| /* |
| * Copyright (c) 2016 BayLibre, SAS |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_spi |
| |
| #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(spi_ll_stm32); |
| |
| #include <zephyr/sys/util.h> |
| #include <zephyr/kernel.h> |
| #include <soc.h> |
| #include <stm32_ll_spi.h> |
| #include <errno.h> |
| #include <zephyr/drivers/spi.h> |
| #include <zephyr/drivers/spi/rtio.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/toolchain.h> |
| #include <zephyr/pm/policy.h> |
| #include <zephyr/pm/device.h> |
| #include <zephyr/pm/device_runtime.h> |
| #ifdef CONFIG_SPI_STM32_DMA |
| #include <zephyr/drivers/dma/dma_stm32.h> |
| #include <zephyr/drivers/dma.h> |
| #endif |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/irq.h> |
| #include <zephyr/mem_mgmt/mem_attr.h> |
| |
| #ifdef CONFIG_DCACHE |
| #include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h> |
| #endif /* CONFIG_DCACHE */ |
| |
| #ifdef CONFIG_NOCACHE_MEMORY |
| #include <zephyr/linker/linker-defs.h> |
| #elif defined(CONFIG_CACHE_MANAGEMENT) |
| #include <zephyr/arch/cache.h> |
| #endif /* CONFIG_NOCACHE_MEMORY */ |
| |
| #include "spi_ll_stm32.h" |
| |
| #if defined(CONFIG_DCACHE) && \ |
| !defined(CONFIG_NOCACHE_MEMORY) |
| /* currently, manual cache coherency management is only done on dummy_rx_tx_buffer */ |
| #define SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED 1 |
| #else |
| #define SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED 0 |
| #endif /* defined(CONFIG_DCACHE) && !defined(CONFIG_NOCACHE_MEMORY) */ |
| |
| #define WAIT_1US 1U |
| |
| /* |
| * Check for SPI_SR_FRE to determine support for TI mode frame format |
| * error flag, because STM32F1 SoCs do not support it and STM32CUBE |
| * for F1 family defines an unused LL_SPI_SR_FRE. |
| */ |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \ |
| LL_SPI_SR_OVR | LL_SPI_SR_TIFRE) |
| #else |
| #if defined(LL_SPI_SR_UDR) |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \ |
| LL_SPI_SR_OVR | LL_SPI_SR_FRE) |
| #elif defined(SPI_SR_FRE) |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \ |
| LL_SPI_SR_OVR | LL_SPI_SR_FRE) |
| #else |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR) |
| #endif |
| #endif /* CONFIG_SOC_SERIES_STM32MP1X */ |
| |
| static void spi_stm32_pm_policy_state_lock_get(const struct device *dev) |
| { |
| if (IS_ENABLED(CONFIG_PM)) { |
| struct spi_stm32_data *data = dev->data; |
| |
| if (!data->pm_policy_state_on) { |
| data->pm_policy_state_on = true; |
| pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| if (IS_ENABLED(CONFIG_PM_S2RAM)) { |
| pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); |
| } |
| pm_device_runtime_get(dev); |
| } |
| } |
| } |
| |
| static void spi_stm32_pm_policy_state_lock_put(const struct device *dev) |
| { |
| if (IS_ENABLED(CONFIG_PM)) { |
| struct spi_stm32_data *data = dev->data; |
| |
| if (data->pm_policy_state_on) { |
| data->pm_policy_state_on = false; |
| pm_device_runtime_put(dev); |
| pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| if (IS_ENABLED(CONFIG_PM_S2RAM)) { |
| pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); |
| } |
| } |
| } |
| } |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| static uint32_t bits2bytes(uint32_t bits) |
| { |
| return bits / 8; |
| } |
| |
| /* dummy buffer is used for transferring NOP when tx buf is null |
| * and used as a dummy sink for when rx buf is null. |
| */ |
| /* |
| * If Nocache Memory is supported, buffer will be placed in nocache region by |
| * the linker to avoid potential DMA cache-coherency problems. |
| * If Nocache Memory is not supported, cache coherency might need to be kept |
| * manually. See SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED. |
| */ |
| static __aligned(32) uint32_t dummy_rx_tx_buffer __nocache; |
| |
| /* This function is executed in the interrupt context */ |
| static void dma_callback(const struct device *dma_dev, void *arg, |
| uint32_t channel, int status) |
| { |
| ARG_UNUSED(dma_dev); |
| |
| /* arg holds SPI DMA data |
| * Passed in spi_stm32_dma_tx/rx_load() |
| */ |
| struct spi_stm32_data *spi_dma_data = arg; |
| |
| if (status < 0) { |
| LOG_ERR("DMA callback error with channel %d.", channel); |
| spi_dma_data->status_flags |= SPI_STM32_DMA_ERROR_FLAG; |
| } else { |
| /* identify the origin of this callback */ |
| if (channel == spi_dma_data->dma_tx.channel) { |
| /* this part of the transfer ends */ |
| spi_dma_data->status_flags |= SPI_STM32_DMA_TX_DONE_FLAG; |
| } else if (channel == spi_dma_data->dma_rx.channel) { |
| /* this part of the transfer ends */ |
| spi_dma_data->status_flags |= SPI_STM32_DMA_RX_DONE_FLAG; |
| } else { |
| LOG_ERR("DMA callback channel %d is not valid.", channel); |
| spi_dma_data->status_flags |= SPI_STM32_DMA_ERROR_FLAG; |
| } |
| } |
| |
| k_sem_give(&spi_dma_data->status_sem); |
| } |
| |
| static int spi_stm32_dma_tx_load(const struct device *dev, const uint8_t *buf, |
| size_t len) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| struct spi_stm32_data *data = dev->data; |
| struct dma_block_config *blk_cfg; |
| int ret; |
| |
| /* remember active TX DMA channel (used in callback) */ |
| struct stream *stream = &data->dma_tx; |
| |
| blk_cfg = &stream->dma_blk_cfg; |
| |
| /* prepare the block for this TX DMA channel */ |
| memset(blk_cfg, 0, sizeof(struct dma_block_config)); |
| blk_cfg->block_size = len; |
| |
| /* tx direction has memory as source and periph as dest. */ |
| if (buf == NULL) { |
| /* if tx buff is null, then sends NOP on the line. */ |
| dummy_rx_tx_buffer = 0; |
| #if SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED |
| arch_dcache_flush_range((void *)&dummy_rx_tx_buffer, sizeof(uint32_t)); |
| #endif /* SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED */ |
| blk_cfg->source_address = (uint32_t)&dummy_rx_tx_buffer; |
| blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } else { |
| blk_cfg->source_address = (uint32_t)buf; |
| if (data->dma_tx.src_addr_increment) { |
| blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| } |
| |
| blk_cfg->dest_address = ll_func_dma_get_reg_addr(cfg->spi, SPI_STM32_DMA_TX); |
| /* fifo mode NOT USED there */ |
| if (data->dma_tx.dst_addr_increment) { |
| blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| /* give the fifo mode from the DT */ |
| blk_cfg->fifo_mode_control = data->dma_tx.fifo_threshold; |
| |
| /* direction is given by the DT */ |
| stream->dma_cfg.head_block = blk_cfg; |
| /* give the dma channel data as arg, as the callback comes from the dma */ |
| stream->dma_cfg.user_data = data; |
| /* pass our client origin to the dma: data->dma_tx.dma_channel */ |
| ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel, |
| &stream->dma_cfg); |
| /* the channel is the actual stream from 0 */ |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* gives the request ID to the dma mux */ |
| return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel); |
| } |
| |
| static int spi_stm32_dma_rx_load(const struct device *dev, uint8_t *buf, |
| size_t len) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| struct spi_stm32_data *data = dev->data; |
| struct dma_block_config *blk_cfg; |
| int ret; |
| |
| /* retrieve active RX DMA channel (used in callback) */ |
| struct stream *stream = &data->dma_rx; |
| |
| blk_cfg = &stream->dma_blk_cfg; |
| |
| /* prepare the block for this RX DMA channel */ |
| memset(blk_cfg, 0, sizeof(struct dma_block_config)); |
| blk_cfg->block_size = len; |
| |
| |
| /* rx direction has periph as source and mem as dest. */ |
| if (buf == NULL) { |
| /* if rx buff is null, then write data to dummy address. */ |
| blk_cfg->dest_address = (uint32_t)&dummy_rx_tx_buffer; |
| blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } else { |
| blk_cfg->dest_address = (uint32_t)buf; |
| if (data->dma_rx.dst_addr_increment) { |
| blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| } |
| |
| blk_cfg->source_address = ll_func_dma_get_reg_addr(cfg->spi, SPI_STM32_DMA_RX); |
| if (data->dma_rx.src_addr_increment) { |
| blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| /* give the fifo mode from the DT */ |
| blk_cfg->fifo_mode_control = data->dma_rx.fifo_threshold; |
| |
| /* direction is given by the DT */ |
| stream->dma_cfg.head_block = blk_cfg; |
| stream->dma_cfg.user_data = data; |
| |
| |
| /* pass our client origin to the dma: data->dma_rx.channel */ |
| ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel, |
| &stream->dma_cfg); |
| /* the channel is the actual stream from 0 */ |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* gives the request ID to the dma mux */ |
| return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel); |
| } |
| |
| static int spi_dma_move_buffers(const struct device *dev, size_t len) |
| { |
| struct spi_stm32_data *data = dev->data; |
| int ret; |
| size_t dma_segment_len; |
| |
| dma_segment_len = len * data->dma_rx.dma_cfg.dest_data_size; |
| ret = spi_stm32_dma_rx_load(dev, data->ctx.rx_buf, dma_segment_len); |
| |
| if (ret != 0) { |
| return ret; |
| } |
| |
| dma_segment_len = len * data->dma_tx.dma_cfg.source_data_size; |
| ret = spi_stm32_dma_tx_load(dev, data->ctx.tx_buf, dma_segment_len); |
| |
| return ret; |
| } |
| |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| /* Value to shift out when no application data needs transmitting. */ |
| #define SPI_STM32_TX_NOP 0x00 |
| |
| static void spi_stm32_send_next_frame(SPI_TypeDef *spi, |
| struct spi_stm32_data *data) |
| { |
| const uint8_t frame_size = SPI_WORD_SIZE_GET(data->ctx.config->operation); |
| uint32_t tx_frame = SPI_STM32_TX_NOP; |
| |
| if (frame_size == 8) { |
| if (spi_context_tx_buf_on(&data->ctx)) { |
| tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); |
| } |
| LL_SPI_TransmitData8(spi, tx_frame); |
| spi_context_update_tx(&data->ctx, 1, 1); |
| } else { |
| if (spi_context_tx_buf_on(&data->ctx)) { |
| tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf)); |
| } |
| LL_SPI_TransmitData16(spi, tx_frame); |
| spi_context_update_tx(&data->ctx, 2, 1); |
| } |
| } |
| |
| static void spi_stm32_read_next_frame(SPI_TypeDef *spi, |
| struct spi_stm32_data *data) |
| { |
| const uint8_t frame_size = SPI_WORD_SIZE_GET(data->ctx.config->operation); |
| uint32_t rx_frame = 0; |
| |
| if (frame_size == 8) { |
| rx_frame = LL_SPI_ReceiveData8(spi); |
| if (spi_context_rx_buf_on(&data->ctx)) { |
| UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf); |
| } |
| spi_context_update_rx(&data->ctx, 1, 1); |
| } else { |
| rx_frame = LL_SPI_ReceiveData16(spi); |
| if (spi_context_rx_buf_on(&data->ctx)) { |
| UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf); |
| } |
| spi_context_update_rx(&data->ctx, 2, 1); |
| } |
| } |
| |
| static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data) |
| { |
| return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); |
| } |
| |
| static int spi_stm32_get_err(SPI_TypeDef *spi) |
| { |
| uint32_t sr = LL_SPI_ReadReg(spi, SR); |
| |
| if (sr & SPI_STM32_ERR_MSK) { |
| LOG_ERR("%s: err=%d", __func__, |
| sr & (uint32_t)SPI_STM32_ERR_MSK); |
| |
| /* OVR error must be explicitly cleared */ |
| if (LL_SPI_IsActiveFlag_OVR(spi)) { |
| LL_SPI_ClearFlag_OVR(spi); |
| } |
| |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void spi_stm32_shift_fifo(SPI_TypeDef *spi, struct spi_stm32_data *data) |
| { |
| if (ll_func_rx_is_not_empty(spi)) { |
| spi_stm32_read_next_frame(spi, data); |
| } |
| |
| if (ll_func_tx_is_not_full(spi)) { |
| spi_stm32_send_next_frame(spi, data); |
| } |
| } |
| |
| /* Shift a SPI frame as master. */ |
| static void spi_stm32_shift_m(const struct spi_stm32_config *cfg, |
| struct spi_stm32_data *data) |
| { |
| if (cfg->fifo_enabled) { |
| spi_stm32_shift_fifo(cfg->spi, data); |
| } else { |
| while (!ll_func_tx_is_not_full(cfg->spi)) { |
| /* NOP */ |
| } |
| |
| spi_stm32_send_next_frame(cfg->spi, data); |
| |
| while (!ll_func_rx_is_not_empty(cfg->spi)) { |
| /* NOP */ |
| } |
| |
| spi_stm32_read_next_frame(cfg->spi, data); |
| } |
| } |
| |
| /* Shift a SPI frame as slave. */ |
| static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data) |
| { |
| if (ll_func_tx_is_not_full(spi) && spi_context_tx_on(&data->ctx)) { |
| uint16_t tx_frame; |
| |
| if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
| tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); |
| LL_SPI_TransmitData8(spi, tx_frame); |
| spi_context_update_tx(&data->ctx, 1, 1); |
| } else { |
| tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf)); |
| LL_SPI_TransmitData16(spi, tx_frame); |
| spi_context_update_tx(&data->ctx, 2, 1); |
| } |
| } else { |
| ll_func_disable_int_tx_empty(spi); |
| } |
| |
| if (ll_func_rx_is_not_empty(spi) && |
| spi_context_rx_buf_on(&data->ctx)) { |
| uint16_t rx_frame; |
| |
| if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
| rx_frame = LL_SPI_ReceiveData8(spi); |
| UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf); |
| spi_context_update_rx(&data->ctx, 1, 1); |
| } else { |
| rx_frame = LL_SPI_ReceiveData16(spi); |
| UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf); |
| spi_context_update_rx(&data->ctx, 2, 1); |
| } |
| } |
| } |
| |
| /* |
| * Without a FIFO, we can only shift out one frame's worth of SPI |
| * data, and read the response back. |
| * |
| * TODO: support 16-bit data frames. |
| */ |
| static int spi_stm32_shift_frames(const struct spi_stm32_config *cfg, |
| struct spi_stm32_data *data) |
| { |
| uint16_t operation = data->ctx.config->operation; |
| |
| if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) { |
| spi_stm32_shift_m(cfg, data); |
| } else { |
| spi_stm32_shift_s(cfg->spi, data); |
| } |
| |
| return spi_stm32_get_err(cfg->spi); |
| } |
| |
| static void spi_stm32_cs_control(const struct device *dev, bool on) |
| { |
| struct spi_stm32_data *data = dev->data; |
| |
| spi_context_cs_control(&data->ctx, on); |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) |
| const struct spi_stm32_config *cfg = dev->config; |
| |
| if (cfg->use_subghzspi_nss) { |
| if (on) { |
| LL_PWR_SelectSUBGHZSPI_NSS(); |
| } else { |
| LL_PWR_UnselectSUBGHZSPI_NSS(); |
| } |
| } |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) */ |
| } |
| |
| static void spi_stm32_complete(const struct device *dev, int status) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| SPI_TypeDef *spi = cfg->spi; |
| struct spi_stm32_data *data = dev->data; |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| ll_func_disable_int_tx_empty(spi); |
| ll_func_disable_int_rx_not_empty(spi); |
| ll_func_disable_int_errors(spi); |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| if (cfg->fifo_enabled) { |
| LL_SPI_DisableIT_EOT(spi); |
| } |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
| |
| #endif /* CONFIG_SPI_STM32_INTERRUPT */ |
| |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo) |
| /* Flush RX buffer */ |
| while (ll_func_rx_is_not_empty(spi)) { |
| (void) LL_SPI_ReceiveData8(spi); |
| } |
| #endif /* compat st_stm32_spi_fifo*/ |
| |
| if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
| while (ll_func_spi_is_busy(spi)) { |
| /* NOP */ |
| } |
| |
| spi_stm32_cs_control(dev, false); |
| } |
| |
| /* BSY flag is cleared when MODF flag is raised */ |
| if (LL_SPI_IsActiveFlag_MODF(spi)) { |
| LL_SPI_ClearFlag_MODF(spi); |
| } |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| if (cfg->fifo_enabled) { |
| LL_SPI_ClearFlag_TXTF(spi); |
| LL_SPI_ClearFlag_OVR(spi); |
| LL_SPI_ClearFlag_EOT(spi); |
| LL_SPI_SetTransferSize(spi, 0); |
| } |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
| |
| if (!(data->ctx.config->operation & SPI_HOLD_ON_CS)) { |
| ll_func_disable_spi(spi); |
| } |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| spi_context_complete(&data->ctx, dev, status); |
| #endif |
| |
| spi_stm32_pm_policy_state_lock_put(dev); |
| } |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| static void spi_stm32_isr(const struct device *dev) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| struct spi_stm32_data *data = dev->data; |
| SPI_TypeDef *spi = cfg->spi; |
| int err; |
| |
| /* Some spurious interrupts are triggered when SPI is not enabled; ignore them. |
| * Do it only when fifo is enabled to leave non-fifo functionality untouched for now |
| */ |
| if (cfg->fifo_enabled) { |
| if (!LL_SPI_IsEnabled(spi)) { |
| return; |
| } |
| } |
| |
| err = spi_stm32_get_err(spi); |
| if (err) { |
| spi_stm32_complete(dev, err); |
| return; |
| } |
| |
| if (spi_stm32_transfer_ongoing(data)) { |
| err = spi_stm32_shift_frames(cfg, data); |
| } |
| |
| if (err || !spi_stm32_transfer_ongoing(data)) { |
| spi_stm32_complete(dev, err); |
| } |
| } |
| #endif /* CONFIG_SPI_STM32_INTERRUPT */ |
| |
| static int spi_stm32_configure(const struct device *dev, |
| const struct spi_config *config) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| struct spi_stm32_data *data = dev->data; |
| const uint32_t scaler[] = { |
| LL_SPI_BAUDRATEPRESCALER_DIV2, |
| LL_SPI_BAUDRATEPRESCALER_DIV4, |
| LL_SPI_BAUDRATEPRESCALER_DIV8, |
| LL_SPI_BAUDRATEPRESCALER_DIV16, |
| LL_SPI_BAUDRATEPRESCALER_DIV32, |
| LL_SPI_BAUDRATEPRESCALER_DIV64, |
| LL_SPI_BAUDRATEPRESCALER_DIV128, |
| LL_SPI_BAUDRATEPRESCALER_DIV256 |
| }; |
| SPI_TypeDef *spi = cfg->spi; |
| uint32_t clock; |
| int br; |
| |
| if (spi_context_configured(&data->ctx, config)) { |
| /* Nothing to do */ |
| return 0; |
| } |
| |
| if ((SPI_WORD_SIZE_GET(config->operation) != 8) |
| && (SPI_WORD_SIZE_GET(config->operation) != 16)) { |
| return -ENOTSUP; |
| } |
| |
| /* configure the frame format Motorola (default) or TI */ |
| if ((config->operation & SPI_FRAME_FORMAT_TI) == SPI_FRAME_FORMAT_TI) { |
| #ifdef LL_SPI_PROTOCOL_TI |
| LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_TI); |
| #else |
| LOG_ERR("Frame Format TI not supported"); |
| /* on stm32F1 or some stm32L1 (cat1,2) without SPI_CR2_FRF */ |
| return -ENOTSUP; |
| #endif |
| #if defined(LL_SPI_PROTOCOL_MOTOROLA) && defined(SPI_CR2_FRF) |
| } else { |
| LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA); |
| #endif |
| } |
| |
| if (IS_ENABLED(STM32_SPI_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) { |
| if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t) &cfg->pclken[1], &clock) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate(pclk[1])"); |
| return -EIO; |
| } |
| } else { |
| if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t) &cfg->pclken[0], &clock) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate(pclk[0])"); |
| return -EIO; |
| } |
| } |
| |
| for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) { |
| uint32_t clk = clock >> br; |
| |
| if (clk <= config->frequency) { |
| break; |
| } |
| } |
| |
| if (br > ARRAY_SIZE(scaler)) { |
| LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz", |
| config->frequency, |
| clock >> 1, |
| clock >> ARRAY_SIZE(scaler)); |
| return -EINVAL; |
| } |
| |
| LL_SPI_Disable(spi); |
| LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]); |
| |
| if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) { |
| LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH); |
| } else { |
| LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW); |
| } |
| |
| if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) { |
| LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE); |
| } else { |
| LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE); |
| } |
| |
| LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX); |
| |
| if (config->operation & SPI_TRANSFER_LSB) { |
| LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST); |
| } else { |
| LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST); |
| } |
| |
| LL_SPI_DisableCRC(spi); |
| |
| if (spi_cs_is_gpio(config) || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) { |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) { |
| if (LL_SPI_GetNSSPolarity(spi) == LL_SPI_NSS_POLARITY_LOW) |
| LL_SPI_SetInternalSSLevel(spi, LL_SPI_SS_LEVEL_HIGH); |
| } |
| #endif |
| LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT); |
| } else { |
| if (config->operation & SPI_OP_MODE_SLAVE) { |
| LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT); |
| } else { |
| LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT); |
| } |
| } |
| |
| if (config->operation & SPI_OP_MODE_SLAVE) { |
| LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE); |
| } else { |
| LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER); |
| } |
| |
| if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
| LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT); |
| } else { |
| LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT); |
| } |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| LL_SPI_SetMasterSSIdleness(spi, cfg->mssi_clocks); |
| LL_SPI_SetInterDataIdleness(spi, (cfg->midi_clocks << SPI_CFG2_MIDI_Pos)); |
| #endif |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo) |
| ll_func_set_fifo_threshold_8bit(spi); |
| #endif |
| |
| /* At this point, it's mandatory to set this on the context! */ |
| data->ctx.config = config; |
| |
| LOG_DBG("Installed config %p: freq %uHz (div = %u)," |
| " mode %u/%u/%u, slave %u", |
| config, clock >> br, 1 << br, |
| (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0, |
| (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0, |
| (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0, |
| config->slave); |
| |
| return 0; |
| } |
| |
| static int spi_stm32_release(const struct device *dev, |
| const struct spi_config *config) |
| { |
| struct spi_stm32_data *data = dev->data; |
| const struct spi_stm32_config *cfg = dev->config; |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| ll_func_disable_spi(cfg->spi); |
| |
| return 0; |
| } |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| static int32_t spi_stm32_count_bufset_frames(const struct spi_config *config, |
| const struct spi_buf_set *bufs) |
| { |
| if (bufs == NULL) { |
| return 0; |
| } |
| |
| uint32_t num_bytes = 0; |
| |
| for (size_t i = 0; i < bufs->count; i++) { |
| num_bytes += bufs->buffers[i].len; |
| } |
| |
| uint8_t bytes_per_frame = SPI_WORD_SIZE_GET(config->operation) / 8; |
| |
| if ((num_bytes % bytes_per_frame) != 0) { |
| return -EINVAL; |
| } |
| return num_bytes / bytes_per_frame; |
| } |
| |
| static int32_t spi_stm32_count_total_frames(const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| int tx_frames = spi_stm32_count_bufset_frames(config, tx_bufs); |
| |
| if (tx_frames < 0) { |
| return tx_frames; |
| } |
| |
| int rx_frames = spi_stm32_count_bufset_frames(config, rx_bufs); |
| |
| if (rx_frames < 0) { |
| return rx_frames; |
| } |
| |
| if (tx_frames > UINT16_MAX || rx_frames > UINT16_MAX) { |
| return -EMSGSIZE; |
| } |
| |
| return MAX(rx_frames, tx_frames); |
| } |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
| |
| static int transceive(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| struct spi_stm32_data *data = dev->data; |
| SPI_TypeDef *spi = cfg->spi; |
| int ret; |
| |
| if (!tx_bufs && !rx_bufs) { |
| return 0; |
| } |
| |
| #ifndef CONFIG_SPI_STM32_INTERRUPT |
| if (asynchronous) { |
| return -ENOTSUP; |
| } |
| #endif /* CONFIG_SPI_STM32_INTERRUPT */ |
| |
| spi_context_lock(&data->ctx, asynchronous, cb, userdata, config); |
| |
| spi_stm32_pm_policy_state_lock_get(dev); |
| |
| ret = spi_stm32_configure(dev, config); |
| if (ret) { |
| goto end; |
| } |
| |
| /* Set buffers info */ |
| if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| } else { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 2); |
| } |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| if (cfg->fifo_enabled && SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) { |
| int total_frames = spi_stm32_count_total_frames( |
| config, tx_bufs, rx_bufs); |
| if (total_frames < 0) { |
| ret = total_frames; |
| goto end; |
| } |
| LL_SPI_SetTransferSize(spi, (uint32_t)total_frames); |
| } |
| |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
| |
| LL_SPI_Enable(spi); |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| /* With the STM32MP1, STM32U5 and the STM32H7, |
| * if the device is the SPI master, |
| * we need to enable the start of the transfer with |
| * LL_SPI_StartMasterTransfer(spi) |
| */ |
| if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
| LL_SPI_StartMasterTransfer(spi); |
| while (!LL_SPI_IsActiveMasterTransfer(spi)) { |
| /* NOP */ |
| } |
| } |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
| |
| #ifdef CONFIG_SOC_SERIES_STM32H7X |
| /* |
| * Add a small delay after enabling to prevent transfer stalling at high |
| * system clock frequency (see errata sheet ES0392). |
| */ |
| k_busy_wait(WAIT_1US); |
| #endif /* CONFIG_SOC_SERIES_STM32H7X */ |
| |
| /* This is turned off in spi_stm32_complete(). */ |
| spi_stm32_cs_control(dev, true); |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| if (cfg->fifo_enabled) { |
| LL_SPI_EnableIT_EOT(spi); |
| } |
| #endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
| |
| ll_func_enable_int_errors(spi); |
| |
| if (rx_bufs) { |
| ll_func_enable_int_rx_not_empty(spi); |
| } |
| |
| ll_func_enable_int_tx_empty(spi); |
| |
| ret = spi_context_wait_for_completion(&data->ctx); |
| #else /* CONFIG_SPI_STM32_INTERRUPT */ |
| do { |
| ret = spi_stm32_shift_frames(cfg, data); |
| } while (!ret && spi_stm32_transfer_ongoing(data)); |
| |
| spi_stm32_complete(dev, ret); |
| |
| #ifdef CONFIG_SPI_SLAVE |
| if (spi_context_is_slave(&data->ctx) && !ret) { |
| ret = data->ctx.recv_frames; |
| } |
| #endif /* CONFIG_SPI_SLAVE */ |
| |
| #endif /* CONFIG_SPI_STM32_INTERRUPT */ |
| |
| end: |
| spi_context_release(&data->ctx, ret); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| |
| static int wait_dma_rx_tx_done(const struct device *dev) |
| { |
| struct spi_stm32_data *data = dev->data; |
| int res = -1; |
| k_timeout_t timeout; |
| |
| /* |
| * In slave mode we do not know when the transaction will start. Hence, |
| * it doesn't make sense to have timeout in this case. |
| */ |
| if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(&data->ctx)) { |
| timeout = K_FOREVER; |
| } else { |
| timeout = K_MSEC(1000); |
| } |
| |
| while (1) { |
| res = k_sem_take(&data->status_sem, timeout); |
| if (res != 0) { |
| return res; |
| } |
| |
| if (data->status_flags & SPI_STM32_DMA_ERROR_FLAG) { |
| return -EIO; |
| } |
| |
| if (data->status_flags & SPI_STM32_DMA_DONE_FLAG) { |
| return 0; |
| } |
| } |
| |
| return res; |
| } |
| |
| #ifdef CONFIG_DCACHE |
| static bool buf_in_nocache(uintptr_t buf, size_t len_bytes) |
| { |
| bool buf_within_nocache = false; |
| |
| #ifdef CONFIG_NOCACHE_MEMORY |
| /* Check if buffer is in nocache region defined by the linker */ |
| buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) && |
| ((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end)); |
| if (buf_within_nocache) { |
| return true; |
| } |
| #endif /* CONFIG_NOCACHE_MEMORY */ |
| |
| /* Check if buffer is in nocache memory region defined in DT */ |
| buf_within_nocache = mem_attr_check_buf( |
| (void *)buf, len_bytes, DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE)) == 0; |
| |
| return buf_within_nocache; |
| } |
| |
| static bool is_dummy_buffer(const struct spi_buf *buf) |
| { |
| return buf->buf == NULL; |
| } |
| |
| static bool spi_buf_set_in_nocache(const struct spi_buf_set *bufs) |
| { |
| for (size_t i = 0; i < bufs->count; i++) { |
| const struct spi_buf *buf = &bufs->buffers[i]; |
| |
| if (!is_dummy_buffer(buf) && |
| !buf_in_nocache((uintptr_t)buf->buf, buf->len)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| #endif /* CONFIG_DCACHE */ |
| |
| static int transceive_dma(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| const struct spi_stm32_config *cfg = dev->config; |
| struct spi_stm32_data *data = dev->data; |
| SPI_TypeDef *spi = cfg->spi; |
| int ret; |
| int err; |
| |
| if (!tx_bufs && !rx_bufs) { |
| return 0; |
| } |
| |
| if (asynchronous) { |
| return -ENOTSUP; |
| } |
| |
| #ifdef CONFIG_DCACHE |
| if ((tx_bufs != NULL && !spi_buf_set_in_nocache(tx_bufs)) || |
| (rx_bufs != NULL && !spi_buf_set_in_nocache(rx_bufs))) { |
| return -EFAULT; |
| } |
| #endif /* CONFIG_DCACHE */ |
| |
| spi_context_lock(&data->ctx, asynchronous, cb, userdata, config); |
| |
| spi_stm32_pm_policy_state_lock_get(dev); |
| |
| k_sem_reset(&data->status_sem); |
| |
| ret = spi_stm32_configure(dev, config); |
| if (ret) { |
| goto end; |
| } |
| |
| /* Set buffers info */ |
| if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| } else { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 2); |
| } |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| /* set request before enabling (else SPI CFG1 reg is write protected) */ |
| LL_SPI_EnableDMAReq_RX(spi); |
| LL_SPI_EnableDMAReq_TX(spi); |
| |
| LL_SPI_Enable(spi); |
| if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
| LL_SPI_StartMasterTransfer(spi); |
| } |
| #else |
| LL_SPI_Enable(spi); |
| #endif /* st_stm32h7_spi */ |
| |
| /* This is turned off in spi_stm32_complete(). */ |
| spi_stm32_cs_control(dev, true); |
| |
| while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) { |
| size_t dma_len; |
| |
| if (data->ctx.rx_len == 0) { |
| dma_len = data->ctx.tx_len; |
| } else if (data->ctx.tx_len == 0) { |
| dma_len = data->ctx.rx_len; |
| } else { |
| dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len); |
| } |
| |
| data->status_flags = 0; |
| |
| ret = spi_dma_move_buffers(dev, dma_len); |
| if (ret != 0) { |
| break; |
| } |
| |
| #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| |
| /* toggle the DMA request to restart the transfer */ |
| LL_SPI_EnableDMAReq_RX(spi); |
| LL_SPI_EnableDMAReq_TX(spi); |
| #endif /* ! st_stm32h7_spi */ |
| |
| ret = wait_dma_rx_tx_done(dev); |
| if (ret != 0) { |
| break; |
| } |
| |
| #ifdef SPI_SR_FTLVL |
| while (LL_SPI_GetTxFIFOLevel(spi) > 0) { |
| } |
| #endif /* SPI_SR_FTLVL */ |
| |
| #ifdef CONFIG_SPI_STM32_ERRATA_BUSY |
| WAIT_FOR(ll_func_spi_dma_busy(spi) != 0, |
| CONFIG_SPI_STM32_BUSY_FLAG_TIMEOUT, |
| k_yield()); |
| #else |
| /* wait until spi is no more busy (spi TX fifo is really empty) */ |
| while (ll_func_spi_dma_busy(spi) == 0) { |
| } |
| #endif /* CONFIG_SPI_STM32_ERRATA_BUSY */ |
| |
| #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
| /* toggle the DMA transfer request */ |
| LL_SPI_DisableDMAReq_TX(spi); |
| LL_SPI_DisableDMAReq_RX(spi); |
| #endif /* ! st_stm32h7_spi */ |
| |
| uint8_t frame_size_bytes = bits2bytes( |
| SPI_WORD_SIZE_GET(config->operation)); |
| |
| spi_context_update_tx(&data->ctx, frame_size_bytes, dma_len); |
| spi_context_update_rx(&data->ctx, frame_size_bytes, dma_len); |
| } |
| |
| /* spi complete relies on SPI Status Reg which cannot be disabled */ |
| spi_stm32_complete(dev, ret); |
| /* disable spi instance after completion */ |
| LL_SPI_Disable(spi); |
| /* The Config. Reg. on some mcus is write un-protected when SPI is disabled */ |
| LL_SPI_DisableDMAReq_TX(spi); |
| LL_SPI_DisableDMAReq_RX(spi); |
| |
| err = dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel); |
| if (err) { |
| LOG_DBG("Rx dma_stop failed with error %d", err); |
| } |
| err = dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel); |
| if (err) { |
| LOG_DBG("Tx dma_stop failed with error %d", err); |
| } |
| |
| #ifdef CONFIG_SPI_SLAVE |
| if (spi_context_is_slave(&data->ctx) && !ret) { |
| ret = data->ctx.recv_frames; |
| } |
| #endif /* CONFIG_SPI_SLAVE */ |
| |
| end: |
| spi_context_release(&data->ctx, ret); |
| |
| spi_stm32_pm_policy_state_lock_put(dev); |
| |
| return ret; |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| static int spi_stm32_transceive(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| #ifdef CONFIG_SPI_STM32_DMA |
| struct spi_stm32_data *data = dev->data; |
| |
| if ((data->dma_tx.dma_dev != NULL) |
| && (data->dma_rx.dma_dev != NULL)) { |
| return transceive_dma(dev, config, tx_bufs, rx_bufs, |
| false, NULL, NULL); |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); |
| } |
| |
| #ifdef CONFIG_SPI_ASYNC |
| static int spi_stm32_transceive_async(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); |
| } |
| #endif /* CONFIG_SPI_ASYNC */ |
| |
| static const struct spi_driver_api api_funcs = { |
| .transceive = spi_stm32_transceive, |
| #ifdef CONFIG_SPI_ASYNC |
| .transceive_async = spi_stm32_transceive_async, |
| #endif |
| #ifdef CONFIG_SPI_RTIO |
| .iodev_submit = spi_rtio_iodev_default_submit, |
| #endif |
| .release = spi_stm32_release, |
| }; |
| |
| static inline bool spi_stm32_is_subghzspi(const struct device *dev) |
| { |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) |
| const struct spi_stm32_config *cfg = dev->config; |
| |
| return cfg->use_subghzspi_nss; |
| #else |
| ARG_UNUSED(dev); |
| return false; |
| #endif /* st_stm32_spi_subghz */ |
| } |
| |
| static int spi_stm32_init(const struct device *dev) |
| { |
| struct spi_stm32_data *data __attribute__((unused)) = dev->data; |
| const struct spi_stm32_config *cfg = dev->config; |
| int err; |
| |
| if (!device_is_ready(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE))) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| err = clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t) &cfg->pclken[0]); |
| if (err < 0) { |
| LOG_ERR("Could not enable SPI clock"); |
| return err; |
| } |
| |
| if (IS_ENABLED(STM32_SPI_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) { |
| err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t) &cfg->pclken[1], |
| NULL); |
| if (err < 0) { |
| LOG_ERR("Could not select SPI domain clock"); |
| return err; |
| } |
| } |
| |
| if (!spi_stm32_is_subghzspi(dev)) { |
| /* Configure dt provided device signals when available */ |
| err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| LOG_ERR("SPI pinctrl setup failed (%d)", err); |
| return err; |
| } |
| } |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| cfg->irq_config(dev); |
| #endif /* CONFIG_SPI_STM32_INTERRUPT */ |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| if ((data->dma_rx.dma_dev != NULL) && |
| !device_is_ready(data->dma_rx.dma_dev)) { |
| LOG_ERR("%s device not ready", data->dma_rx.dma_dev->name); |
| return -ENODEV; |
| } |
| |
| if ((data->dma_tx.dma_dev != NULL) && |
| !device_is_ready(data->dma_tx.dma_dev)) { |
| LOG_ERR("%s device not ready", data->dma_tx.dma_dev->name); |
| return -ENODEV; |
| } |
| |
| LOG_DBG("SPI with DMA transfer"); |
| |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| err = spi_context_cs_configure_all(&data->ctx); |
| if (err < 0) { |
| return err; |
| } |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return pm_device_runtime_enable(dev); |
| } |
| |
| #ifdef CONFIG_PM_DEVICE |
| static int spi_stm32_pm_action(const struct device *dev, |
| enum pm_device_action action) |
| { |
| const struct spi_stm32_config *config = dev->config; |
| const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| int err; |
| |
| |
| switch (action) { |
| case PM_DEVICE_ACTION_RESUME: |
| if (!spi_stm32_is_subghzspi(dev)) { |
| /* Set pins to active state */ |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| return err; |
| } |
| } |
| |
| /* enable clock */ |
| err = clock_control_on(clk, (clock_control_subsys_t)&config->pclken[0]); |
| if (err != 0) { |
| LOG_ERR("Could not enable SPI clock"); |
| return err; |
| } |
| break; |
| case PM_DEVICE_ACTION_SUSPEND: |
| /* Stop device clock. */ |
| err = clock_control_off(clk, (clock_control_subsys_t)&config->pclken[0]); |
| if (err != 0) { |
| LOG_ERR("Could not disable SPI clock"); |
| return err; |
| } |
| |
| if (!spi_stm32_is_subghzspi(dev)) { |
| /* Move pins to sleep state */ |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); |
| if ((err < 0) && (err != -ENOENT)) { |
| /* |
| * If returning -ENOENT, no pins where defined for sleep mode : |
| * Do not output on console (might sleep already) when going to |
| * sleep, |
| * "SPI pinctrl sleep state not available" |
| * and don't block PM suspend. |
| * Else return the error. |
| */ |
| return err; |
| } |
| } |
| break; |
| default: |
| return -ENOTSUP; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_DEVICE */ |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| #define STM32_SPI_IRQ_HANDLER_DECL(id) \ |
| static void spi_stm32_irq_config_func_##id(const struct device *dev) |
| #define STM32_SPI_IRQ_HANDLER_FUNC(id) \ |
| .irq_config = spi_stm32_irq_config_func_##id, |
| #define STM32_SPI_IRQ_HANDLER(id) \ |
| static void spi_stm32_irq_config_func_##id(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(id), \ |
| DT_INST_IRQ(id, priority), \ |
| spi_stm32_isr, DEVICE_DT_INST_GET(id), 0); \ |
| irq_enable(DT_INST_IRQN(id)); \ |
| } |
| #else |
| #define STM32_SPI_IRQ_HANDLER_DECL(id) |
| #define STM32_SPI_IRQ_HANDLER_FUNC(id) |
| #define STM32_SPI_IRQ_HANDLER(id) |
| #endif /* CONFIG_SPI_STM32_INTERRUPT */ |
| |
| #define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
| .dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ |
| .channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
| .dma_cfg = { \ |
| .dma_slot = STM32_DMA_SLOT(index, dir, slot),\ |
| .channel_direction = STM32_DMA_CONFIG_DIRECTION( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .source_burst_length = 1, /* SINGLE transfer */ \ |
| .dest_burst_length = 1, /* SINGLE transfer */ \ |
| .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
| .dma_callback = dma_callback, \ |
| .block_count = 2, \ |
| }, \ |
| .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
| STM32_DMA_FEATURES(index, dir)), \ |
| |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| #define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \ |
| .dma_##dir = { \ |
| COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \ |
| (SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)),\ |
| (NULL)) \ |
| }, |
| #define SPI_DMA_STATUS_SEM(id) \ |
| .status_sem = Z_SEM_INITIALIZER( \ |
| spi_stm32_dev_data_##id.status_sem, 0, 1), |
| #else |
| #define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) |
| #define SPI_DMA_STATUS_SEM(id) |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| #define SPI_SUPPORTS_FIFO(id) DT_INST_NODE_HAS_PROP(id, fifo_enable) |
| #define SPI_GET_FIFO_PROP(id) DT_INST_PROP(id, fifo_enable) |
| #define SPI_FIFO_ENABLED(id) COND_CODE_1(SPI_SUPPORTS_FIFO(id), (SPI_GET_FIFO_PROP(id)), (0)) |
| |
| #define STM32_SPI_INIT(id) \ |
| STM32_SPI_IRQ_HANDLER_DECL(id); \ |
| \ |
| PINCTRL_DT_INST_DEFINE(id); \ |
| \ |
| static const struct stm32_pclken pclken_##id[] = \ |
| STM32_DT_INST_CLOCKS(id);\ |
| \ |
| static const struct spi_stm32_config spi_stm32_cfg_##id = { \ |
| .spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id), \ |
| .pclken = pclken_##id, \ |
| .pclk_len = DT_INST_NUM_CLOCKS(id), \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \ |
| .fifo_enabled = SPI_FIFO_ENABLED(id), \ |
| STM32_SPI_IRQ_HANDLER_FUNC(id) \ |
| IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz), \ |
| (.use_subghzspi_nss = \ |
| DT_INST_PROP_OR(id, use_subghzspi_nss, false),))\ |
| IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi), \ |
| (.midi_clocks = \ |
| DT_INST_PROP(id, midi_clock),)) \ |
| IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi), \ |
| (.mssi_clocks = \ |
| DT_INST_PROP(id, mssi_clock),)) \ |
| }; \ |
| \ |
| static struct spi_stm32_data spi_stm32_dev_data_##id = { \ |
| SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx), \ |
| SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx), \ |
| SPI_DMA_CHANNEL(id, rx, RX, PERIPHERAL, MEMORY) \ |
| SPI_DMA_CHANNEL(id, tx, TX, MEMORY, PERIPHERAL) \ |
| SPI_DMA_STATUS_SEM(id) \ |
| SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \ |
| }; \ |
| \ |
| PM_DEVICE_DT_INST_DEFINE(id, spi_stm32_pm_action); \ |
| \ |
| DEVICE_DT_INST_DEFINE(id, spi_stm32_init, PM_DEVICE_DT_INST_GET(id), \ |
| &spi_stm32_dev_data_##id, &spi_stm32_cfg_##id, \ |
| POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ |
| &api_funcs); \ |
| \ |
| STM32_SPI_IRQ_HANDLER(id) |
| |
| DT_INST_FOREACH_STATUS_OKAY(STM32_SPI_INIT) |