blob: 704141892a61152c8f2c23ee01a22cce869ef373 [file] [log] [blame]
/*
* Copyright (c) 2024 Microchip Technology Incorporated
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_mec5_ktimer
#include <zephyr/init.h>
#include <zephyr/devicetree.h>
#include <soc.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <cmsis_core.h>
#include <zephyr/irq.h>
#include <device_mec5.h>
#include <mec_btimer_api.h>
#include <mec_rtimer_api.h>
BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "MCHP MEC5 ktimer doesn't support SMP");
BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768,
"MCHP MEC5 ktimer HW frequency is fixed at 32768");
#ifndef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
BUILD_ASSERT(0, "MCHP MEC5 ktimer requires ARCH_HAS_CUSTOM_BUSY_WAIT");
#endif
#ifdef CONFIG_SOC_MEC_DEBUG_AND_TRACING
#define RTIMER_START_VAL MEC_RTIMER_START_EXT_HALT
#else
#define RTIMER_START_VAL MEC_RTIMER_START
#endif
/*
* Overview:
*
* This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr
* system timer. It supports both legacy ("tickful") mode as well as
* TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed
* frequency of 32768 Hz. The driver is based upon the Intel local APIC
* timer driver.
* Configuration:
*
* CONFIG_MCHP_XEC_RTOS_TIMER=y
*
* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must be set to 32768.
*
* To reduce truncation errors from accumulating due to conversion
* to/from time, ticks, and HW cycles set ticks per second equal to
* the frequency. With tickless kernel mode enabled the kernel will not
* program a periodic timer at this fast rate.
* CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768
*/
#define CYCLES_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* Mask off bits[31:28] of 32-bit count */
#define RTIMER_MAX 0x0fffffffu
#define RTIMER_COUNT_MASK 0x0fffffffu
#define RTIMER_STOPPED 0xf0000000u
/* Adjust cycle count programmed into timer for HW restart latency */
#define RTIMER_ADJUST_LIMIT 2
#define RTIMER_ADJUST_CYCLES 1
/* max number of ticks we can load into the timer in one shot */
#define MAX_TICKS (RTIMER_MAX / CYCLES_PER_TICK)
#define RTIMER_NODE_ID DT_INST(0, DT_DRV_COMPAT)
#define RTIMER_NVIC_NO DT_INST_IRQN(0)
#define RTIMER_NVIC_PRIO DT_INST_IRQ(0, priority)
static struct mec_rtmr_regs *const rtimer = (struct mec_rtmr_regs *)DT_INST_REG_ADDR(0);
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
#define BTIMER_NODE_ID DT_CHOSEN(rtimer_busy_wait_timer)
#define MEC5_BTIMER_FDIV (MEC5_BTIMER_MAX_FREQ_HZ / 1000000u)
static struct mec_btmr_regs *const btimer = (struct mec_btmr_regs *)DT_REG_ADDR(BTIMER_NODE_ID);
#endif
/*
* The spinlock protects all access to the RTIMER registers, as well as
* 'total_cycles', 'last_announcement', and 'cached_icr'.
*
* One important invariant that must be observed: `total_cycles` + `cached_icr`
* is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts
* are only ever scheduled to occur at tick boundaries.
*/
static struct k_spinlock lock;
static uint32_t total_cycles;
static uint32_t cached_icr = CYCLES_PER_TICK;
/*
* Read the RTOS timer counter handling the case where the timer
* has been reloaded within 1 32KHz clock of reading its count register.
* The RTOS timer hardware must synchronize the write to its control register
* on the AHB clock domain with the 32KHz clock domain of its internal logic.
* This synchronization can take from nearly 0 time up to 1 32KHz clock as it
* depends upon which 48MHz AHB clock with a 32KHz period the register write
* was on. We detect the timer is in the load state by checking the read-only
* count register and the START bit in the control register. If count register
* is 0 and the START bit is set then the timer has been started and is in the
* process of moving the preload register value into the count register.
*/
static inline uint32_t rtimer_count(void)
{
uint32_t ccr = mec_hal_rtimer_count(rtimer);
if ((ccr == 0) && mec_hal_rtimer_is_started(rtimer)) {
ccr = cached_icr;
}
return ccr;
}
#ifdef CONFIG_TICKLESS_KERNEL
static uint32_t last_announcement; /* last time we called sys_clock_announce() */
/*
* Request a timeout n Zephyr ticks in the future from now.
* Requested number of ticks in the future of n <= 1 means the kernel wants
* the tick announced as soon as possible, ideally no more than one tick
* in the future.
*
* Per comment below we don't clear RTMR pending interrupt.
* RTMR counter register is read-only and is loaded from the preload
* register by a 0->1 transition of the control register start bit.
* Writing a new value to preload only takes effect once the count
* register reaches 0.
*/
void sys_clock_set_timeout(int32_t n, bool idle)
{
ARG_UNUSED(idle);
uint32_t ccr, temp;
int full_ticks; /* number of complete ticks we'll wait */
uint32_t full_cycles; /* full_ticks represented as cycles */
uint32_t partial_cycles; /* number of cycles to first tick boundary */
if (idle && (n == K_TICKS_FOREVER)) {
/*
* We are not in a locked section. Are writes to two
* global objects safe from pre-emption?
*/
mec_hal_rtimer_stop(rtimer);
cached_icr = RTIMER_STOPPED;
return;
}
if (n < 1) {
full_ticks = 0;
} else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) {
full_ticks = MAX_TICKS - 1;
} else {
full_ticks = n - 1;
}
full_cycles = full_ticks * CYCLES_PER_TICK;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = rtimer_count();
/* turn off to clear any pending interrupt status */
mec_hal_rtimer_stop(rtimer);
mec_hal_rtimer_status_clear_all(rtimer);
NVIC_ClearPendingIRQ(RTIMER_NVIC_NO);
temp = total_cycles;
temp += (cached_icr - ccr);
temp &= RTIMER_COUNT_MASK;
total_cycles = temp;
partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK);
cached_icr = full_cycles + partial_cycles;
/* adjust for up to one 32KHz cycle startup time */
temp = cached_icr;
if (temp > RTIMER_ADJUST_LIMIT) {
temp -= RTIMER_ADJUST_CYCLES;
}
mec_hal_rtimer_stop_and_load(rtimer, temp, RTIMER_START_VAL);
k_spin_unlock(&lock, key);
}
/*
* Return the number of Zephyr ticks elapsed from last call to
* sys_clock_announce in the ISR. The caller casts uint32_t to int32_t.
* We must make sure bit[31] is 0 in the return value.
*/
uint32_t sys_clock_elapsed(void)
{
uint32_t ccr;
uint32_t ticks;
int32_t elapsed;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = rtimer_count();
/* It may not look efficient but the compiler does a good job */
elapsed = (int32_t)total_cycles - (int32_t)last_announcement;
if (elapsed < 0) {
elapsed = -1 * elapsed;
}
ticks = (uint32_t)elapsed;
ticks += cached_icr - ccr;
ticks /= CYCLES_PER_TICK;
ticks &= RTIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
return ticks;
}
static void mec5_ktimer_isr(const void *arg)
{
ARG_UNUSED(arg);
uint32_t cycles;
int32_t ticks;
k_spinlock_key_t key = k_spin_lock(&lock);
mec_hal_rtimer_status_clear_all(rtimer);
/* Restart the timer as early as possible to minimize drift... */
mec_hal_rtimer_stop_and_load(rtimer, MAX_TICKS * CYCLES_PER_TICK, RTIMER_START_VAL);
cycles = cached_icr;
cached_icr = MAX_TICKS * CYCLES_PER_TICK;
total_cycles += cycles;
total_cycles &= RTIMER_COUNT_MASK;
/* handle wrap by using (power of 2) - 1 mask */
ticks = total_cycles - last_announcement;
ticks &= RTIMER_COUNT_MASK;
ticks /= CYCLES_PER_TICK;
last_announcement = total_cycles;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
}
#else
/* Non-tickless kernel build. */
static void mec5_ktimer_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
mec_hal_rtimer_status_clear_all(rtimer);
/* Restart the timer as early as possible to minimize drift... */
mec_hal_rtimer_stop_and_load(rtimer, cached_icr, RTIMER_START_VAL);
uint32_t temp = total_cycles + CYCLES_PER_TICK;
total_cycles = temp & RTIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
sys_clock_announce(1);
}
uint32_t sys_clock_elapsed(void)
{
return 0U;
}
#endif /* CONFIG_TICKLESS_KERNEL */
/*
* Warning RTOS timer resolution is 30.5 us.
* This is called by two code paths:
* 1. Kernel call to k_cycle_get_32() -> arch_k_cycle_get_32() -> here.
* The kernel is casting return to (int) and using it uncasted in math
* expressions with int types. Expression result is stored in an int.
* 2. If CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined then
* z_impl_k_busy_wait calls here. This code path uses the value as uint32_t.
*
*/
uint32_t sys_clock_cycle_get_32(void)
{
uint32_t ret;
uint32_t ccr;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = rtimer_count();
ret = (total_cycles + (cached_icr - ccr)) & RTIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
return ret;
}
void sys_clock_idle_exit(void)
{
if (cached_icr == RTIMER_STOPPED) {
cached_icr = CYCLES_PER_TICK;
mec_hal_rtimer_stop_and_load(rtimer, cached_icr, RTIMER_START_VAL);
}
}
void sys_clock_disable(void)
{
mec_hal_rtimer_stop(rtimer);
}
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
/* Custom kernel busy wait API implementation using a 48MHz based
* 32-bit basic timer divided down to 1 MHz. Basic timer configured
* for count up, auto-reload, and no interrupt mode.
*/
void arch_busy_wait(uint32_t usec_to_wait)
{
if (usec_to_wait == 0) {
return;
}
uint32_t start = mec_hal_btimer_count(btimer);
for (;;) {
uint32_t curr = mec_hal_btimer_count(btimer);
if ((curr - start) >= usec_to_wait) {
break;
}
}
}
/* k_busy_wait parameter is the number of microseconds to wait.
* Configure basic timer for 1 MHz (1 us tick) operation.
*/
static int config_custom_busy_wait(void)
{
uint32_t bflags =
(BIT(MEC5_BTIMER_CFG_FLAG_START_POS) | BIT(MEC5_BTIMER_CFG_FLAG_AUTO_RELOAD_POS) |
BIT(MEC5_BTIMER_CFG_FLAG_COUNT_UP_POS));
uint32_t count = 0;
mec_hal_btimer_init(btimer, MEC5_BTIMER_FDIV, count, bflags);
return 0;
}
void soc_ktimer_pm_entry(bool is_deep_sleep)
{
if (is_deep_sleep) {
mec_hal_btimer_disable(btimer);
}
}
void soc_ktimer_pm_exit(bool is_deep_sleep)
{
if (is_deep_sleep) {
mec_hal_btimer_enable(btimer);
}
}
#else
void soc_ktimer_pm_entry(void)
{
}
void soc_ktimer_pm_exit(void)
{
}
#endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */
static int sys_clock_driver_init(void)
{
uint32_t rtmr_cfg = BIT(MEC_RTMR_CFG_EN_POS) | BIT(MEC_RTMR_CFG_IEN_POS);
if (IS_ENABLED(CONFIG_SOC_MEC_DEBUG_AND_TRACING)) {
rtmr_cfg |= BIT(MEC_RTMR_CFG_DBG_HALT_POS);
}
#ifdef CONFIG_TICKLESS_KERNEL
cached_icr = MAX_TICKS;
#endif
mec_hal_rtimer_init(rtimer, rtmr_cfg, cached_icr);
IRQ_CONNECT(RTIMER_NVIC_NO, RTIMER_NVIC_PRIO, mec5_ktimer_isr, 0, 0);
irq_enable(RTIMER_NVIC_NO);
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
config_custom_busy_wait();
#endif
mec_hal_rtimer_start(rtimer);
while (!mec_hal_rtimer_is_counting(rtimer)) {
;
}
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);