX");
#if DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v1)
/*
* Since a RESET has been requested, the chip will now restart.
* Unfortunately the BlueNRG will reply with "reset received" but
* since it does not send back a NOP, we have no way to tell when the
* RESET has actually taken place. Instead, we use the vendor command
* EVT_BLUE_INITIALIZED as an indication that it is safe to proceed.
*/
if (bt_spi_get_cmd(buf->data) == BT_HCI_OP_RESET) {
k_sem_take(&sem_initialised, K_FOREVER);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_hci_spi_v1) */
net_buf_unref(buf);
return ret;
}
static int bt_spi_open(void)
{
int err;
/* Configure RST pin and hold BLE in Reset */
err = gpio_pin_configure_dt(&rst_gpio, GPIO_OUTPUT_ACTIVE);
if (err) {
return err;
}
/* Configure IRQ pin and the IRQ call-back/handler */
err = gpio_pin_configure_dt(&irq_gpio, GPIO_INPUT);
if (err) {
return err;
}
gpio_init_callback(&gpio_cb, bt_spi_isr, BIT(irq_gpio.pin));
err = gpio_add_callback(irq_gpio.port, &gpio_cb);
if (err) {
return err;
}
/* Enable the interrupt line */
err = gpio_pin_interrupt_configure_dt(&irq_gpio, GPIO_INT_EDGE_TO_ACTIVE);
if (err) {
return err;
}
/* Take BLE out of reset */
k_sleep(K_MSEC(DT_INST_PROP_OR(0, reset_assert_duration_ms, 0)));
gpio_pin_set_dt(&rst_gpio, 0);
/* Start RX thread */
k_thread_create(&spi_rx_thread_data, spi_rx_stack,
K_KERNEL_STACK_SIZEOF(spi_rx_stack),
bt_spi_rx_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_DRIVER_RX_HIGH_PRIO),
0, K_NO_WAIT);
/* Device will let us know when it's ready */
k_sem_take(&sem_initialised, K_FOREVER);
#if defined(CONFIG_BT_HCI_RAW) && defined(CONFIG_BT_BLUENRG_ACI)
/* force BlueNRG to be on controller mode */
uint8_t data = 1;
bt_spi_send_aci_config(BLUENRG_CONFIG_LL_ONLY_OFFSET, &data, 1);
#endif /* CONFIG_BT_HCI_RAW && CONFIG_BT_BLUENRG_ACI */
return 0;
}
static const struct bt_hci_driver drv = {
.name = DEVICE_DT_NAME(DT_DRV_INST(0)),
.bus = BT_HCI_DRIVER_BUS_SPI,
.quirks = BT_QUIRK_NO_RESET,
#if defined(CONFIG_BT_BLUENRG_ACI) && !defined(CONFIG_BT_HCI_RAW)
.setup = bt_spi_bluenrg_setup,
#endif /* CONFIG_BT_BLUENRG_ACI && !CONFIG_BT_HCI_RAW */
.open = bt_spi_open,
.send = bt_spi_send,
};
static int bt_spi_init(void)
{
if (!spi_is_ready_dt(&bus)) {
LOG_ERR("SPI device not ready");
return -ENODEV;
}
if (!gpio_is_ready_dt(&irq_gpio)) {
LOG_ERR("IRQ GPIO device not ready");
return -ENODEV;
}
if (!gpio_is_ready_dt(&rst_gpio)) {
LOG_ERR("Reset GPIO device not ready");
return -ENODEV;
}
bt_hci_driver_register(&drv);
LOG_DBG("BT SPI initialized");
return 0;
}
SYS_INIT(bt_spi_init, POST_KERNEL, CONFIG_BT_SPI_INIT_PRIORITY);