|  | /* | 
|  | * Copyright (c) 2017 Intel Corporation | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <zephyr/kernel.h> | 
|  | #include <string.h> | 
|  | #include <zephyr/sys/math_extras.h> | 
|  | #include <zephyr/sys/rb.h> | 
|  | #include <zephyr/kernel_structs.h> | 
|  | #include <zephyr/sys/sys_io.h> | 
|  | #include <ksched.h> | 
|  | #include <zephyr/syscall.h> | 
|  | #include <zephyr/internal/syscall_handler.h> | 
|  | #include <zephyr/device.h> | 
|  | #include <zephyr/init.h> | 
|  | #include <stdbool.h> | 
|  | #include <zephyr/app_memory/app_memdomain.h> | 
|  | #include <zephyr/sys/libc-hooks.h> | 
|  | #include <zephyr/sys/mutex.h> | 
|  | #include <zephyr/sys/util.h> | 
|  | #include <inttypes.h> | 
|  | #include <zephyr/linker/linker-defs.h> | 
|  |  | 
|  | #ifdef Z_LIBC_PARTITION_EXISTS | 
|  | K_APPMEM_PARTITION_DEFINE(z_libc_partition); | 
|  | #endif /* Z_LIBC_PARTITION_EXISTS */ | 
|  |  | 
|  | /* TODO: Find a better place to put this. Since we pull the entire | 
|  | * lib..__modules__crypto__mbedtls.a  globals into app shared memory | 
|  | * section, we can't put this in zephyr_init.c of the mbedtls module. | 
|  | */ | 
|  | #ifdef CONFIG_MBEDTLS | 
|  | K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition); | 
|  | #endif /* CONFIG_MBEDTLS */ | 
|  |  | 
|  | #include <zephyr/logging/log.h> | 
|  | LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); | 
|  |  | 
|  | /* The originally synchronization strategy made heavy use of recursive | 
|  | * irq_locking, which ports poorly to spinlocks which are | 
|  | * non-recursive.  Rather than try to redesign as part of | 
|  | * spinlockification, this uses multiple locks to preserve the | 
|  | * original semantics exactly.  The locks are named for the data they | 
|  | * protect where possible, or just for the code that uses them where | 
|  | * not. | 
|  | */ | 
|  | #ifdef CONFIG_DYNAMIC_OBJECTS | 
|  | static struct k_spinlock lists_lock;       /* kobj dlist */ | 
|  | static struct k_spinlock objfree_lock;     /* k_object_free */ | 
|  |  | 
|  | #ifdef CONFIG_GEN_PRIV_STACKS | 
|  | /* On ARM & ARC MPU & RISC-V PMP we may have two different alignment requirement | 
|  | * when dynamically allocating thread stacks, one for the privileged | 
|  | * stack and other for the user stack, so we need to account the | 
|  | * worst alignment scenario and reserve space for that. | 
|  | */ | 
|  | #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU) || defined(CONFIG_RISCV_PMP) | 
|  | #define STACK_ELEMENT_DATA_SIZE(size) \ | 
|  | (sizeof(struct z_stack_data) + CONFIG_PRIVILEGED_STACK_SIZE + \ | 
|  | Z_THREAD_STACK_OBJ_ALIGN(size) + K_THREAD_STACK_LEN(size)) | 
|  | #else | 
|  | #define STACK_ELEMENT_DATA_SIZE(size) (sizeof(struct z_stack_data) + \ | 
|  | K_THREAD_STACK_LEN(size)) | 
|  | #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU || CONFIG_RISCV_PMP */ | 
|  | #else | 
|  | #define STACK_ELEMENT_DATA_SIZE(size) K_THREAD_STACK_LEN(size) | 
|  | #endif /* CONFIG_GEN_PRIV_STACKS */ | 
|  |  | 
|  | #endif /* CONFIG_DYNAMIC_OBJECTS */ | 
|  | static struct k_spinlock obj_lock;         /* kobj struct data */ | 
|  |  | 
|  | #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * BITS_PER_BYTE) | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_OBJECTS | 
|  | extern uint8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES]; | 
|  | #endif /* CONFIG_DYNAMIC_OBJECTS */ | 
|  |  | 
|  | static void clear_perms_cb(struct k_object *ko, void *ctx_ptr); | 
|  |  | 
|  | const char *otype_to_str(enum k_objects otype) | 
|  | { | 
|  | const char *ret; | 
|  | /* -fdata-sections doesn't work right except in very recent | 
|  | * GCC and these literal strings would appear in the binary even if | 
|  | * otype_to_str was omitted by the linker | 
|  | */ | 
|  | #ifdef CONFIG_LOG | 
|  | switch (otype) { | 
|  | /* otype-to-str.h is generated automatically during build by | 
|  | * gen_kobject_list.py | 
|  | */ | 
|  | case K_OBJ_ANY: | 
|  | ret = "generic"; | 
|  | break; | 
|  | #include <zephyr/otype-to-str.h> | 
|  | default: | 
|  | ret = "?"; | 
|  | break; | 
|  | } | 
|  | #else | 
|  | ARG_UNUSED(otype); | 
|  | ret = NULL; | 
|  | #endif /* CONFIG_LOG */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct perm_ctx { | 
|  | int parent_id; | 
|  | int child_id; | 
|  | struct k_thread *parent; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_GEN_PRIV_STACKS | 
|  | /* See write_gperf_table() in scripts/build/gen_kobject_list.py. The privilege | 
|  | * mode stacks are allocated as an array. The base of the array is | 
|  | * aligned to Z_PRIVILEGE_STACK_ALIGN, and all members must be as well. | 
|  | */ | 
|  | uint8_t *z_priv_stack_find(k_thread_stack_t *stack) | 
|  | { | 
|  | struct k_object *obj = k_object_find(stack); | 
|  |  | 
|  | __ASSERT(obj != NULL, "stack object not found"); | 
|  | __ASSERT(obj->type == K_OBJ_THREAD_STACK_ELEMENT, | 
|  | "bad stack object"); | 
|  |  | 
|  | return obj->data.stack_data->priv; | 
|  | } | 
|  | #endif /* CONFIG_GEN_PRIV_STACKS */ | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_OBJECTS | 
|  |  | 
|  | /* | 
|  | * Note that dyn_obj->data is where the kernel object resides | 
|  | * so it is the one that actually needs to be aligned. | 
|  | * Due to the need to get the fields inside struct dyn_obj | 
|  | * from kernel object pointers (i.e. from data[]), the offset | 
|  | * from data[] needs to be fixed at build time. Therefore, | 
|  | * data[] is declared with __aligned(), such that when dyn_obj | 
|  | * is allocated with alignment, data[] is also aligned. | 
|  | * Due to this requirement, data[] needs to be aligned with | 
|  | * the maximum alignment needed for all kernel objects | 
|  | * (hence the following DYN_OBJ_DATA_ALIGN). | 
|  | */ | 
|  | #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT | 
|  | #define DYN_OBJ_DATA_ALIGN_K_THREAD	(ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT) | 
|  | #else | 
|  | #define DYN_OBJ_DATA_ALIGN_K_THREAD	(sizeof(void *)) | 
|  | #endif /* ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT */ | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_THREAD_STACK_SIZE | 
|  | #if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_PMP_STACK_GUARD) | 
|  | #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \ | 
|  | Z_THREAD_STACK_OBJ_ALIGN(CONFIG_DYNAMIC_THREAD_STACK_SIZE) | 
|  | #else | 
|  | #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \ | 
|  | Z_THREAD_STACK_OBJ_ALIGN(CONFIG_PRIVILEGED_STACK_SIZE) | 
|  | #endif /* CONFIG_MPU_STACK_GUARD || CONFIG_PMP_STACK_GUARD */ | 
|  | #else | 
|  | #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \ | 
|  | Z_THREAD_STACK_OBJ_ALIGN(ARCH_STACK_PTR_ALIGN) | 
|  | #endif /* CONFIG_DYNAMIC_THREAD_STACK_SIZE */ | 
|  |  | 
|  | #define DYN_OBJ_DATA_ALIGN		\ | 
|  | MAX(DYN_OBJ_DATA_ALIGN_K_THREAD, (sizeof(void *))) | 
|  |  | 
|  | struct dyn_obj { | 
|  | struct k_object kobj; | 
|  | sys_dnode_t dobj_list; | 
|  |  | 
|  | /* The object itself */ | 
|  | void *data; | 
|  | }; | 
|  |  | 
|  | extern struct k_object *z_object_gperf_find(const void *obj); | 
|  | extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, | 
|  | void *context); | 
|  |  | 
|  | /* | 
|  | * Linked list of allocated kernel objects, for iteration over all allocated | 
|  | * objects (and potentially deleting them during iteration). | 
|  | */ | 
|  | static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list); | 
|  |  | 
|  | /* | 
|  | * TODO: Write some hash table code that will replace obj_list. | 
|  | */ | 
|  |  | 
|  | static size_t obj_size_get(enum k_objects otype) | 
|  | { | 
|  | size_t ret; | 
|  |  | 
|  | switch (otype) { | 
|  | #include <zephyr/otype-to-size.h> | 
|  | default: | 
|  | ret = sizeof(const struct device); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static size_t obj_align_get(enum k_objects otype) | 
|  | { | 
|  | size_t ret; | 
|  |  | 
|  | switch (otype) { | 
|  | case K_OBJ_THREAD: | 
|  | #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT | 
|  | ret = ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT; | 
|  | #else | 
|  | ret = __alignof(struct dyn_obj); | 
|  | #endif /* ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT */ | 
|  | break; | 
|  | default: | 
|  | ret = __alignof(struct dyn_obj); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct dyn_obj *dyn_object_find(const void *obj) | 
|  | { | 
|  | struct dyn_obj *node; | 
|  | k_spinlock_key_t key; | 
|  |  | 
|  | /* For any dynamically allocated kernel object, the object | 
|  | * pointer is just a member of the containing struct dyn_obj, | 
|  | * so just a little arithmetic is necessary to locate the | 
|  | * corresponding struct rbnode | 
|  | */ | 
|  | key = k_spin_lock(&lists_lock); | 
|  |  | 
|  | SYS_DLIST_FOR_EACH_CONTAINER(&obj_list, node, dobj_list) { | 
|  | if (node->kobj.name == obj) { | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No object found */ | 
|  | node = NULL; | 
|  |  | 
|  | end: | 
|  | k_spin_unlock(&lists_lock, key); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @internal | 
|  | * | 
|  | * @brief Allocate a new thread index for a new thread. | 
|  | * | 
|  | * This finds an unused thread index that can be assigned to a new | 
|  | * thread. If too many threads have been allocated, the kernel will | 
|  | * run out of indexes and this function will fail. | 
|  | * | 
|  | * Note that if an unused index is found, that index will be marked as | 
|  | * used after return of this function. | 
|  | * | 
|  | * @param tidx The new thread index if successful | 
|  | * | 
|  | * @return true if successful, false if failed | 
|  | **/ | 
|  | static bool thread_idx_alloc(uintptr_t *tidx) | 
|  | { | 
|  | int i; | 
|  | int idx; | 
|  | int base; | 
|  |  | 
|  | base = 0; | 
|  | for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { | 
|  | idx = find_lsb_set(_thread_idx_map[i]); | 
|  |  | 
|  | if (idx != 0) { | 
|  | *tidx = base + (idx - 1); | 
|  |  | 
|  | /* Clear the bit. We already know the array index, | 
|  | * and the bit to be cleared. | 
|  | */ | 
|  | _thread_idx_map[i] &= ~(BIT(idx - 1)); | 
|  |  | 
|  | /* Clear permission from all objects */ | 
|  | k_object_wordlist_foreach(clear_perms_cb, | 
|  | (void *)*tidx); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | base += 8; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @internal | 
|  | * | 
|  | * @brief Free a thread index. | 
|  | * | 
|  | * This frees a thread index so it can be used by another | 
|  | * thread. | 
|  | * | 
|  | * @param tidx The thread index to be freed | 
|  | **/ | 
|  | static void thread_idx_free(uintptr_t tidx) | 
|  | { | 
|  | /* To prevent leaked permission when index is recycled */ | 
|  | k_object_wordlist_foreach(clear_perms_cb, (void *)tidx); | 
|  |  | 
|  | /* Figure out which bits to set in _thread_idx_map[] and set it. */ | 
|  | int base = tidx / NUM_BITS(_thread_idx_map[0]); | 
|  | int offset = tidx % NUM_BITS(_thread_idx_map[0]); | 
|  |  | 
|  | _thread_idx_map[base] |= BIT(offset); | 
|  | } | 
|  |  | 
|  | static struct k_object *dynamic_object_create(enum k_objects otype, size_t align, | 
|  | size_t size) | 
|  | { | 
|  | struct dyn_obj *dyn; | 
|  |  | 
|  | dyn = z_thread_aligned_alloc(align, sizeof(struct dyn_obj)); | 
|  | if (dyn == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (otype == K_OBJ_THREAD_STACK_ELEMENT) { | 
|  | size_t adjusted_size; | 
|  |  | 
|  | if (size == 0) { | 
|  | k_free(dyn); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | adjusted_size = STACK_ELEMENT_DATA_SIZE(size); | 
|  | dyn->data = z_thread_aligned_alloc(DYN_OBJ_DATA_ALIGN_K_THREAD_STACK, | 
|  | adjusted_size); | 
|  | if (dyn->data == NULL) { | 
|  | k_free(dyn); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_GEN_PRIV_STACKS | 
|  | struct z_stack_data *stack_data = (struct z_stack_data *) | 
|  | ((uint8_t *)dyn->data + adjusted_size - sizeof(*stack_data)); | 
|  | stack_data->priv = (uint8_t *)dyn->data; | 
|  | stack_data->size = adjusted_size; | 
|  | dyn->kobj.data.stack_data = stack_data; | 
|  | #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU) || defined(CONFIG_RISCV_PMP) | 
|  | dyn->kobj.name = (void *)ROUND_UP( | 
|  | ((uint8_t *)dyn->data + CONFIG_PRIVILEGED_STACK_SIZE), | 
|  | Z_THREAD_STACK_OBJ_ALIGN(size)); | 
|  | #else | 
|  | dyn->kobj.name = dyn->data; | 
|  | #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU || CONFIG_RISCV_PMP */ | 
|  | #else | 
|  | dyn->kobj.name = dyn->data; | 
|  | dyn->kobj.data.stack_size = adjusted_size; | 
|  | #endif /* CONFIG_GEN_PRIV_STACKS */ | 
|  | } else { | 
|  | dyn->data = z_thread_aligned_alloc(align, obj_size_get(otype) + size); | 
|  | if (dyn->data == NULL) { | 
|  | k_free(dyn); | 
|  | return NULL; | 
|  | } | 
|  | dyn->kobj.name = dyn->data; | 
|  | } | 
|  |  | 
|  | dyn->kobj.type = otype; | 
|  | dyn->kobj.flags = 0; | 
|  | (void)memset(dyn->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES); | 
|  |  | 
|  | k_spinlock_key_t key = k_spin_lock(&lists_lock); | 
|  |  | 
|  | sys_dlist_append(&obj_list, &dyn->dobj_list); | 
|  | k_spin_unlock(&lists_lock, key); | 
|  |  | 
|  | return &dyn->kobj; | 
|  | } | 
|  |  | 
|  | struct k_object *k_object_create_dynamic_aligned(size_t align, size_t size) | 
|  | { | 
|  | struct k_object *obj = dynamic_object_create(K_OBJ_ANY, align, size); | 
|  |  | 
|  | if (obj == NULL) { | 
|  | LOG_ERR("could not allocate kernel object, out of memory"); | 
|  | } | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | static void *z_object_alloc(enum k_objects otype, size_t size) | 
|  | { | 
|  | struct k_object *zo; | 
|  | uintptr_t tidx = 0; | 
|  |  | 
|  | if ((otype <= K_OBJ_ANY) || (otype >= K_OBJ_LAST)) { | 
|  | LOG_ERR("bad object type %d requested", otype); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | switch (otype) { | 
|  | case K_OBJ_THREAD: | 
|  | if (!thread_idx_alloc(&tidx)) { | 
|  | LOG_ERR("out of free thread indexes"); | 
|  | return NULL; | 
|  | } | 
|  | break; | 
|  | /* The following are currently not allowed at all */ | 
|  | case K_OBJ_FUTEX:			/* Lives in user memory */ | 
|  | case K_OBJ_SYS_MUTEX:			/* Lives in user memory */ | 
|  | case K_OBJ_NET_SOCKET:			/* Indeterminate size */ | 
|  | LOG_ERR("forbidden object type '%s' requested", | 
|  | otype_to_str(otype)); | 
|  | return NULL; | 
|  | default: | 
|  | /* Remainder within bounds are permitted */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | zo = dynamic_object_create(otype, obj_align_get(otype), size); | 
|  | if (zo == NULL) { | 
|  | if (otype == K_OBJ_THREAD) { | 
|  | thread_idx_free(tidx); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (otype == K_OBJ_THREAD) { | 
|  | zo->data.thread_id = tidx; | 
|  | } | 
|  |  | 
|  | /* The allocating thread implicitly gets permission on kernel objects | 
|  | * that it allocates | 
|  | */ | 
|  | k_thread_perms_set(zo, _current); | 
|  |  | 
|  | /* Activates reference counting logic for automatic disposal when | 
|  | * all permissions have been revoked | 
|  | */ | 
|  | zo->flags |= K_OBJ_FLAG_ALLOC; | 
|  |  | 
|  | return zo->name; | 
|  | } | 
|  |  | 
|  | void *z_impl_k_object_alloc(enum k_objects otype) | 
|  | { | 
|  | return z_object_alloc(otype, 0); | 
|  | } | 
|  |  | 
|  | void *z_impl_k_object_alloc_size(enum k_objects otype, size_t size) | 
|  | { | 
|  | return z_object_alloc(otype, size); | 
|  | } | 
|  |  | 
|  | void k_object_free(void *obj) | 
|  | { | 
|  | struct dyn_obj *dyn; | 
|  |  | 
|  | /* This function is intentionally not exposed to user mode. | 
|  | * There's currently no robust way to track that an object isn't | 
|  | * being used by some other thread | 
|  | */ | 
|  |  | 
|  | k_spinlock_key_t key = k_spin_lock(&objfree_lock); | 
|  |  | 
|  | dyn = dyn_object_find(obj); | 
|  | if (dyn != NULL) { | 
|  | sys_dlist_remove(&dyn->dobj_list); | 
|  |  | 
|  | if (dyn->kobj.type == K_OBJ_THREAD) { | 
|  | thread_idx_free(dyn->kobj.data.thread_id); | 
|  | } | 
|  | } | 
|  | k_spin_unlock(&objfree_lock, key); | 
|  |  | 
|  | if (dyn != NULL) { | 
|  | k_free(dyn->data); | 
|  | k_free(dyn); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct k_object *k_object_find(const void *obj) | 
|  | { | 
|  | struct k_object *ret; | 
|  |  | 
|  | ret = z_object_gperf_find(obj); | 
|  |  | 
|  | if (ret == NULL) { | 
|  | struct dyn_obj *dyn; | 
|  |  | 
|  | /* The cast to pointer-to-non-const violates MISRA | 
|  | * 11.8 but is justified since we know dynamic objects | 
|  | * were not declared with a const qualifier. | 
|  | */ | 
|  | dyn = dyn_object_find(obj); | 
|  | if (dyn != NULL) { | 
|  | ret = &dyn->kobj; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) | 
|  | { | 
|  | struct dyn_obj *obj, *next; | 
|  |  | 
|  | z_object_gperf_wordlist_foreach(func, context); | 
|  |  | 
|  | k_spinlock_key_t key = k_spin_lock(&lists_lock); | 
|  |  | 
|  | SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, dobj_list) { | 
|  | func(&obj->kobj, context); | 
|  | } | 
|  | k_spin_unlock(&lists_lock, key); | 
|  | } | 
|  | #endif /* CONFIG_DYNAMIC_OBJECTS */ | 
|  |  | 
|  | /* In the earlier linker-passes before we have the real generated | 
|  | * implementation of the lookup functions, we need some weak dummies. | 
|  | * Being __weak, they will be replaced by the generated implementations in | 
|  | * the later linker passes. | 
|  | */ | 
|  | #ifdef CONFIG_DYNAMIC_OBJECTS | 
|  | Z_GENERIC_SECTION(.kobject_data.text.dummies) | 
|  | __weak struct k_object *z_object_gperf_find(const void *obj) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | Z_GENERIC_SECTION(.kobject_data.text.dummies) | 
|  | __weak void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, void *context) | 
|  | { | 
|  | } | 
|  | #else | 
|  | Z_GENERIC_SECTION(.kobject_data.text.dummies) | 
|  | __weak struct k_object *k_object_find(const void *obj) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | Z_GENERIC_SECTION(.kobject_data.text.dummies) | 
|  | __weak void k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned int thread_index_get(struct k_thread *thread) | 
|  | { | 
|  | struct k_object *ko; | 
|  |  | 
|  | ko = k_object_find(thread); | 
|  |  | 
|  | if (ko == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return ko->data.thread_id; | 
|  | } | 
|  |  | 
|  | static void unref_check(struct k_object *ko, uintptr_t index) | 
|  | { | 
|  | k_spinlock_key_t key = k_spin_lock(&obj_lock); | 
|  |  | 
|  | sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_OBJECTS | 
|  | if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) { | 
|  | /* skip unref check for static kernel object */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | void *vko = ko; | 
|  |  | 
|  | struct dyn_obj *dyn = CONTAINER_OF(vko, struct dyn_obj, kobj); | 
|  |  | 
|  | __ASSERT(IS_PTR_ALIGNED(dyn, struct dyn_obj), "unaligned z_object"); | 
|  |  | 
|  | for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { | 
|  | if (ko->perms[i] != 0U) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This object has no more references. Some objects may have | 
|  | * dynamically allocated resources, require cleanup, or need to be | 
|  | * marked as uninitialized when all references are gone. What | 
|  | * specifically needs to happen depends on the object type. | 
|  | */ | 
|  | switch (ko->type) { | 
|  | case K_OBJ_MSGQ: | 
|  | k_msgq_cleanup((struct k_msgq *)ko->name); | 
|  | break; | 
|  | case K_OBJ_STACK: | 
|  | k_stack_cleanup((struct k_stack *)ko->name); | 
|  | break; | 
|  | default: | 
|  | /* Nothing to do */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | sys_dlist_remove(&dyn->dobj_list); | 
|  | k_free(dyn->data); | 
|  | k_free(dyn); | 
|  | out: | 
|  | #endif /* CONFIG_DYNAMIC_OBJECTS */ | 
|  | k_spin_unlock(&obj_lock, key); | 
|  | } | 
|  |  | 
|  | static void wordlist_cb(struct k_object *ko, void *ctx_ptr) | 
|  | { | 
|  | struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr; | 
|  |  | 
|  | if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) && | 
|  | ((struct k_thread *)ko->name != ctx->parent)) { | 
|  | sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | void k_thread_perms_inherit(struct k_thread *parent, struct k_thread *child) | 
|  | { | 
|  | struct perm_ctx ctx = { | 
|  | thread_index_get(parent), | 
|  | thread_index_get(child), | 
|  | parent | 
|  | }; | 
|  |  | 
|  | if ((ctx.parent_id != -1) && (ctx.child_id != -1)) { | 
|  | k_object_wordlist_foreach(wordlist_cb, &ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void k_thread_perms_set(struct k_object *ko, struct k_thread *thread) | 
|  | { | 
|  | int index = thread_index_get(thread); | 
|  |  | 
|  | if (index != -1) { | 
|  | sys_bitfield_set_bit((mem_addr_t)&ko->perms, index); | 
|  | } | 
|  | } | 
|  |  | 
|  | void k_thread_perms_clear(struct k_object *ko, struct k_thread *thread) | 
|  | { | 
|  | int index = thread_index_get(thread); | 
|  |  | 
|  | if (index != -1) { | 
|  | sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); | 
|  | unref_check(ko, index); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clear_perms_cb(struct k_object *ko, void *ctx_ptr) | 
|  | { | 
|  | uintptr_t id = (uintptr_t)ctx_ptr; | 
|  |  | 
|  | unref_check(ko, id); | 
|  | } | 
|  |  | 
|  | void k_thread_perms_all_clear(struct k_thread *thread) | 
|  | { | 
|  | uintptr_t index = thread_index_get(thread); | 
|  |  | 
|  | if ((int)index != -1) { | 
|  | k_object_wordlist_foreach(clear_perms_cb, (void *)index); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int thread_perms_test(struct k_object *ko) | 
|  | { | 
|  | int index; | 
|  |  | 
|  | if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | index = thread_index_get(_current); | 
|  | if (index != -1) { | 
|  | return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dump_permission_error(struct k_object *ko) | 
|  | { | 
|  | int index = thread_index_get(_current); | 
|  | LOG_ERR("thread %p (%d) does not have permission on %s %p", | 
|  | _current, index, | 
|  | otype_to_str(ko->type), ko->name); | 
|  | LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap"); | 
|  | } | 
|  |  | 
|  | void k_object_dump_error(int retval, const void *obj, struct k_object *ko, | 
|  | enum k_objects otype) | 
|  | { | 
|  | switch (retval) { | 
|  | case -EBADF: | 
|  | LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype)); | 
|  | if (ko == NULL) { | 
|  | LOG_ERR("address is not a known kernel object"); | 
|  | } else { | 
|  | LOG_ERR("address is actually a %s", | 
|  | otype_to_str(ko->type)); | 
|  | } | 
|  | break; | 
|  | case -EPERM: | 
|  | dump_permission_error(ko); | 
|  | break; | 
|  | case -EINVAL: | 
|  | LOG_ERR("%p used before initialization", obj); | 
|  | break; | 
|  | case -EADDRINUSE: | 
|  | LOG_ERR("%p %s in use", obj, otype_to_str(otype)); | 
|  | break; | 
|  | default: | 
|  | /* Not handled error */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void z_impl_k_object_access_grant(const void *object, struct k_thread *thread) | 
|  | { | 
|  | struct k_object *ko = k_object_find(object); | 
|  |  | 
|  | if (ko != NULL) { | 
|  | k_thread_perms_set(ko, thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | void k_object_access_revoke(const void *object, struct k_thread *thread) | 
|  | { | 
|  | struct k_object *ko = k_object_find(object); | 
|  |  | 
|  | if (ko != NULL) { | 
|  | k_thread_perms_clear(ko, thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | void z_impl_k_object_release(const void *object) | 
|  | { | 
|  | k_object_access_revoke(object, _current); | 
|  | } | 
|  |  | 
|  | void k_object_access_all_grant(const void *object) | 
|  | { | 
|  | struct k_object *ko = k_object_find(object); | 
|  |  | 
|  | if (ko != NULL) { | 
|  | ko->flags |= K_OBJ_FLAG_PUBLIC; | 
|  | } | 
|  | } | 
|  |  | 
|  | int k_object_validate(struct k_object *ko, enum k_objects otype, | 
|  | enum _obj_init_check init) | 
|  | { | 
|  | if (unlikely((ko == NULL) || | 
|  | ((otype != K_OBJ_ANY) && (ko->type != otype)))) { | 
|  | return -EBADF; | 
|  | } | 
|  |  | 
|  | /* Manipulation of any kernel objects by a user thread requires that | 
|  | * thread be granted access first, even for uninitialized objects | 
|  | */ | 
|  | if (unlikely(thread_perms_test(ko) == 0)) { | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* Initialization state checks. _OBJ_INIT_ANY, we don't care */ | 
|  | if (likely(init == _OBJ_INIT_TRUE)) { | 
|  | /* Object MUST be initialized */ | 
|  | if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (init == _OBJ_INIT_FALSE) { /* _OBJ_INIT_FALSE case */ | 
|  | /* Object MUST NOT be initialized */ | 
|  | if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) { | 
|  | return -EADDRINUSE; | 
|  | } | 
|  | } else { | 
|  | /* _OBJ_INIT_ANY */ | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void k_object_init(const void *obj) | 
|  | { | 
|  | struct k_object *ko; | 
|  |  | 
|  | /* By the time we get here, if the caller was from userspace, all the | 
|  | * necessary checks have been done in k_object_validate(), which takes | 
|  | * place before the object is initialized. | 
|  | * | 
|  | * This function runs after the object has been initialized and | 
|  | * finalizes it | 
|  | */ | 
|  |  | 
|  | ko = k_object_find(obj); | 
|  | if (ko == NULL) { | 
|  | /* Supervisor threads can ignore rules about kernel objects | 
|  | * and may declare them on stacks, etc. Such objects will never | 
|  | * be usable from userspace, but we shouldn't explode. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Allows non-initialization system calls to be made on this object */ | 
|  | ko->flags |= K_OBJ_FLAG_INITIALIZED; | 
|  | } | 
|  |  | 
|  | void k_object_recycle(const void *obj) | 
|  | { | 
|  | struct k_object *ko = k_object_find(obj); | 
|  |  | 
|  | if (ko != NULL) { | 
|  | (void)memset(ko->perms, 0, sizeof(ko->perms)); | 
|  | k_thread_perms_set(ko, _current); | 
|  | ko->flags |= K_OBJ_FLAG_INITIALIZED; | 
|  | } | 
|  | } | 
|  |  | 
|  | void k_object_uninit(const void *obj) | 
|  | { | 
|  | struct k_object *ko; | 
|  |  | 
|  | /* See comments in k_object_init() */ | 
|  | ko = k_object_find(obj); | 
|  | if (ko == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ko->flags &= ~K_OBJ_FLAG_INITIALIZED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy to/from helper functions used in syscall handlers | 
|  | */ | 
|  | void *k_usermode_alloc_from_copy(const void *src, size_t size) | 
|  | { | 
|  | void *dst = NULL; | 
|  |  | 
|  | /* Does the caller in user mode have access to read this memory? */ | 
|  | if (K_SYSCALL_MEMORY_READ(src, size)) { | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | dst = z_thread_malloc(size); | 
|  | if (dst == NULL) { | 
|  | LOG_ERR("out of thread resource pool memory (%zu)", size); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | (void)memcpy(dst, src, size); | 
|  | out_err: | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | static int user_copy(void *dst, const void *src, size_t size, bool to_user) | 
|  | { | 
|  | int ret = EFAULT; | 
|  |  | 
|  | /* Does the caller in user mode have access to this memory? */ | 
|  | if (to_user ? K_SYSCALL_MEMORY_WRITE(dst, size) : | 
|  | K_SYSCALL_MEMORY_READ(src, size)) { | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | (void)memcpy(dst, src, size); | 
|  | ret = 0; | 
|  | out_err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int k_usermode_from_copy(void *dst, const void *src, size_t size) | 
|  | { | 
|  | return user_copy(dst, src, size, false); | 
|  | } | 
|  |  | 
|  | int k_usermode_to_copy(void *dst, const void *src, size_t size) | 
|  | { | 
|  | return user_copy(dst, src, size, true); | 
|  | } | 
|  |  | 
|  | char *k_usermode_string_alloc_copy(const char *src, size_t maxlen) | 
|  | { | 
|  | size_t actual_len; | 
|  | int err; | 
|  | char *ret = NULL; | 
|  |  | 
|  | actual_len = k_usermode_string_nlen(src, maxlen, &err); | 
|  | if (err != 0) { | 
|  | goto out; | 
|  | } | 
|  | if (actual_len == maxlen) { | 
|  | /* Not NULL terminated */ | 
|  | LOG_ERR("string too long %p (%zu)", src, actual_len); | 
|  | goto out; | 
|  | } | 
|  | if (size_add_overflow(actual_len, 1, &actual_len)) { | 
|  | LOG_ERR("overflow"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = k_usermode_alloc_from_copy(src, actual_len); | 
|  |  | 
|  | /* Someone may have modified the source string during the above | 
|  | * checks. Ensure what we actually copied is still terminated | 
|  | * properly. | 
|  | */ | 
|  | if (ret != NULL) { | 
|  | ret[actual_len - 1U] = '\0'; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int k_usermode_string_copy(char *dst, const char *src, size_t maxlen) | 
|  | { | 
|  | size_t actual_len; | 
|  | int ret, err; | 
|  |  | 
|  | actual_len = k_usermode_string_nlen(src, maxlen, &err); | 
|  | if (err != 0) { | 
|  | ret = EFAULT; | 
|  | goto out; | 
|  | } | 
|  | if (actual_len == maxlen) { | 
|  | /* Not NULL terminated */ | 
|  | LOG_ERR("string too long %p (%zu)", src, actual_len); | 
|  | ret = EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (size_add_overflow(actual_len, 1, &actual_len)) { | 
|  | LOG_ERR("overflow"); | 
|  | ret = EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = k_usermode_from_copy(dst, src, actual_len); | 
|  |  | 
|  | /* See comment above in k_usermode_string_alloc_copy() */ | 
|  | dst[actual_len - 1] = '\0'; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Application memory region initialization | 
|  | */ | 
|  |  | 
|  | extern char __app_shmem_regions_start[]; | 
|  | extern char __app_shmem_regions_end[]; | 
|  |  | 
|  | static int app_shmem_bss_zero(void) | 
|  | { | 
|  | struct z_app_region *region, *end; | 
|  |  | 
|  |  | 
|  | end = (struct z_app_region *)&__app_shmem_regions_end[0]; | 
|  | region = (struct z_app_region *)&__app_shmem_regions_start[0]; | 
|  |  | 
|  | for ( ; region < end; region++) { | 
|  | #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT) | 
|  | /* When BSS sections are not present at boot, we need to wait for | 
|  | * paging mechanism to be initialized before we can zero out BSS. | 
|  | */ | 
|  | extern bool z_sys_post_kernel; | 
|  | bool do_clear = z_sys_post_kernel; | 
|  |  | 
|  | /* During pre-kernel init, z_sys_post_kernel == false, but | 
|  | * with pinned rodata region, so clear. Otherwise skip. | 
|  | * In post-kernel init, z_sys_post_kernel == true, | 
|  | * skip those in pinned rodata region as they have already | 
|  | * been cleared and possibly already in use. Otherwise clear. | 
|  | */ | 
|  | if (((uint8_t *)region->bss_start >= (uint8_t *)_app_smem_pinned_start) && | 
|  | ((uint8_t *)region->bss_start < (uint8_t *)_app_smem_pinned_end)) { | 
|  | do_clear = !do_clear; | 
|  | } | 
|  |  | 
|  | if (do_clear) | 
|  | #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */ | 
|  | { | 
|  | (void)memset(region->bss_start, 0, region->bss_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYS_INIT_NAMED(app_shmem_bss_zero_pre, app_shmem_bss_zero, | 
|  | PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); | 
|  |  | 
|  | #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT) | 
|  | /* When BSS sections are not present at boot, we need to wait for | 
|  | * paging mechanism to be initialized before we can zero out BSS. | 
|  | */ | 
|  | SYS_INIT_NAMED(app_shmem_bss_zero_post, app_shmem_bss_zero, | 
|  | POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); | 
|  | #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */ | 
|  |  | 
|  | /* | 
|  | * Default handlers if otherwise unimplemented | 
|  | */ | 
|  |  | 
|  | static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2, | 
|  | uintptr_t arg3, uintptr_t arg4, | 
|  | uintptr_t arg5, uintptr_t arg6, | 
|  | void *ssf) | 
|  | { | 
|  | ARG_UNUSED(arg2); | 
|  | ARG_UNUSED(arg3); | 
|  | ARG_UNUSED(arg4); | 
|  | ARG_UNUSED(arg5); | 
|  | ARG_UNUSED(arg6); | 
|  |  | 
|  | LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id); | 
|  | arch_syscall_oops(ssf); | 
|  | CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ | 
|  | } | 
|  |  | 
|  | static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2, | 
|  | uintptr_t arg3, uintptr_t arg4, | 
|  | uintptr_t arg5, uintptr_t arg6, void *ssf) | 
|  | { | 
|  | ARG_UNUSED(arg1); | 
|  | ARG_UNUSED(arg2); | 
|  | ARG_UNUSED(arg3); | 
|  | ARG_UNUSED(arg4); | 
|  | ARG_UNUSED(arg5); | 
|  | ARG_UNUSED(arg6); | 
|  |  | 
|  | LOG_ERR("Unimplemented system call"); | 
|  | arch_syscall_oops(ssf); | 
|  | CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ | 
|  | } | 
|  |  | 
|  | #include <zephyr/syscall_dispatch.c> |