blob: 9b57624b1893c9a1a4371b0d67b2df311776f469 [file] [log] [blame]
/*
* Copyright (c) 2022-2025 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_rtc_timer
#include <soc/soc_caps.h>
#include <esp_rom_sys.h>
#if SOC_LP_TIMER_SUPPORTED
#include "hal/lp_timer_ll.h"
#else
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc.h"
#include <hal/rtc_cntl_ll.h>
#endif
#include <zephyr/device.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/spinlock.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/esp32_clock_control.h>
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(esp32_counter_rtc, CONFIG_COUNTER_LOG_LEVEL);
static void counter_esp32_isr(void *arg);
struct counter_esp32_config {
struct counter_config_info counter_info;
#if SOC_LP_TIMER_SUPPORTED
lp_timer_dev_t *dev;
#endif
int irq_source;
int irq_priority;
int irq_flags;
const struct device *clock_dev;
};
struct counter_esp32_data {
struct counter_alarm_cfg alarm_cfg;
uint32_t ticks;
uint32_t clk_src_freq;
};
static int counter_esp32_init(const struct device *dev)
{
const struct counter_esp32_config *cfg = dev->config;
struct counter_esp32_data *data = dev->data;
int ret, flags;
/* RTC_SLOW_CLK is the default clk source */
clock_control_get_rate(cfg->clock_dev,
(clock_control_subsys_t)ESP32_CLOCK_CONTROL_SUBSYS_RTC_SLOW,
&data->clk_src_freq);
flags = ESP_PRIO_TO_FLAGS(cfg->irq_priority) | ESP_INT_FLAGS_CHECK(cfg->irq_flags) |
ESP_INTR_FLAG_SHARED;
ret = esp_intr_alloc(cfg->irq_source, flags,
(intr_handler_t)counter_esp32_isr, (void *)dev, NULL);
if (ret != 0) {
LOG_ERR("could not allocate interrupt (err %d)", ret);
}
return ret;
}
static int counter_esp32_start(const struct device *dev)
{
ARG_UNUSED(dev);
/* RTC main timer runs after power-on reset */
return 0;
}
static int counter_esp32_stop(const struct device *dev)
{
ARG_UNUSED(dev);
/*
* Any reset/sleep mode, except for the power-up
* reset, will not stop or reset the RTC timer
* ESP32 TRM v4.6 sec. 31.3.11
*/
return 0;
}
static int counter_esp32_get_value(const struct device *dev, uint32_t *ticks)
{
#if SOC_LP_TIMER_SUPPORTED
const struct counter_esp32_config *cfg = dev->config;
lp_timer_ll_counter_snapshot(cfg->dev);
*ticks = lp_timer_ll_get_counter_value_low(cfg->dev, 0);
#else
ARG_UNUSED(dev);
*ticks = (uint32_t) rtc_cntl_ll_get_rtc_time();
#endif
return 0;
}
static int counter_esp32_get_value_64(const struct device *dev, uint64_t *ticks)
{
#if SOC_LP_TIMER_SUPPORTED
const struct counter_esp32_config *cfg = dev->config;
lp_timer_ll_counter_snapshot(cfg->dev);
uint32_t lo = lp_timer_ll_get_counter_value_low(cfg->dev, 0);
uint32_t hi = lp_timer_ll_get_counter_value_high(cfg->dev, 0);
*ticks = ((uint64_t)hi << 32 | lo);
#else
ARG_UNUSED(dev);
*ticks = rtc_cntl_ll_get_rtc_time();
#endif
return 0;
}
static int counter_esp32_set_alarm(const struct device *dev, uint8_t chan_id,
const struct counter_alarm_cfg *alarm_cfg)
{
ARG_UNUSED(chan_id);
#if SOC_LP_TIMER_SUPPORTED
const struct counter_esp32_config *cfg = dev->config;
lp_timer_dev_t *lp_timer = cfg->dev;
#endif
struct counter_esp32_data *data = dev->data;
uint64_t now;
uint64_t ticks = 0;
#if defined(CONFIG_SOC_SERIES_ESP32) || defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3)
/* In ESP32/C3 Series the min possible value is 30+ us*/
if (counter_ticks_to_us(dev, alarm_cfg->ticks) <= 30) {
return -EINVAL;
}
#endif
data->alarm_cfg.callback = alarm_cfg->callback;
data->alarm_cfg.user_data = alarm_cfg->user_data;
counter_esp32_get_value_64(dev, &now);
if (alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) {
ticks = (now & ~0xFFFFFFFFULL) | alarm_cfg->ticks;
if (ticks < now) {
ticks += (1ULL << 32);
}
} else {
ticks = now + alarm_cfg->ticks;
}
data->ticks = (uint32_t)ticks;
#if SOC_LP_TIMER_SUPPORTED
lp_timer_ll_clear_alarm_intr_status(cfg->dev);
lp_timer_ll_set_alarm_target(cfg->dev, 0, ticks);
lp_timer_ll_set_target_enable(cfg->dev, 0, true);
lp_timer->int_en.alarm = 1;
#else
rtc_cntl_ll_set_wakeup_timer(ticks);
/* RTC main timer set alarm value */
CLEAR_PERI_REG_MASK(RTC_CNTL_SLP_TIMER1_REG, 0xFFFFFFFF);
/* RTC main timer set alarm enable */
SET_PERI_REG_MASK(RTC_CNTL_SLP_TIMER1_REG, RTC_CNTL_MAIN_TIMER_ALARM_EN);
/* RTC main timer interrupt enable */
SET_PERI_REG_MASK(RTC_CNTL_INT_ENA_REG, RTC_CNTL_MAIN_TIMER_INT_ENA);
#endif
return 0;
}
static int counter_esp32_cancel_alarm(const struct device *dev, uint8_t chan_id)
{
ARG_UNUSED(chan_id);
struct counter_esp32_data *data = dev->data;
#if SOC_LP_TIMER_SUPPORTED
const struct counter_esp32_config *cfg = dev->config;
lp_timer_dev_t *lp_timer = cfg->dev;
lp_timer_ll_set_target_enable(cfg->dev, 0, false);
lp_timer->int_en.alarm = 0;
lp_timer_ll_clear_alarm_intr_status(cfg->dev);
#else
/* RTC main timer set alarm disable */
CLEAR_PERI_REG_MASK(RTC_CNTL_SLP_TIMER1_REG, RTC_CNTL_MAIN_TIMER_ALARM_EN);
/* RTC main timer interrupt disable, and clear interrupt flag */
REG_WRITE(RTC_CNTL_INT_ENA_REG, 0);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_MAIN_TIMER_INT_CLR);
#endif
data->alarm_cfg.callback = NULL;
data->alarm_cfg.user_data = NULL;
return 0;
}
static int counter_esp32_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
const struct counter_esp32_config *config = dev->config;
if (cfg->ticks != config->counter_info.max_top_value) {
return -ENOTSUP;
}
return 0;
}
static uint32_t counter_esp32_get_pending_int(const struct device *dev)
{
#if SOC_LP_TIMER_SUPPORTED
const struct counter_esp32_config *cfg = dev->config;
lp_timer_dev_t *lp_timer = cfg->dev;
return lp_timer->int_st.alarm;
#else
ARG_UNUSED(dev);
uint32_t rc = READ_PERI_REG(RTC_CNTL_INT_ST_REG) & RTC_CNTL_MAIN_TIMER_INT_ST;
return (rc >> RTC_CNTL_MAIN_TIMER_INT_ST_S);
#endif
}
/*
* Espressif's RTC Timer is actually 48-bits in resolution
* However, the top value returned is limited to UINT32_MAX
* as per the counter API.
*/
static uint32_t counter_esp32_get_top_value(const struct device *dev)
{
const struct counter_esp32_config *cfg = dev->config;
return cfg->counter_info.max_top_value;
}
static uint32_t counter_esp32_get_freq(const struct device *dev)
{
struct counter_esp32_data *data = dev->data;
return data->clk_src_freq;
}
static struct counter_esp32_data counter_data;
static const struct counter_esp32_config counter_config = {
.counter_info = {
.max_top_value = UINT32_MAX,
.flags = COUNTER_CONFIG_INFO_COUNT_UP,
.channels = 1
},
#if SOC_LP_TIMER_SUPPORTED
.dev = (lp_timer_dev_t *)DT_INST_REG_ADDR(0),
#endif
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)),
.irq_source = DT_INST_IRQ_BY_IDX(0, 0, irq),
.irq_priority = DT_INST_IRQ_BY_IDX(0, 0, priority),
.irq_flags = DT_INST_IRQ_BY_IDX(0, 0, flags)
};
static DEVICE_API(counter, rtc_timer_esp32_api) = {
.start = counter_esp32_start,
.stop = counter_esp32_stop,
.get_value = counter_esp32_get_value,
.get_value_64 = counter_esp32_get_value_64,
.set_alarm = counter_esp32_set_alarm,
.cancel_alarm = counter_esp32_cancel_alarm,
.set_top_value = counter_esp32_set_top_value,
.get_pending_int = counter_esp32_get_pending_int,
.get_top_value = counter_esp32_get_top_value,
.get_freq = counter_esp32_get_freq,
};
static void counter_esp32_isr(void *arg)
{
const struct device *dev = (const struct device *)arg;
struct counter_esp32_data *data = dev->data;
counter_alarm_callback_t cb = data->alarm_cfg.callback;
void *cb_data = data->alarm_cfg.user_data;
uint32_t now;
#if SOC_LP_TIMER_SUPPORTED
const struct counter_esp32_config *cfg = dev->config;
lp_timer_dev_t *lp_timer = cfg->dev;
if (!lp_timer->int_st.alarm) {
return;
}
#else
uint32_t status = REG_READ(RTC_CNTL_INT_ST_REG);
if (!(status & RTC_CNTL_MAIN_TIMER_INT_ST_M)) {
return;
}
#endif
counter_esp32_cancel_alarm(dev, 0);
counter_esp32_get_value(dev, &now);
if (cb && (now > data->ticks)) {
cb(dev, 0, now, cb_data);
}
}
DEVICE_DT_INST_DEFINE(0,
&counter_esp32_init,
NULL,
&counter_data,
&counter_config,
PRE_KERNEL_2,
CONFIG_COUNTER_INIT_PRIORITY,
&rtc_timer_esp32_api);