blob: 9387b4671a719ac05d614e563a0bf0d822032f43 [file] [log] [blame]
#!/usr/bin/env python3
# Copyright(c) 2022 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
import os
import sys
import struct
import logging
import asyncio
import time
import subprocess
import ctypes
import mmap
import argparse
import socketserver
import threading
import netifaces
import hashlib
# Global variable use to sync between log and request services.
# When it is true, the adsp is able to start running.
start_output = False
lock = threading.Lock()
HOST = None
PORT_LOG = 9999
PORT_REQ = PORT_LOG + 1
BUF_SIZE = 4096
# Define the command and the max size
CMD_LOG_START = "start_log"
CMD_DOWNLOAD = "download"
MAX_CMD_SZ = 16
# Define the header format and size for
# transmiting the firmware
PACKET_HEADER_FORMAT_FW = 'I 42s 32s'
HEADER_SZ = 78
logging.basicConfig(level=logging.INFO)
log = logging.getLogger("cavs-fw")
PAGESZ = 4096
HUGEPAGESZ = 2 * 1024 * 1024
HUGEPAGE_FILE = "/dev/hugepages/cavs-fw-dma.tmp."
# SRAM windows. Each appears in a 128k region starting at 512k.
#
# Window 0 is the FW_STATUS area, and 4k after that the IPC "outbox"
# Window 1 is the IPC "inbox" (host-writable memory, just 384 bytes currently)
# Window 2 is unused by this script
# Window 3 is winstream-formatted log output
OUTBOX_OFFSET = (512 + (0 * 128)) * 1024 + 4096
INBOX_OFFSET = (512 + (1 * 128)) * 1024
WINSTREAM_OFFSET = (512 + (3 * 128)) * 1024
# ADSPCS bits
CRST = 0
CSTALL = 8
SPA = 16
CPA = 24
class HDAStream:
# creates an hda stream with at 2 buffers of buf_len
def __init__(self, stream_id: int):
self.stream_id = stream_id
self.base = hdamem + 0x0080 + (stream_id * 0x20)
log.info(f"Mapping registers for hda stream {self.stream_id} at base {self.base:x}")
self.hda = Regs(hdamem)
self.hda.GCAP = 0x0000
self.hda.GCTL = 0x0008
self.hda.DPLBASE = 0x0070
self.hda.DPUBASE = 0x0074
self.hda.SPBFCH = 0x0700
self.hda.SPBFCTL = 0x0704
self.hda.PPCH = 0x0800
self.hda.PPCTL = 0x0804
self.hda.PPSTS = 0x0808
self.hda.SPIB = 0x0708 + stream_id*0x08
self.hda.freeze()
self.regs = Regs(self.base)
self.regs.CTL = 0x00
self.regs.STS = 0x03
self.regs.LPIB = 0x04
self.regs.CBL = 0x08
self.regs.LVI = 0x0c
self.regs.FIFOW = 0x0e
self.regs.FIFOS = 0x10
self.regs.FMT = 0x12
self.regs.FIFOL= 0x14
self.regs.BDPL = 0x18
self.regs.BDPU = 0x1c
self.regs.freeze()
self.dbg0 = Regs(hdamem + 0x0084 + (0x20*stream_id))
self.dbg0.DPIB = 0x00
self.dbg0.EFIFOS = 0x10
self.dbg0.freeze()
self.reset()
def __del__(self):
self.reset()
def config(self, buf_len: int):
log.info(f"Configuring stream {self.stream_id}")
self.buf_len = buf_len
log.info("Allocating huge page and setting up buffers")
self.mem, self.hugef, self.buf_list_addr, self.pos_buf_addr, self.n_bufs = self.setup_buf(buf_len)
log.info("Setting buffer list, length, and stream id and traffic priority bit")
self.regs.CTL = ((self.stream_id & 0xFF) << 20) | (1 << 18) # must be set to something other than 0?
self.regs.BDPU = (self.buf_list_addr >> 32) & 0xffffffff
self.regs.BDPL = self.buf_list_addr & 0xffffffff
self.regs.CBL = buf_len
self.regs.LVI = self.n_bufs - 1
self.debug()
log.info(f"Configured stream {self.stream_id}")
def write(self, data):
bufl = min(len(data), self.buf_len)
log.info(f"Writing data to stream {self.stream_id}, len {bufl}, SPBFCTL {self.hda.SPBFCTL:x}, SPIB {self.hda.SPIB}")
self.mem[0:bufl] = data[0:bufl]
self.mem[bufl:bufl+bufl] = data[0:bufl]
self.hda.SPBFCTL |= (1 << self.stream_id)
self.hda.SPIB += bufl
log.info(f"Wrote data to stream {self.stream_id}, SPBFCTL {self.hda.SPBFCTL:x}, SPIB {self.hda.SPIB}")
def start(self):
log.info(f"Starting stream {self.stream_id}, CTL {self.regs.CTL:x}")
self.regs.CTL |= 2
log.info(f"Started stream {self.stream_id}, CTL {self.regs.CTL:x}")
def stop(self):
log.info(f"Stopping stream {self.stream_id}, CTL {self.regs.CTL:x}")
self.regs.CTL &= 2
time.sleep(0.1)
self.regs.CTL |= 1
log.info(f"Stopped stream {self.stream_id}, CTL {self.regs.CTL:x}")
def setup_buf(self, buf_len: int):
(mem, phys_addr, hugef) = map_phys_mem(self.stream_id)
log.info(f"Mapped 2M huge page at 0x{phys_addr:x} for buf size ({buf_len})")
# create two buffers in the page of buf_len and mark them
# in a buffer descriptor list for the hardware to use
buf0_len = buf_len
buf1_len = buf_len
bdl_off = buf0_len + buf1_len
# bdl is 2 (64bits, 16 bytes) per entry, we have two
mem[bdl_off:bdl_off + 32] = struct.pack("<QQQQ",
phys_addr,
buf0_len,
phys_addr + buf0_len,
buf1_len)
dpib_off = bdl_off+32
# ensure buffer is initialized, sanity
for i in range(0, buf_len*2):
mem[i] = 0
log.info("Filled the buffer descriptor list (BDL) for DMA.")
return (mem, hugef, phys_addr + bdl_off, phys_addr+dpib_off, 2)
def debug(self):
log.debug("HDA %d: PPROC %d, CTL 0x%x, LPIB 0x%x, BDPU 0x%x, BDPL 0x%x, CBL 0x%x, LVI 0x%x",
self.stream_id, (hda.PPCTL >> self.stream_id) & 1, self.regs.CTL, self.regs.LPIB, self.regs.BDPU,
self.regs.BDPL, self.regs.CBL, self.regs.LVI)
log.debug(" FIFOW %d, FIFOS %d, FMT %x, FIFOL %d, DPIB %d, EFIFOS %d",
self.regs.FIFOW & 0x7, self.regs.FIFOS, self.regs.FMT, self.regs.FIFOL, self.dbg0.DPIB, self.dbg0.EFIFOS)
log.debug(" status: FIFORDY %d, DESE %d, FIFOE %d, BCIS %d",
(self.regs.STS >> 5) & 1, (self.regs.STS >> 4) & 1, (self.regs.STS >> 3) & 1, (self.regs.STS >> 2) & 1)
def reset(self):
# Turn DMA off and reset the stream. Clearing START first is a
# noop per the spec, but absolutely required for stability.
# Apparently the reset doesn't stop the stream, and the next load
# starts before it's ready and kills the load (and often the DSP).
# The sleep too is required, on at least one board (a fast
# chromebook) putting the two writes next each other also hangs
# the DSP!
log.info(f"Resetting stream {self.stream_id}")
self.debug()
self.regs.CTL &= ~2 # clear START
time.sleep(0.1)
# set enter reset bit
self.regs.CTL = 1
while (self.regs.CTL & 1) == 0: pass
# clear enter reset bit to exit reset
self.regs.CTL = 0
while (self.regs.CTL & 1) == 1: pass
log.info(f"Disable SPIB and set position 0 of stream {self.stream_id}")
self.hda.SPBFCTL = 0
self.hda.SPIB = 0
#log.info("Setting dma position buffer and enable it")
#self.hda.DPUBASE = self.pos_buf_addr >> 32 & 0xffffffff
#self.hda.DPLBASE = self.pos_buf_addr & 0xfffffff0 | 1
log.info(f"Enabling dsp capture (PROCEN) of stream {self.stream_id}")
self.hda.PPCTL |= (1 << self.stream_id)
self.debug()
log.info(f"Reset stream {self.stream_id}")
def map_regs():
p = runx(f"grep -iEl 'PCI_CLASS=40(10|38)0' /sys/bus/pci/devices/*/uevent")
pcidir = os.path.dirname(p)
# Platform/quirk detection. ID lists cribbed from the SOF kernel driver
global cavs15, cavs18, cavs25
did = int(open(f"{pcidir}/device").read().rstrip(), 16)
cavs15 = did in [ 0x5a98, 0x1a98, 0x3198 ]
cavs18 = did in [ 0x9dc8, 0xa348, 0x02c8, 0x06c8, 0xa3f0 ]
cavs25 = did in [ 0xa0c8, 0x43c8, 0x4b55, 0x4b58, 0x7ad0, 0x51c8 ]
# Check sysfs for a loaded driver and remove it
if os.path.exists(f"{pcidir}/driver"):
mod = os.path.basename(os.readlink(f"{pcidir}/driver/module"))
found_msg = f"Existing driver \"{mod}\" found"
if args.log_only:
log.info(found_msg)
else:
log.warning(found_msg + ", unloading module")
runx(f"rmmod -f {mod}")
# Disengage runtime power management so the kernel doesn't put it to sleep
log.info(f"Forcing {pcidir}/power/control to always 'on'")
with open(f"{pcidir}/power/control", "w") as ctrl:
ctrl.write("on")
# Make sure PCI memory space access and busmastering are enabled.
# Also disable interrupts so as not to confuse the kernel.
with open(f"{pcidir}/config", "wb+") as cfg:
cfg.seek(4)
cfg.write(b'\x06\x04')
# Standard HD Audio Registers
global hdamem
(hdamem, _) = bar_map(pcidir, 0)
hda = Regs(hdamem)
hda.GCAP = 0x0000
hda.GCTL = 0x0008
hda.SPBFCTL = 0x0704
hda.PPCTL = 0x0804
# Find the ID of the first output stream
hda_ostream_id = (hda.GCAP >> 8) & 0x0f # number of input streams
log.info(f"Selected output stream {hda_ostream_id} (GCAP = 0x{hda.GCAP:x})")
hda.SD_SPIB = 0x0708 + (8 * hda_ostream_id)
hda.freeze()
# Standard HD Audio Stream Descriptor
sd = Regs(hdamem + 0x0080 + (hda_ostream_id * 0x20))
sd.CTL = 0x00
sd.CBL = 0x08
sd.LVI = 0x0c
sd.BDPL = 0x18
sd.BDPU = 0x1c
sd.freeze()
# Intel Audio DSP Registers
global bar4_mmap
(bar4_mem, bar4_mmap) = bar_map(pcidir, 4)
dsp = Regs(bar4_mem)
dsp.ADSPCS = 0x00004
dsp.HIPCTDR = 0x00040 if cavs15 else 0x000c0
dsp.HIPCTDA = 0x000c4 # 1.8+ only
dsp.HIPCTDD = 0x00044 if cavs15 else 0x000c8
dsp.HIPCIDR = 0x00048 if cavs15 else 0x000d0
dsp.HIPCIDA = 0x000d4 # 1.8+ only
dsp.HIPCIDD = 0x0004c if cavs15 else 0x000d8
dsp.SRAM_FW_STATUS = 0x80000 # Start of first SRAM window
dsp.freeze()
return (hda, sd, dsp, hda_ostream_id)
def setup_dma_mem(fw_bytes):
(mem, phys_addr, _) = map_phys_mem(hda_ostream_id)
mem[0:len(fw_bytes)] = fw_bytes
log.info("Mapped 2M huge page at 0x%x to contain %d bytes of firmware"
% (phys_addr, len(fw_bytes)))
# HDA requires at least two buffers be defined, but we don't care about
# boundaries because it's all a contiguous region. Place a vestigial
# 128-byte (minimum size and alignment) buffer after the main one, and put
# the 4-entry BDL list into the final 128 bytes of the page.
buf0_len = HUGEPAGESZ - 2 * 128
buf1_len = 128
bdl_off = buf0_len + buf1_len
mem[bdl_off:bdl_off + 32] = struct.pack("<QQQQ",
phys_addr, buf0_len,
phys_addr + buf0_len, buf1_len)
log.info("Filled the buffer descriptor list (BDL) for DMA.")
return (phys_addr + bdl_off, 2)
global_mmaps = [] # protect mmap mappings from garbage collection!
# Maps 2M of contiguous memory using a single page from hugetlbfs,
# then locates its physical address for use as a DMA buffer.
def map_phys_mem(stream_id):
# Make sure hugetlbfs is mounted (not there on chromeos)
os.system("mount | grep -q hugetlbfs ||"
+ " (mkdir -p /dev/hugepages; "
+ " mount -t hugetlbfs hugetlbfs /dev/hugepages)")
# Ensure the kernel has enough budget for one new page
free = int(runx("awk '/HugePages_Free/ {print $2}' /proc/meminfo"))
if free == 0:
tot = 1 + int(runx("awk '/HugePages_Total/ {print $2}' /proc/meminfo"))
os.system(f"echo {tot} > /proc/sys/vm/nr_hugepages")
hugef_name = HUGEPAGE_FILE + str(stream_id)
hugef = open(hugef_name, "w+")
hugef.truncate(HUGEPAGESZ)
mem = mmap.mmap(hugef.fileno(), HUGEPAGESZ)
log.info("type of mem is %s", str(type(mem)))
global_mmaps.append(mem)
os.unlink(hugef_name)
# Find the local process address of the mapping, then use that to extract
# the physical address from the kernel's pagemap interface. The physical
# page frame number occupies the bottom bits of the entry.
mem[0] = 0 # Fault the page in so it has an address!
vaddr = ctypes.addressof(ctypes.c_int.from_buffer(mem))
vpagenum = vaddr >> 12
pagemap = open("/proc/self/pagemap", "rb")
pagemap.seek(vpagenum * 8)
pent = pagemap.read(8)
paddr = (struct.unpack("Q", pent)[0] & ((1 << 55) - 1)) * PAGESZ
pagemap.close()
return (mem, paddr, hugef)
# Maps a PCI BAR and returns the in-process address
def bar_map(pcidir, barnum):
f = open(pcidir + "/resource" + str(barnum), "r+")
mm = mmap.mmap(f.fileno(), os.fstat(f.fileno()).st_size)
global_mmaps.append(mm)
log.info("Mapped PCI bar %d of length %d bytes."
% (barnum, os.fstat(f.fileno()).st_size))
return (ctypes.addressof(ctypes.c_int.from_buffer(mm)), mm)
# Syntactic sugar to make register block definition & use look nice.
# Instantiate from a base address, assign offsets to (uint32) named registers as
# fields, call freeze(), then the field acts as a direct alias for the register!
class Regs:
def __init__(self, base_addr):
vars(self)["base_addr"] = base_addr
vars(self)["ptrs"] = {}
vars(self)["frozen"] = False
def freeze(self):
vars(self)["frozen"] = True
def __setattr__(self, name, val):
if not self.frozen and name not in self.ptrs:
addr = self.base_addr + val
self.ptrs[name] = ctypes.c_uint32.from_address(addr)
else:
self.ptrs[name].value = val
def __getattr__(self, name):
return self.ptrs[name].value
def runx(cmd):
return subprocess.check_output(cmd, shell=True).decode().rstrip()
def mask(bit):
if cavs25:
return 0b1 << bit
if cavs18:
return 0b1111 << bit
if cavs15:
return 0b11 << bit
def load_firmware(fw_file):
try:
fw_bytes = open(fw_file, "rb").read()
except Exception as e:
log.error(f"Could not read firmware file: `{fw_file}'")
log.error(e)
sys.exit(1)
(magic, sz) = struct.unpack("4sI", fw_bytes[0:8])
if magic == b'XMan':
log.info(f"Trimming {sz} bytes of extended manifest")
fw_bytes = fw_bytes[sz:len(fw_bytes)]
# This actually means "enable access to BAR4 registers"!
hda.PPCTL |= (1 << 30) # GPROCEN, "global processing enable"
log.info("Resetting HDA device")
hda.GCTL = 0
while hda.GCTL & 1: pass
hda.GCTL = 1
while not hda.GCTL & 1: pass
log.info(f"Stalling and Resetting DSP cores, ADSPCS = 0x{dsp.ADSPCS:x}")
dsp.ADSPCS |= mask(CSTALL)
dsp.ADSPCS |= mask(CRST)
while (dsp.ADSPCS & mask(CRST)) == 0: pass
log.info(f"Powering down DSP cores, ADSPCS = 0x{dsp.ADSPCS:x}")
dsp.ADSPCS &= ~mask(SPA)
while dsp.ADSPCS & mask(CPA): pass
log.info(f"Configuring HDA stream {hda_ostream_id} to transfer firmware image")
(buf_list_addr, num_bufs) = setup_dma_mem(fw_bytes)
sd.CTL = 1
while (sd.CTL & 1) == 0: pass
sd.CTL = 0
while (sd.CTL & 1) == 1: pass
sd.CTL = (1 << 20) # Set stream ID to anything non-zero
sd.BDPU = (buf_list_addr >> 32) & 0xffffffff
sd.BDPL = buf_list_addr & 0xffffffff
sd.CBL = len(fw_bytes)
sd.LVI = num_bufs - 1
hda.PPCTL |= (1 << hda_ostream_id)
# SPIB ("Software Position In Buffer") is an Intel HDA extension
# that puts a transfer boundary into the stream beyond which the
# other side will not read. The ROM wants to poll on a "buffer
# full" bit on the other side that only works with this enabled.
hda.SPBFCTL |= (1 << hda_ostream_id)
hda.SD_SPIB = len(fw_bytes)
# Start DSP. Host needs to provide power to all cores on 1.5
# (which also starts them) and 1.8 (merely gates power, DSP also
# has to set PWRCTL). On 2.5 where the DSP has full control,
# and only core 0 is set.
log.info(f"Starting DSP, ADSPCS = 0x{dsp.ADSPCS:x}")
dsp.ADSPCS = mask(SPA)
while (dsp.ADSPCS & mask(CPA)) == 0: pass
log.info(f"Unresetting DSP cores, ADSPCS = 0x{dsp.ADSPCS:x}")
dsp.ADSPCS &= ~mask(CRST)
while (dsp.ADSPCS & 1) != 0: pass
log.info(f"Running DSP cores, ADSPCS = 0x{dsp.ADSPCS:x}")
dsp.ADSPCS &= ~mask(CSTALL)
# Wait for the ROM to boot and signal it's ready. This not so short
# sleep seems to be needed; if we're banging on the memory window
# during initial boot (before/while the window control registers
# are configured?) the DSP hardware will hang fairly reliably.
log.info(f"Wait for ROM startup, ADSPCS = 0x{dsp.ADSPCS:x}")
time.sleep(1)
while (dsp.SRAM_FW_STATUS >> 24) != 5: pass
# Send the DSP an IPC message to tell the device how to boot.
# Note: with cAVS 1.8+ the ROM receives the stream argument as an
# index within the array of output streams (and we always use the
# first one by construction). But with 1.5 it's the HDA index,
# and depends on the number of input streams on the device.
stream_idx = hda_ostream_id if cavs15 else 0
ipcval = ( (1 << 31) # BUSY bit
| (0x01 << 24) # type = PURGE_FW
| (1 << 14) # purge_fw = 1
| (stream_idx << 9)) # dma_id
log.info(f"Sending IPC command, HIPIDR = 0x{ipcval:x}")
dsp.HIPCIDR = ipcval
log.info(f"Starting DMA, FW_STATUS = 0x{dsp.SRAM_FW_STATUS:x}")
sd.CTL |= 2 # START flag
wait_fw_entered()
# Turn DMA off and reset the stream. Clearing START first is a
# noop per the spec, but absolutely required for stability.
# Apparently the reset doesn't stop the stream, and the next load
# starts before it's ready and kills the load (and often the DSP).
# The sleep too is required, on at least one board (a fast
# chromebook) putting the two writes next each other also hangs
# the DSP!
sd.CTL &= ~2 # clear START
time.sleep(0.1)
sd.CTL |= 1
log.info(f"cAVS firmware load complete")
def fw_is_alive():
return dsp.SRAM_FW_STATUS & ((1 << 28) - 1) == 5 # "FW_ENTERED"
def wait_fw_entered(timeout_s=2):
log.info("Waiting %s for firmware handoff, FW_STATUS = 0x%x",
"forever" if timeout_s is None else f"{timeout_s} seconds",
dsp.SRAM_FW_STATUS)
hertz = 100
attempts = None if timeout_s is None else timeout_s * hertz
while True:
alive = fw_is_alive()
if alive:
break
if attempts is not None:
attempts -= 1
if attempts < 0:
break
time.sleep(1 / hertz)
if not alive:
log.warning("Load failed? FW_STATUS = 0x%x", dsp.SRAM_FW_STATUS)
else:
log.info("FW alive, FW_STATUS = 0x%x", dsp.SRAM_FW_STATUS)
# This SHOULD be just "mem[start:start+length]", but slicing an mmap
# array seems to be unreliable on one of my machines (python 3.6.9 on
# Ubuntu 18.04). Read out bytes individually.
def win_read(start, length):
try:
return b''.join(bar4_mmap[WINSTREAM_OFFSET + x].to_bytes(1, 'little')
for x in range(start, start + length))
except IndexError as ie:
# A FW in a bad state may cause winstream garbage
log.error("IndexError in bar4_mmap[%d + %d]", WINSTREAM_OFFSET, start)
log.error("bar4_mmap.size()=%d", bar4_mmap.size())
raise ie
def win_hdr():
return struct.unpack("<IIII", win_read(0, 16))
# Python implementation of the same algorithm in sys_winstream_read(),
# see there for details.
def winstream_read(last_seq):
while True:
(wlen, start, end, seq) = win_hdr()
if last_seq == 0:
last_seq = seq if args.no_history else (seq - ((end - start) % wlen))
if seq == last_seq or start == end:
return (seq, "")
behind = seq - last_seq
if behind > ((end - start) % wlen):
return (seq, "")
copy = (end - behind) % wlen
suffix = min(behind, wlen - copy)
result = win_read(16 + copy, suffix)
if suffix < behind:
result += win_read(16, behind - suffix)
(wlen, start1, end, seq1) = win_hdr()
if start1 == start and seq1 == seq:
# Best effort attempt at decoding, replacing unusable characters
# Found to be useful when it really goes wrong
return (seq, result.decode("utf-8", "replace"))
async def ipc_delay_done():
await asyncio.sleep(0.1)
dsp.HIPCTDA = 1<<31
ipc_timestamp = 0
# Super-simple command language, driven by the test code on the DSP
def ipc_command(data, ext_data):
send_msg = False
done = True
log.debug ("ipc data %d, ext_data %x", data, ext_data)
if data == 0: # noop, with synchronous DONE
pass
elif data == 1: # async command: signal DONE after a delay (on 1.8+)
if not cavs15:
done = False
asyncio.ensure_future(ipc_delay_done())
elif data == 2: # echo back ext_data as a message command
send_msg = True
elif data == 3: # set ADSPCS
dsp.ADSPCS = ext_data
elif data == 4: # echo back microseconds since last timestamp command
global ipc_timestamp
t = round(time.time() * 1e6)
ext_data = t - ipc_timestamp
ipc_timestamp = t
send_msg = True
elif data == 5: # copy word at outbox[ext_data >> 16] to inbox[ext_data & 0xffff]
src = OUTBOX_OFFSET + 4 * (ext_data >> 16)
dst = INBOX_OFFSET + 4 * (ext_data & 0xffff)
for i in range(4):
bar4_mmap[dst + i] = bar4_mmap[src + i]
elif data == 6: # HDA RESET (init if not exists)
stream_id = ext_data & 0xff
if stream_id in hda_streams:
hda_streams[stream_id].reset()
else:
hda_str = HDAStream(stream_id)
hda_streams[stream_id] = hda_str
elif data == 7: # HDA CONFIG
stream_id = ext_data & 0xFF
buf_len = ext_data >> 8 & 0xFFFF
hda_str = hda_streams[stream_id]
hda_str.config(buf_len)
elif data == 8: # HDA START
stream_id = ext_data & 0xFF
hda_streams[stream_id].start()
hda_streams[stream_id].mem.seek(0)
elif data == 9: # HDA STOP
stream_id = ext_data & 0xFF
hda_streams[stream_id].stop()
elif data == 10: # HDA VALIDATE
stream_id = ext_data & 0xFF
hda_str = hda_streams[stream_id]
hda_str.debug()
is_ramp_data = True
hda_str.mem.seek(0)
for (i, val) in enumerate(hda_str.mem.read(256)):
if i != val:
is_ramp_data = False
# log.info("stream[%d][%d]: %d", stream_id, i, val) # debug helper
log.info("Is ramp data? " + str(is_ramp_data))
ext_data = int(is_ramp_data)
log.info(f"Ext data to send back on ramp status {ext_data}")
send_msg = True
elif data == 11: # HDA HOST OUT SEND
stream_id = ext_data & 0xff
buf = bytearray(256)
for i in range(0, 256):
buf[i] = i
hda_streams[stream_id].write(buf)
elif data == 12: # HDA PRINT
log.info("Doing HDA Print")
stream_id = ext_data & 0xFF
buf_len = ext_data >> 8 & 0xFFFF
hda_str = hda_streams[stream_id]
pos = hda_str.mem.tell()
buf_data = hda_str.mem.read(buf_len).decode("utf-8", "replace")
log.info(f"DSP LOG MSG (idx: {pos}, len: {buf_len}): {buf_data}")
pos = hda_str.mem.tell()
if pos >= hda_str.buf_len*2:
log.info(f"Wrapping log reader, pos {pos} len {hda_str.buf_len}")
hda_str.mem.seek(0)
else:
log.warning(f"cavstool: Unrecognized IPC command 0x{data:x} ext 0x{ext_data:x}")
if not fw_is_alive():
if args.log_only:
log.info("DSP power seems off")
wait_fw_entered(timeout_s=None)
else:
log.warning("DSP power seems off?!")
time.sleep(2) # potential spam reduction
return
dsp.HIPCTDR = 1<<31 # Ack local interrupt, also signals DONE on v1.5
if cavs18:
time.sleep(0.01) # Needed on 1.8, or the command below won't send!
if done and not cavs15:
dsp.HIPCTDA = 1<<31 # Signal done
if send_msg:
dsp.HIPCIDD = ext_data
dsp.HIPCIDR = (1<<31) | ext_data
async def _main(server):
#TODO this bit me, remove the globals, write a little FirmwareLoader class or something to contain.
global hda, sd, dsp, hda_ostream_id, hda_streams
global start_output
try:
(hda, sd, dsp, hda_ostream_id) = map_regs()
except Exception as e:
log.error("Could not map device in sysfs; run as root?")
log.error(e)
sys.exit(1)
log.info(f"Detected cAVS {'1.5' if cavs15 else '1.8+'} hardware")
if args.log_only:
wait_fw_entered(timeout_s=None)
else:
if not fw_file:
log.error("Firmware file argument missing")
sys.exit(1)
load_firmware(fw_file)
time.sleep(0.1)
if not args.quiet:
adsp_log("--\n", server)
hda_streams = dict()
last_seq = 0
while start_output is True:
await asyncio.sleep(0.03)
(last_seq, output) = winstream_read(last_seq)
if output:
adsp_log(output, server)
if dsp.HIPCIDA & 0x80000000:
dsp.HIPCIDA = 1<<31 # must ACK any DONE interrupts that arrive!
if dsp.HIPCTDR & 0x80000000:
ipc_command(dsp.HIPCTDR & ~0x80000000, dsp.HIPCTDD)
if server:
# Check if the client connection is alive.
if not is_connection_alive(server):
lock.acquire()
start_output = False
lock.release()
class adsp_request_handler(socketserver.BaseRequestHandler):
"""
The request handler class for control the actions of server.
"""
def receive_fw(self):
log.info("Receiving...")
# Receive the header first
d = self.request.recv(HEADER_SZ)
# Unpacked the header data
# Include size(4), filename(42) and MD5(32)
header = d[:HEADER_SZ]
total = d[HEADER_SZ:]
s = struct.Struct(PACKET_HEADER_FORMAT_FW)
fsize, fname, md5_tx_b = s.unpack(header)
log.info(f'size:{fsize}, filename:{fname}, MD5:{md5_tx_b}')
# Receive the firmware. We only receive the specified amount of bytes.
while len(total) < fsize:
data = self.request.recv(min(BUF_SIZE, fsize - len(total)))
if not data:
raise EOFError("truncated firmware file")
total += data
log.info(f"Done Receiving {len(total)}.")
try:
with open(fname,'wb') as f:
f.write(total)
except Exception as e:
log.error(f"Get exception {e} during FW transfer.")
return None
# Check the MD5 of the firmware
md5_rx = hashlib.md5(total).hexdigest()
md5_tx = md5_tx_b.decode('utf-8')
if md5_tx != md5_rx:
log.error(f'MD5 mismatch: {md5_tx} vs. {md5_rx}')
return None
return fname
def handle(self):
global start_output, fw_file
cmd = self.request.recv(MAX_CMD_SZ)
log.info(f"{self.client_address[0]} wrote: {cmd}")
action = cmd.decode("utf-8")
log.debug(f'load {action}')
if action == CMD_DOWNLOAD:
self.request.sendall(cmd)
recv_file = self.receive_fw()
if recv_file:
self.request.sendall("success".encode('utf-8'))
log.info("Firmware well received. Ready to download.")
else:
self.request.sendall("failed".encode('utf-8'))
log.error("Receive firmware failed.")
lock.acquire()
fw_file = recv_file
start_output = True
lock.release()
else:
log.error("incorrect load communitcation!")
class adsp_log_handler(socketserver.BaseRequestHandler):
"""
The log handler class for grabbing output messages of server.
"""
def run_adsp(self):
self.loop = asyncio.get_event_loop()
self.loop.run_until_complete(_main(self))
def handle(self):
cmd = self.request.recv(MAX_CMD_SZ)
log.info(f"{self.client_address[0]} wrote: {cmd}")
action = cmd.decode("utf-8")
log.debug(f'monitor {action}')
if action == CMD_LOG_START:
global start_output, fw_file
self.request.sendall(cmd)
log.info(f"Waiting for instruction...")
while start_output is False:
time.sleep(1)
if not is_connection_alive(self):
break
if fw_file:
log.info(f"Loaded FW {fw_file} and running...")
if os.path.exists(fw_file):
self.run_adsp()
log.info("service complete.")
else:
log.error("Cannot find the FW file.")
lock.acquire()
start_output = False
if fw_file:
os.remove(fw_file)
fw_file = None
lock.release()
else:
log.error("incorrect monitor communitcation!")
log.info("Wait for next service...")
def is_connection_alive(server):
try:
server.request.sendall(b' ')
except (BrokenPipeError, ConnectionResetError):
log.info("Client is disconnect.")
return False
return True
def adsp_log(output, server):
if server:
server.request.sendall(output.encode("utf-8"))
else:
sys.stdout.write(output)
sys.stdout.flush()
def get_host_ip():
"""
Helper tool use to detect host's serving ip address.
"""
interfaces = netifaces.interfaces()
for i in interfaces:
if i != "lo":
try:
netifaces.ifaddresses(i)
ip = netifaces.ifaddresses(i)[netifaces.AF_INET][0]['addr']
log.info (f"Use interface {i}, IP address: {ip}")
except Exception:
log.info(f"Ignore the interface {i} which is not activated.")
return ip
ap = argparse.ArgumentParser(description="DSP loader/logger tool")
ap.add_argument("-q", "--quiet", action="store_true",
help="No loader output, just DSP logging")
ap.add_argument("-v", "--verbose", action="store_true",
help="More loader output, DEBUG logging level")
ap.add_argument("-l", "--log-only", action="store_true",
help="Don't load firmware, just show log output")
ap.add_argument("-n", "--no-history", action="store_true",
help="No current log buffer at start, just new output")
ap.add_argument("-s", "--server-addr",
help="Specify the IP address that the server to active")
ap.add_argument("fw_file", nargs="?", help="Firmware file")
args = ap.parse_args()
if args.quiet:
log.setLevel(logging.WARN)
elif args.verbose:
log.setLevel(logging.DEBUG)
if args.fw_file:
fw_file = args.fw_file
else:
fw_file = None
if args.server_addr:
HOST = args.server_addr
else:
HOST = get_host_ip()
if __name__ == "__main__":
# When fw_file is assigned or in log_only mode, it will
# not serve as a daemon. That mean it just run load
# firmware or read the log directly.
if args.fw_file or args.log_only:
start_output = True
try:
asyncio.get_event_loop().run_until_complete(_main(None))
except KeyboardInterrupt:
start_output = False
finally:
sys.exit(0)
# Launch the command request service
socketserver.TCPServer.allow_reuse_address = True
req_server = socketserver.TCPServer((HOST, PORT_REQ), adsp_request_handler)
req_t = threading.Thread(target=req_server.serve_forever, daemon=True)
# Activate the log service which output adsp execution
with socketserver.TCPServer((HOST, PORT_LOG), adsp_log_handler) as log_server:
try:
log.info("Req server start...")
req_t.start()
log.info("Log server start...")
log_server.serve_forever()
except KeyboardInterrupt:
lock.acquire()
start_output = False
lock.release()
log_server.shutdown()
req_server.shutdown()