blob: fc42797a09c1afd654e54465a56a6c4843331826 [file] [log] [blame]
/*
* Copyright 2022-2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/arch/cpu.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/linker/sections.h>
#include <zephyr/sys/util_macro.h>
#include <cortex_m/exception.h>
#include <fsl_power.h>
#include <fsl_clock.h>
#include <fsl_common.h>
#include <fsl_device_registers.h>
#include "soc.h"
#include "flexspi_clock_setup.h"
#include "fsl_ocotp.h"
#ifdef CONFIG_NXP_RW6XX_BOOT_HEADER
extern char z_main_stack[];
extern char _flash_used[];
extern void z_arm_reset(void);
extern void z_arm_nmi(void);
extern void z_arm_hard_fault(void);
extern void z_arm_mpu_fault(void);
extern void z_arm_bus_fault(void);
extern void z_arm_usage_fault(void);
extern void z_arm_secure_fault(void);
extern void z_arm_svc(void);
extern void z_arm_debug_monitor(void);
extern void z_arm_pendsv(void);
extern void sys_clock_isr(void);
extern void z_arm_exc_spurious(void);
__imx_boot_ivt_section void (*const image_vector_table[])(void) = {
(void (*)())(z_main_stack + CONFIG_MAIN_STACK_SIZE), /* 0x00 */
z_arm_reset, /* 0x04 */
z_arm_nmi, /* 0x08 */
z_arm_hard_fault, /* 0x0C */
z_arm_mpu_fault, /* 0x10 */
z_arm_bus_fault, /* 0x14 */
z_arm_usage_fault, /* 0x18 */
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
z_arm_secure_fault, /* 0x1C */
#else
z_arm_exc_spurious,
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
(void (*)())_flash_used, /* 0x20, imageLength. */
0, /* 0x24, imageType (Plain Image) */
0, /* 0x28, authBlockOffset/crcChecksum */
z_arm_svc, /* 0x2C */
z_arm_debug_monitor, /* 0x30 */
(void (*)())image_vector_table, /* 0x34, imageLoadAddress. */
z_arm_pendsv, /* 0x38 */
#if defined(CONFIG_SYS_CLOCK_EXISTS) && defined(CONFIG_CORTEX_M_SYSTICK_INSTALL_ISR)
sys_clock_isr, /* 0x3C */
#else
z_arm_exc_spurious,
#endif
};
#endif /* CONFIG_NXP_RW6XX_BOOT_HEADER */
const clock_avpll_config_t avpll_config = {
.ch1Freq = kCLOCK_AvPllChFreq12p288m,
.ch2Freq = kCLOCK_AvPllChFreq64m,
.enableCali = true
};
/**
* @brief Initialize the system clocks and peripheral clocks
*
* This function is called from the power management code as the
* clock needs to be re-initialized on exit from Standby mode. Hence
* this function is relocated to RAM.
*/
__ramfunc void clock_init(void)
{
POWER_DisableGDetVSensors();
if ((PMU->CAU_SLP_CTRL & PMU_CAU_SLP_CTRL_SOC_SLP_RDY_MASK) == 0U) {
/* LPOSC not enabled, enable it */
CLOCK_EnableClock(kCLOCK_RefClkCauSlp);
}
if ((SYSCTL2->SOURCE_CLK_GATE & SYSCTL2_SOURCE_CLK_GATE_REFCLK_SYS_CG_MASK) != 0U) {
/* REFCLK_SYS not enabled, enable it */
CLOCK_EnableClock(kCLOCK_RefClkSys);
}
/* Initialize T3 clocks and t3pll_mci_48_60m_irc configured to 48.3MHz */
CLOCK_InitT3RefClk(kCLOCK_T3MciIrc48m);
/* Enable FFRO */
CLOCK_EnableClock(kCLOCK_T3PllMciIrcClk);
/* Enable T3 256M clock and SFRO */
CLOCK_EnableClock(kCLOCK_T3PllMci256mClk);
/* Move FLEXSPI clock source to T3 256m / 4 to avoid instruction/data fetch issue in XIP
* when updating PLL and main clock.
*/
set_flexspi_clock(FLEXSPI, 6U, 4U);
/* First let M33 run on SOSC */
CLOCK_AttachClk(kSYSOSC_to_MAIN_CLK);
CLOCK_SetClkDiv(kCLOCK_DivSysCpuAhbClk, 1);
/* tcpu_mci_clk configured to 260MHz, tcpu_mci_flexspi_clk 312MHz. */
CLOCK_InitTcpuRefClk(3120000000UL, kCLOCK_TcpuFlexspiDiv10);
/* Enable tcpu_mci_clk 260MHz. Keep tcpu_mci_flexspi_clk gated. */
CLOCK_EnableClock(kCLOCK_TcpuMciClk);
/* tddr_mci_flexspi_clk 320MHz */
CLOCK_InitTddrRefClk(kCLOCK_TddrFlexspiDiv10);
CLOCK_EnableClock(kCLOCK_TddrMciFlexspiClk); /* 320MHz */
/* Enable AUX0 PLL to 260 MHz */
CLOCK_SetClkDiv(kCLOCK_DivAux0PllClk, 1U);
/* Init AVPLL and enable both channels */
CLOCK_InitAvPll(&avpll_config);
CLOCK_SetClkDiv(kCLOCK_DivAudioPllClk, 1U);
/* Configure MainPll to 260MHz, then let CM33 run on Main PLL. */
CLOCK_SetClkDiv(kCLOCK_DivSysCpuAhbClk, 1U);
CLOCK_SetClkDiv(kCLOCK_DivMainPllClk, 1U);
CLOCK_AttachClk(kMAIN_PLL_to_MAIN_CLK);
/* Set SYSTICKFCLKDIV divider to value 1 */
CLOCK_SetClkDiv(kCLOCK_DivSystickClk, 1U);
CLOCK_AttachClk(kSYSTICK_DIV_to_SYSTICK_CLK);
/* Set PLL FRG clock to 20MHz. */
CLOCK_SetClkDiv(kCLOCK_DivPllFrgClk, 13U);
/* Call function set_flexspi_clock() to set flexspi clock source to aux0_pll_clk in XIP. */
set_flexspi_clock(FLEXSPI, 2U, 2U);
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(wwdt), nxp_lpc_wwdt, okay))
CLOCK_AttachClk(kLPOSC_to_WDT0_CLK);
#else
/* Allowed to select none if not being used for watchdog to
* reduce power
*/
CLOCK_AttachClk(kNONE_to_WDT0_CLK);
#endif
/* Any flexcomm can be USART */
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm0), nxp_lpc_usart, okay)) && CONFIG_SERIAL
CLOCK_SetFRGClock(&(const clock_frg_clk_config_t){0, kCLOCK_FrgPllDiv, 255, 0});
CLOCK_AttachClk(kFRG_to_FLEXCOMM0);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm1), nxp_lpc_usart, okay)) && CONFIG_SERIAL
CLOCK_SetFRGClock(&(const clock_frg_clk_config_t){1, kCLOCK_FrgPllDiv, 255, 0});
CLOCK_AttachClk(kFRG_to_FLEXCOMM1);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm2), nxp_lpc_usart, okay)) && CONFIG_SERIAL
CLOCK_SetFRGClock(&(const clock_frg_clk_config_t){2, kCLOCK_FrgPllDiv, 255, 0});
CLOCK_AttachClk(kFRG_to_FLEXCOMM2);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm3), nxp_lpc_usart, okay)) && CONFIG_SERIAL
CLOCK_SetFRGClock(&(const clock_frg_clk_config_t){3, kCLOCK_FrgPllDiv, 255, 0});
CLOCK_AttachClk(kFRG_to_FLEXCOMM3);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm14), nxp_lpc_usart, okay)) && CONFIG_SERIAL
CLOCK_SetFRGClock(&(const clock_frg_clk_config_t){14, kCLOCK_FrgPllDiv, 255, 0});
CLOCK_AttachClk(kFRG_to_FLEXCOMM14);
#endif
/* Any flexcomm can be I2C */
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm0), nxp_lpc_i2c, okay)) && CONFIG_I2C
CLOCK_AttachClk(kSFRO_to_FLEXCOMM0);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm1), nxp_lpc_i2c, okay)) && CONFIG_I2C
CLOCK_AttachClk(kSFRO_to_FLEXCOMM1);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm2), nxp_lpc_i2c, okay)) && CONFIG_I2C
CLOCK_AttachClk(kSFRO_to_FLEXCOMM2);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm3), nxp_lpc_i2c, okay)) && CONFIG_I2C
CLOCK_AttachClk(kSFRO_to_FLEXCOMM3);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm14), nxp_lpc_i2c, okay)) && CONFIG_I2C
CLOCK_AttachClk(kSFRO_to_FLEXCOMM14);
#endif
/* Clock flexcomms when used as SPI */
#ifdef CONFIG_SPI
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm0), nxp_lpc_spi, okay))
/* Set up Flexcomm0 FRG to clock at 260 MHz from main clock */
const clock_frg_clk_config_t flexcomm0_frg = {0, kCLOCK_FrgMainClk, 255, 0};
CLOCK_SetFRGClock(&flexcomm0_frg);
CLOCK_AttachClk(kFRG_to_FLEXCOMM0);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm1), nxp_lpc_spi, okay))
CLOCK_AttachClk(kSFRO_to_FLEXCOMM1);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm2), nxp_lpc_spi, okay))
CLOCK_AttachClk(kSFRO_to_FLEXCOMM2);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm3), nxp_lpc_spi, okay))
CLOCK_AttachClk(kSFRO_to_FLEXCOMM3);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(flexcomm14), nxp_lpc_spi, okay))
CLOCK_AttachClk(kSFRO_to_FLEXCOMM14);
#endif
#endif /* CONFIG_SPI */
#if DT_NODE_HAS_STATUS(DT_NODELABEL(dmic0), okay) && CONFIG_AUDIO_DMIC_MCUX
/* Clock DMIC from Audio PLL. PLL output is sourced from AVPLL
* channel 1, which is clocked at 12.288 MHz. We can divide this
* by 4 to achieve the desired DMIC bit clk of 3.072 MHz
*/
CLOCK_AttachClk(kAUDIO_PLL_to_DMIC_CLK);
CLOCK_SetClkDiv(kCLOCK_DivDmicClk, 4);
#endif
#ifdef CONFIG_COUNTER_MCUX_CTIMER
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(ctimer0), nxp_lpc_ctimer, okay))
CLOCK_AttachClk(kSFRO_to_CTIMER0);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(ctimer1), nxp_lpc_ctimer, okay))
CLOCK_AttachClk(kSFRO_to_CTIMER1);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(ctimer2), nxp_lpc_ctimer, okay))
CLOCK_AttachClk(kSFRO_to_CTIMER2);
#endif
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(ctimer3), nxp_lpc_ctimer, okay))
CLOCK_AttachClk(kSFRO_to_CTIMER3);
#endif
#endif /* CONFIG_COUNTER_MCUX_CTIMER */
#ifdef CONFIG_COUNTER_NXP_MRT
RESET_PeripheralReset(kMRT_RST_SHIFT_RSTn);
RESET_PeripheralReset(kFREEMRT_RST_SHIFT_RSTn);
#endif
}
/**
*
* @brief Perform basic hardware initialization
*
* Initialize the interrupt controller device drivers.
* Also initialize the timer device driver, if required.
*
* @return 0
*/
static int nxp_rw600_init(void)
{
#if (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(wwdt), nxp_lpc_wwdt, okay))
POWER_EnableResetSource(kPOWER_ResetSourceWdt);
#endif
#define PMU_RESET_CAUSES_ \
DT_FOREACH_PROP_ELEM_SEP(DT_NODELABEL(pmu), reset_causes_en, DT_PROP_BY_IDX, (|))
#define PMU_RESET_CAUSES \
COND_CODE_0(IS_EMPTY(PMU_RESET_CAUSES_), (PMU_RESET_CAUSES_), (0))
#define WDT_RESET \
COND_CODE_1(DT_NODE_HAS_STATUS_OKAY(wwdt), (kPOWER_ResetSourceWdt), (0))
#define RESET_CAUSES \
(PMU_RESET_CAUSES | WDT_RESET)
POWER_EnableResetSource(RESET_CAUSES);
/* Initialize clock */
clock_init();
return 0;
}
void z_arm_platform_init(void)
{
/* This is provided by the SDK */
SystemInit();
}
SYS_INIT(nxp_rw600_init, PRE_KERNEL_1, 0);