blob: bdc6b9e3956fa149a6ff12d94a50939086fc3c25 [file] [log] [blame]
/*
* Copyright (c) 2022 Henrik Brix Andersen <henrik@brixandersen.dk>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/can/can_sja1000.h>
#include "can_sja1000_priv.h"
#include <zephyr/drivers/can.h>
#include <zephyr/drivers/can/transceiver.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(can_sja1000, CONFIG_CAN_LOG_LEVEL);
/* Timeout for entering/leaving reset mode */
#define CAN_SJA1000_RESET_MODE_TIMEOUT_USEC 1000
#define CAN_SJA1000_RESET_MODE_RETRIES 100
#define CAN_SJA1000_RESET_MODE_DELAY \
K_USEC(CAN_SJA1000_RESET_MODE_TIMEOUT_USEC / CAN_SJA1000_RESET_MODE_RETRIES)
static inline void can_sja1000_write_reg(const struct device *dev, uint8_t reg, uint8_t val)
{
const struct can_sja1000_config *config = dev->config;
config->write_reg(dev, reg, val);
}
static inline uint8_t can_sja1000_read_reg(const struct device *dev, uint8_t reg)
{
const struct can_sja1000_config *config = dev->config;
return config->read_reg(dev, reg);
}
static inline int can_sja1000_enter_reset_mode(const struct device *dev)
{
int retries = CAN_SJA1000_RESET_MODE_RETRIES;
uint8_t mod;
mod = can_sja1000_read_reg(dev, CAN_SJA1000_MOD);
while ((mod & CAN_SJA1000_MOD_RM) == 0) {
if (--retries < 0) {
return -EIO;
}
can_sja1000_write_reg(dev, CAN_SJA1000_MOD, mod | CAN_SJA1000_MOD_RM);
k_sleep(CAN_SJA1000_RESET_MODE_DELAY);
mod = can_sja1000_read_reg(dev, CAN_SJA1000_MOD);
};
return 0;
}
static inline void can_sja1000_leave_reset_mode_nowait(const struct device *dev)
{
uint8_t mod;
mod = can_sja1000_read_reg(dev, CAN_SJA1000_MOD);
can_sja1000_write_reg(dev, CAN_SJA1000_MOD, mod & ~(CAN_SJA1000_MOD_RM));
}
static inline int can_sja1000_leave_reset_mode(const struct device *dev)
{
int retries = CAN_SJA1000_RESET_MODE_RETRIES;
uint8_t mod;
mod = can_sja1000_read_reg(dev, CAN_SJA1000_MOD);
while ((mod & CAN_SJA1000_MOD_RM) == 1) {
if (--retries < 0) {
return -EIO;
}
can_sja1000_write_reg(dev, CAN_SJA1000_MOD, mod & ~(CAN_SJA1000_MOD_RM));
k_sleep(CAN_SJA1000_RESET_MODE_DELAY);
mod = can_sja1000_read_reg(dev, CAN_SJA1000_MOD);
};
return 0;
}
static inline void can_sja1000_clear_errors(const struct device *dev)
{
/* Clear error counters */
can_sja1000_write_reg(dev, CAN_SJA1000_RXERR, 0);
can_sja1000_write_reg(dev, CAN_SJA1000_TXERR, 0);
/* Clear error capture */
(void)can_sja1000_read_reg(dev, CAN_SJA1000_ECC);
}
static void can_sja1000_tx_done(const struct device *dev, int status)
{
struct can_sja1000_data *data = dev->data;
can_tx_callback_t callback = data->tx_callback;
void *user_data = data->tx_user_data;
if (callback != NULL) {
data->tx_callback = NULL;
callback(dev, status, user_data);
}
k_sem_give(&data->tx_idle);
}
int can_sja1000_set_timing(const struct device *dev, const struct can_timing *timing)
{
struct can_sja1000_data *data = dev->data;
uint8_t btr0;
uint8_t btr1;
if (data->common.started) {
return -EBUSY;
}
k_mutex_lock(&data->mod_lock, K_FOREVER);
btr0 = CAN_SJA1000_BTR0_BRP_PREP(timing->prescaler - 1) |
CAN_SJA1000_BTR0_SJW_PREP(timing->sjw - 1);
btr1 = CAN_SJA1000_BTR1_TSEG1_PREP(timing->phase_seg1 - 1) |
CAN_SJA1000_BTR1_TSEG2_PREP(timing->phase_seg2 - 1);
if ((data->common.mode & CAN_MODE_3_SAMPLES) != 0) {
btr1 |= CAN_SJA1000_BTR1_SAM;
}
can_sja1000_write_reg(dev, CAN_SJA1000_BTR0, btr0);
can_sja1000_write_reg(dev, CAN_SJA1000_BTR1, btr1);
k_mutex_unlock(&data->mod_lock);
return 0;
}
int can_sja1000_get_capabilities(const struct device *dev, can_mode_t *cap)
{
ARG_UNUSED(dev);
*cap = CAN_MODE_NORMAL | CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY |
CAN_MODE_ONE_SHOT | CAN_MODE_3_SAMPLES;
if (IS_ENABLED(CONFIG_CAN_MANUAL_RECOVERY_MODE)) {
*cap |= CAN_MODE_MANUAL_RECOVERY;
}
return 0;
}
int can_sja1000_start(const struct device *dev)
{
const struct can_sja1000_config *config = dev->config;
struct can_sja1000_data *data = dev->data;
int err;
if (data->common.started) {
return -EALREADY;
}
if (config->common.phy != NULL) {
err = can_transceiver_enable(config->common.phy, data->common.mode);
if (err != 0) {
LOG_ERR("failed to enable CAN transceiver (err %d)", err);
return err;
}
}
can_sja1000_clear_errors(dev);
CAN_STATS_RESET(dev);
err = can_sja1000_leave_reset_mode(dev);
if (err != 0) {
if (config->common.phy != NULL) {
/* Attempt to disable the CAN transceiver in case of error */
(void)can_transceiver_disable(config->common.phy);
}
return err;
}
data->common.started = true;
return 0;
}
int can_sja1000_stop(const struct device *dev)
{
const struct can_sja1000_config *config = dev->config;
struct can_sja1000_data *data = dev->data;
int err;
if (!data->common.started) {
return -EALREADY;
}
/* Entering reset mode aborts current transmission, if any */
err = can_sja1000_enter_reset_mode(dev);
if (err != 0) {
return err;
}
if (config->common.phy != NULL) {
err = can_transceiver_disable(config->common.phy);
if (err != 0) {
LOG_ERR("failed to disable CAN transceiver (err %d)", err);
return err;
}
}
data->common.started = false;
can_sja1000_tx_done(dev, -ENETDOWN);
return 0;
}
int can_sja1000_set_mode(const struct device *dev, can_mode_t mode)
{
can_mode_t supported = CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY | CAN_MODE_ONE_SHOT |
CAN_MODE_3_SAMPLES;
struct can_sja1000_data *data = dev->data;
uint8_t btr1;
uint8_t mod;
if (IS_ENABLED(CONFIG_CAN_MANUAL_RECOVERY_MODE)) {
supported |= CAN_MODE_MANUAL_RECOVERY;
}
if ((mode & ~(supported)) != 0) {
LOG_ERR("unsupported mode: 0x%08x", mode);
return -ENOTSUP;
}
if (data->common.started) {
return -EBUSY;
}
k_mutex_lock(&data->mod_lock, K_FOREVER);
mod = can_sja1000_read_reg(dev, CAN_SJA1000_MOD);
mod |= CAN_SJA1000_MOD_AFM;
if ((mode & CAN_MODE_LOOPBACK) != 0) {
/* (Local) self test mode */
mod |= CAN_SJA1000_MOD_STM;
} else {
mod &= ~(CAN_SJA1000_MOD_STM);
}
if ((mode & CAN_MODE_LISTENONLY) != 0) {
mod |= CAN_SJA1000_MOD_LOM;
} else {
mod &= ~(CAN_SJA1000_MOD_LOM);
}
btr1 = can_sja1000_read_reg(dev, CAN_SJA1000_BTR1);
if ((mode & CAN_MODE_3_SAMPLES) != 0) {
btr1 |= CAN_SJA1000_BTR1_SAM;
} else {
btr1 &= ~(CAN_SJA1000_BTR1_SAM);
}
can_sja1000_write_reg(dev, CAN_SJA1000_MOD, mod);
can_sja1000_write_reg(dev, CAN_SJA1000_BTR1, btr1);
data->common.mode = mode;
k_mutex_unlock(&data->mod_lock);
return 0;
}
static void can_sja1000_read_frame(const struct device *dev, struct can_frame *frame)
{
uint32_t id;
uint8_t info;
int i;
memset(frame, 0, sizeof(*frame));
info = can_sja1000_read_reg(dev, CAN_SJA1000_FRAME_INFO);
if ((info & CAN_SJA1000_FRAME_INFO_RTR) != 0) {
frame->flags |= CAN_FRAME_RTR;
}
frame->dlc = CAN_SJA1000_FRAME_INFO_DLC_GET(info);
if (frame->dlc > CAN_MAX_DLC) {
LOG_ERR("RX frame DLC %u exceeds maximum (%d)", frame->dlc, CAN_MAX_DLC);
return;
}
if ((info & CAN_SJA1000_FRAME_INFO_FF) != 0) {
frame->flags |= CAN_FRAME_IDE;
id = FIELD_PREP(GENMASK(28, 21),
can_sja1000_read_reg(dev, CAN_SJA1000_XFF_ID1));
id |= FIELD_PREP(GENMASK(20, 13),
can_sja1000_read_reg(dev, CAN_SJA1000_XFF_ID2));
id |= FIELD_PREP(GENMASK(12, 5),
can_sja1000_read_reg(dev, CAN_SJA1000_EFF_ID3));
id |= FIELD_PREP(GENMASK(4, 0),
can_sja1000_read_reg(dev, CAN_SJA1000_EFF_ID4) >> 3);
frame->id = id;
if ((frame->flags & CAN_FRAME_RTR) == 0U) {
for (i = 0; i < frame->dlc; i++) {
frame->data[i] = can_sja1000_read_reg(dev, CAN_SJA1000_EFF_DATA +
i);
}
}
} else {
id = FIELD_PREP(GENMASK(10, 3),
can_sja1000_read_reg(dev, CAN_SJA1000_XFF_ID1));
id |= FIELD_PREP(GENMASK(2, 0),
can_sja1000_read_reg(dev, CAN_SJA1000_XFF_ID2) >> 5);
frame->id = id;
if ((frame->flags & CAN_FRAME_RTR) == 0U) {
for (i = 0; i < frame->dlc; i++) {
frame->data[i] = can_sja1000_read_reg(dev, CAN_SJA1000_SFF_DATA +
i);
}
}
}
}
void can_sja1000_write_frame(const struct device *dev, const struct can_frame *frame)
{
uint32_t id;
uint8_t info;
int i;
info = CAN_SJA1000_FRAME_INFO_DLC_PREP(frame->dlc);
if ((frame->flags & CAN_FRAME_RTR) != 0) {
info |= CAN_SJA1000_FRAME_INFO_RTR;
}
if ((frame->flags & CAN_FRAME_IDE) != 0) {
info |= CAN_SJA1000_FRAME_INFO_FF;
}
can_sja1000_write_reg(dev, CAN_SJA1000_FRAME_INFO, info);
if ((frame->flags & CAN_FRAME_IDE) != 0) {
id = frame->id;
can_sja1000_write_reg(dev, CAN_SJA1000_XFF_ID1,
FIELD_GET(GENMASK(28, 21), id));
can_sja1000_write_reg(dev, CAN_SJA1000_XFF_ID2,
FIELD_GET(GENMASK(20, 13), id));
can_sja1000_write_reg(dev, CAN_SJA1000_EFF_ID3,
FIELD_GET(GENMASK(12, 5), id));
can_sja1000_write_reg(dev, CAN_SJA1000_EFF_ID4,
FIELD_GET(GENMASK(4, 0), id) << 3);
if ((frame->flags & CAN_FRAME_RTR) == 0U) {
for (i = 0; i < frame->dlc; i++) {
can_sja1000_write_reg(dev, CAN_SJA1000_EFF_DATA + i,
frame->data[i]);
}
}
} else {
id = frame->id;
can_sja1000_write_reg(dev, CAN_SJA1000_XFF_ID1,
FIELD_GET(GENMASK(10, 3), id));
can_sja1000_write_reg(dev, CAN_SJA1000_XFF_ID2,
FIELD_GET(GENMASK(2, 0), id) << 5);
if ((frame->flags & CAN_FRAME_RTR) == 0U) {
for (i = 0; i < frame->dlc; i++) {
can_sja1000_write_reg(dev, CAN_SJA1000_SFF_DATA + i,
frame->data[i]);
}
}
}
}
int can_sja1000_send(const struct device *dev, const struct can_frame *frame, k_timeout_t timeout,
can_tx_callback_t callback, void *user_data)
{
struct can_sja1000_data *data = dev->data;
uint8_t cmr;
uint8_t sr;
if (frame->dlc > CAN_MAX_DLC) {
LOG_ERR("TX frame DLC %u exceeds maximum (%d)", frame->dlc, CAN_MAX_DLC);
return -EINVAL;
}
if ((frame->flags & ~(CAN_FRAME_IDE | CAN_FRAME_RTR)) != 0) {
LOG_ERR("unsupported CAN frame flags 0x%02x", frame->flags);
return -ENOTSUP;
}
if (!data->common.started) {
return -ENETDOWN;
}
if (data->state == CAN_STATE_BUS_OFF) {
LOG_DBG("transmit failed, bus-off");
return -ENETUNREACH;
}
if (k_sem_take(&data->tx_idle, timeout) != 0) {
return -EAGAIN;
}
sr = can_sja1000_read_reg(dev, CAN_SJA1000_SR);
if ((sr & CAN_SJA1000_SR_TBS) == 0) {
LOG_ERR("transmit buffer locked, sr = 0x%02x", sr);
return -EIO;
}
data->tx_callback = callback;
data->tx_user_data = user_data;
can_sja1000_write_frame(dev, frame);
if ((data->common.mode & CAN_MODE_LOOPBACK) != 0) {
cmr = CAN_SJA1000_CMR_SRR;
} else {
cmr = CAN_SJA1000_CMR_TR;
}
if ((data->common.mode & CAN_MODE_ONE_SHOT) != 0) {
cmr |= CAN_SJA1000_CMR_AT;
}
can_sja1000_write_reg(dev, CAN_SJA1000_CMR, cmr);
return 0;
}
int can_sja1000_add_rx_filter(const struct device *dev, can_rx_callback_t callback, void *user_data,
const struct can_filter *filter)
{
struct can_sja1000_data *data = dev->data;
int filter_id = -ENOSPC;
int i;
if ((filter->flags & ~(CAN_FILTER_IDE)) != 0) {
LOG_ERR("unsupported CAN filter flags 0x%02x", filter->flags);
return -ENOTSUP;
}
for (i = 0; i < ARRAY_SIZE(data->filters); i++) {
if (!atomic_test_and_set_bit(data->rx_allocs, i)) {
filter_id = i;
break;
}
}
if (filter_id >= 0) {
data->filters[filter_id].filter = *filter;
data->filters[filter_id].user_data = user_data;
data->filters[filter_id].callback = callback;
}
return filter_id;
}
void can_sja1000_remove_rx_filter(const struct device *dev, int filter_id)
{
struct can_sja1000_data *data = dev->data;
if (filter_id < 0 || filter_id >= ARRAY_SIZE(data->filters)) {
LOG_ERR("filter ID %d out of bounds", filter_id);
return;
}
if (atomic_test_and_clear_bit(data->rx_allocs, filter_id)) {
data->filters[filter_id].callback = NULL;
data->filters[filter_id].user_data = NULL;
data->filters[filter_id].filter = (struct can_filter){0};
}
}
#ifdef CONFIG_CAN_MANUAL_RECOVERY_MODE
int can_sja1000_recover(const struct device *dev, k_timeout_t timeout)
{
struct can_sja1000_data *data = dev->data;
int64_t start_ticks;
uint8_t sr;
int err;
if (!data->common.started) {
return -ENETDOWN;
}
if ((data->common.mode & CAN_MODE_MANUAL_RECOVERY) == 0U) {
return -ENOTSUP;
}
sr = can_sja1000_read_reg(dev, CAN_SJA1000_SR);
if ((sr & CAN_SJA1000_SR_BS) == 0) {
return 0;
}
start_ticks = k_uptime_ticks();
err = k_mutex_lock(&data->mod_lock, timeout);
if (err != 0) {
LOG_WRN("failed to acquire MOD lock");
return err;
}
err = can_sja1000_leave_reset_mode(dev);
if (err != 0) {
LOG_ERR("failed to initiate bus recovery");
k_mutex_unlock(&data->mod_lock);
return err;
}
k_mutex_unlock(&data->mod_lock);
while ((sr & CAN_SJA1000_SR_BS) != 0) {
if (k_uptime_ticks() - start_ticks > timeout.ticks) {
LOG_WRN("bus recovery timed out");
return -EAGAIN;
}
sr = can_sja1000_read_reg(dev, CAN_SJA1000_SR);
}
return 0;
}
#endif /* CONFIG_CAN_MANUAL_RECOVERY_MODE */
int can_sja1000_get_state(const struct device *dev, enum can_state *state,
struct can_bus_err_cnt *err_cnt)
{
struct can_sja1000_data *data = dev->data;
if (state != NULL) {
if (!data->common.started) {
*state = CAN_STATE_STOPPED;
} else {
*state = data->state;
}
}
if (err_cnt != NULL) {
err_cnt->rx_err_cnt = can_sja1000_read_reg(dev, CAN_SJA1000_RXERR);
err_cnt->tx_err_cnt = can_sja1000_read_reg(dev, CAN_SJA1000_TXERR);
}
return 0;
}
void can_sja1000_set_state_change_callback(const struct device *dev,
can_state_change_callback_t callback, void *user_data)
{
struct can_sja1000_data *data = dev->data;
data->common.state_change_cb = callback;
data->common.state_change_cb_user_data = user_data;
}
int can_sja1000_get_max_filters(const struct device *dev, bool ide)
{
ARG_UNUSED(dev);
ARG_UNUSED(ide);
return CONFIG_CAN_MAX_FILTER;
}
static void can_sja1000_handle_receive_irq(const struct device *dev)
{
struct can_sja1000_data *data = dev->data;
struct can_frame frame;
can_rx_callback_t callback;
uint8_t sr;
int i;
do {
can_sja1000_read_frame(dev, &frame);
#ifndef CONFIG_CAN_ACCEPT_RTR
if ((frame.flags & CAN_FRAME_RTR) == 0U) {
#endif /* !CONFIG_CAN_ACCEPT_RTR */
for (i = 0; i < ARRAY_SIZE(data->filters); i++) {
if (!atomic_test_bit(data->rx_allocs, i)) {
continue;
}
if (can_frame_matches_filter(&frame, &data->filters[i].filter)) {
callback = data->filters[i].callback;
if (callback != NULL) {
callback(dev, &frame, data->filters[i].user_data);
}
}
}
#ifndef CONFIG_CAN_ACCEPT_RTR
}
#endif /* !CONFIG_CAN_ACCEPT_RTR */
can_sja1000_write_reg(dev, CAN_SJA1000_CMR, CAN_SJA1000_CMR_RRB);
sr = can_sja1000_read_reg(dev, CAN_SJA1000_SR);
} while ((sr & CAN_SJA1000_SR_RBS) != 0);
}
static void can_sja1000_handle_transmit_irq(const struct device *dev)
{
int status = 0;
uint8_t sr;
sr = can_sja1000_read_reg(dev, CAN_SJA1000_SR);
if ((sr & CAN_SJA1000_SR_TCS) == 0) {
status = -EIO;
}
can_sja1000_tx_done(dev, status);
}
#ifdef CONFIG_CAN_STATS
static void can_sja1000_handle_data_overrun_irq(const struct device *dev)
{
/* See NXP SJA1000 Application Note AN97076 (figure 18) for data overrun details */
CAN_STATS_RX_OVERRUN_INC(dev);
can_sja1000_write_reg(dev, CAN_SJA1000_CMR, CAN_SJA1000_CMR_CDO);
}
static void can_sja1000_handle_bus_error_irq(const struct device *dev)
{
/* See NXP SJA1000 Application Note AN97076 (tables 6 and 7) for ECC details */
uint8_t ecc;
/* Read the Error Code Capture register to re-activate it */
ecc = can_sja1000_read_reg(dev, CAN_SJA1000_ECC);
if (ecc == (CAN_SJA1000_ECC_ERRC_OTHER_ERROR | CAN_SJA1000_ECC_DIR_TX |
CAN_SJA1000_ECC_SEG_ACK_SLOT)) {
/* Missing ACK is reported as a TX "other" error in the ACK slot */
CAN_STATS_ACK_ERROR_INC(dev);
return;
}
if (ecc == (CAN_SJA1000_ECC_ERRC_FORM_ERROR | CAN_SJA1000_ECC_DIR_RX |
CAN_SJA1000_ECC_SEG_ACK_DELIM)) {
/* CRC error is reported as a RX "form" error in the ACK delimiter */
CAN_STATS_CRC_ERROR_INC(dev);
return;
}
switch (ecc & CAN_SJA1000_ECC_ERRC_MASK) {
case CAN_SJA1000_ECC_ERRC_BIT_ERROR:
CAN_STATS_BIT_ERROR_INC(dev);
break;
case CAN_SJA1000_ECC_ERRC_FORM_ERROR:
CAN_STATS_FORM_ERROR_INC(dev);
break;
case CAN_SJA1000_ECC_ERRC_STUFF_ERROR:
CAN_STATS_STUFF_ERROR_INC(dev);
break;
case CAN_SJA1000_ECC_ERRC_OTHER_ERROR:
__fallthrough;
default:
/* Other error not currently reported in CAN statistics */
break;
}
}
#endif /* CONFIG_CAN_STATS */
static void can_sja1000_handle_error_warning_irq(const struct device *dev)
{
struct can_sja1000_data *data = dev->data;
uint8_t sr;
sr = can_sja1000_read_reg(dev, CAN_SJA1000_SR);
if ((sr & CAN_SJA1000_SR_BS) != 0) {
data->state = CAN_STATE_BUS_OFF;
can_sja1000_tx_done(dev, -ENETUNREACH);
if (data->common.started &&
(data->common.mode & CAN_MODE_MANUAL_RECOVERY) == 0U) {
can_sja1000_leave_reset_mode_nowait(dev);
}
} else if ((sr & CAN_SJA1000_SR_ES) != 0) {
data->state = CAN_STATE_ERROR_WARNING;
} else {
data->state = CAN_STATE_ERROR_ACTIVE;
}
}
static void can_sja1000_handle_error_passive_irq(const struct device *dev)
{
struct can_sja1000_data *data = dev->data;
if (data->state == CAN_STATE_ERROR_PASSIVE) {
data->state = CAN_STATE_ERROR_WARNING;
} else {
data->state = CAN_STATE_ERROR_PASSIVE;
}
}
void can_sja1000_isr(const struct device *dev)
{
struct can_sja1000_data *data = dev->data;
const can_state_change_callback_t cb = data->common.state_change_cb;
void *cb_data = data->common.state_change_cb_user_data;
enum can_state prev_state = data->state;
struct can_bus_err_cnt err_cnt;
uint8_t ir;
ir = can_sja1000_read_reg(dev, CAN_SJA1000_IR);
if ((ir & CAN_SJA1000_IR_TI) != 0) {
can_sja1000_handle_transmit_irq(dev);
}
if ((ir & CAN_SJA1000_IR_RI) != 0) {
can_sja1000_handle_receive_irq(dev);
}
#ifdef CONFIG_CAN_STATS
if ((ir & CAN_SJA1000_IR_DOI) != 0) {
can_sja1000_handle_data_overrun_irq(dev);
}
if ((ir & CAN_SJA1000_IR_BEI) != 0) {
can_sja1000_handle_bus_error_irq(dev);
}
#endif /* CONFIG_CAN_STATS */
if ((ir & CAN_SJA1000_IR_EI) != 0) {
can_sja1000_handle_error_warning_irq(dev);
}
if ((ir & CAN_SJA1000_IR_EPI) != 0) {
can_sja1000_handle_error_passive_irq(dev);
}
if (prev_state != data->state && cb != NULL) {
err_cnt.rx_err_cnt = can_sja1000_read_reg(dev, CAN_SJA1000_RXERR);
err_cnt.tx_err_cnt = can_sja1000_read_reg(dev, CAN_SJA1000_TXERR);
cb(dev, data->state, err_cnt, cb_data);
}
}
int can_sja1000_init(const struct device *dev)
{
const struct can_sja1000_config *config = dev->config;
struct can_sja1000_data *data = dev->data;
struct can_timing timing = { 0 };
int err;
__ASSERT_NO_MSG(config->read_reg != NULL);
__ASSERT_NO_MSG(config->write_reg != NULL);
if (config->common.phy != NULL) {
if (!device_is_ready(config->common.phy)) {
LOG_ERR("CAN transceiver not ready");
return -ENODEV;
}
}
k_mutex_init(&data->mod_lock);
k_sem_init(&data->tx_idle, 1, 1);
data->state = CAN_STATE_ERROR_ACTIVE;
/* See NXP SJA1000 Application Note AN97076 (figure 12) for initialization sequence */
/* Enter reset mode */
err = can_sja1000_enter_reset_mode(dev);
if (err != 0) {
return err;
}
/* Set PeliCAN mode */
can_sja1000_write_reg(dev, CAN_SJA1000_CDR, config->cdr | CAN_SJA1000_CDR_CAN_MODE);
/* Set up acceptance code and mask to match any frame (software filtering) */
can_sja1000_write_reg(dev, CAN_SJA1000_ACR0, 0x00);
can_sja1000_write_reg(dev, CAN_SJA1000_ACR1, 0x00);
can_sja1000_write_reg(dev, CAN_SJA1000_ACR2, 0x00);
can_sja1000_write_reg(dev, CAN_SJA1000_ACR3, 0x00);
can_sja1000_write_reg(dev, CAN_SJA1000_AMR0, 0xFF);
can_sja1000_write_reg(dev, CAN_SJA1000_AMR1, 0xFF);
can_sja1000_write_reg(dev, CAN_SJA1000_AMR2, 0xFF);
can_sja1000_write_reg(dev, CAN_SJA1000_AMR3, 0xFF);
err = can_calc_timing(dev, &timing, config->common.bitrate,
config->common.sample_point);
if (err == -EINVAL) {
LOG_ERR("bitrate/sample point cannot be met (err %d)", err);
return err;
}
LOG_DBG("initial sample point error: %d", err);
/* Configure timing */
err = can_set_timing(dev, &timing);
if (err != 0) {
LOG_ERR("timing parameters cannot be met (err %d)", err);
return err;
}
/* Set output control */
can_sja1000_write_reg(dev, CAN_SJA1000_OCR, config->ocr);
/* Clear error counters and error capture */
can_sja1000_clear_errors(dev);
/* Set error warning limit */
can_sja1000_write_reg(dev, CAN_SJA1000_EWLR, 96);
/* Set normal mode */
data->common.mode = CAN_MODE_NORMAL;
err = can_sja1000_set_mode(dev, CAN_MODE_NORMAL);
if (err != 0) {
return err;
}
/* Enable interrupts */
can_sja1000_write_reg(dev, CAN_SJA1000_IER,
#ifdef CONFIG_CAN_STATS
CAN_SJA1000_IER_BEIE | CAN_SJA1000_IER_DOIE |
#endif /* CONFIG_CAN_STATS */
CAN_SJA1000_IER_RIE | CAN_SJA1000_IER_TIE |
CAN_SJA1000_IER_EIE | CAN_SJA1000_IER_EPIE);
return 0;
}