| /* |
| * Copyright (c) 2024 Microchip Technology Incorporated |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT microchip_mec5_ktimer |
| |
| #include <zephyr/init.h> |
| #include <zephyr/devicetree.h> |
| #include <soc.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/sys_clock.h> |
| #include <zephyr/spinlock.h> |
| #include <cmsis_core.h> |
| #include <zephyr/irq.h> |
| |
| #include <device_mec5.h> |
| #include <mec_btimer_api.h> |
| #include <mec_rtimer_api.h> |
| |
| BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "MCHP MEC5 ktimer doesn't support SMP"); |
| BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768, |
| "MCHP MEC5 ktimer HW frequency is fixed at 32768"); |
| |
| #ifndef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT |
| BUILD_ASSERT(0, "MCHP MEC5 ktimer requires ARCH_HAS_CUSTOM_BUSY_WAIT"); |
| #endif |
| |
| #ifdef CONFIG_SOC_MEC_DEBUG_AND_TRACING |
| #define RTIMER_START_VAL MEC_RTIMER_START_EXT_HALT |
| #else |
| #define RTIMER_START_VAL MEC_RTIMER_START |
| #endif |
| |
| /* |
| * Overview: |
| * |
| * This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr |
| * system timer. It supports both legacy ("tickful") mode as well as |
| * TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed |
| * frequency of 32768 Hz. The driver is based upon the Intel local APIC |
| * timer driver. |
| * Configuration: |
| * |
| * CONFIG_MCHP_XEC_RTOS_TIMER=y |
| * |
| * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must be set to 32768. |
| * |
| * To reduce truncation errors from accumulating due to conversion |
| * to/from time, ticks, and HW cycles set ticks per second equal to |
| * the frequency. With tickless kernel mode enabled the kernel will not |
| * program a periodic timer at this fast rate. |
| * CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768 |
| */ |
| |
| #define CYCLES_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| |
| /* Mask off bits[31:28] of 32-bit count */ |
| #define RTIMER_MAX 0x0fffffffu |
| #define RTIMER_COUNT_MASK 0x0fffffffu |
| #define RTIMER_STOPPED 0xf0000000u |
| |
| /* Adjust cycle count programmed into timer for HW restart latency */ |
| #define RTIMER_ADJUST_LIMIT 2 |
| #define RTIMER_ADJUST_CYCLES 1 |
| |
| /* max number of ticks we can load into the timer in one shot */ |
| #define MAX_TICKS (RTIMER_MAX / CYCLES_PER_TICK) |
| |
| #define RTIMER_NODE_ID DT_INST(0, DT_DRV_COMPAT) |
| #define RTIMER_NVIC_NO DT_INST_IRQN(0) |
| #define RTIMER_NVIC_PRIO DT_INST_IRQ(0, priority) |
| |
| static struct mec_rtmr_regs *const rtimer = (struct mec_rtmr_regs *)DT_INST_REG_ADDR(0); |
| |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT |
| #define BTIMER_NODE_ID DT_CHOSEN(rtimer_busy_wait_timer) |
| #define MEC5_BTIMER_FDIV (MEC5_BTIMER_MAX_FREQ_HZ / 1000000u) |
| |
| static struct mec_btmr_regs *const btimer = (struct mec_btmr_regs *)DT_REG_ADDR(BTIMER_NODE_ID); |
| #endif |
| |
| /* |
| * The spinlock protects all access to the RTIMER registers, as well as |
| * 'total_cycles', 'last_announcement', and 'cached_icr'. |
| * |
| * One important invariant that must be observed: `total_cycles` + `cached_icr` |
| * is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts |
| * are only ever scheduled to occur at tick boundaries. |
| */ |
| |
| static struct k_spinlock lock; |
| static uint32_t total_cycles; |
| static uint32_t cached_icr = CYCLES_PER_TICK; |
| |
| /* |
| * Read the RTOS timer counter handling the case where the timer |
| * has been reloaded within 1 32KHz clock of reading its count register. |
| * The RTOS timer hardware must synchronize the write to its control register |
| * on the AHB clock domain with the 32KHz clock domain of its internal logic. |
| * This synchronization can take from nearly 0 time up to 1 32KHz clock as it |
| * depends upon which 48MHz AHB clock with a 32KHz period the register write |
| * was on. We detect the timer is in the load state by checking the read-only |
| * count register and the START bit in the control register. If count register |
| * is 0 and the START bit is set then the timer has been started and is in the |
| * process of moving the preload register value into the count register. |
| */ |
| static inline uint32_t rtimer_count(void) |
| { |
| uint32_t ccr = mec_hal_rtimer_count(rtimer); |
| |
| if ((ccr == 0) && mec_hal_rtimer_is_started(rtimer)) { |
| ccr = cached_icr; |
| } |
| |
| return ccr; |
| } |
| |
| #ifdef CONFIG_TICKLESS_KERNEL |
| |
| static uint32_t last_announcement; /* last time we called sys_clock_announce() */ |
| |
| /* |
| * Request a timeout n Zephyr ticks in the future from now. |
| * Requested number of ticks in the future of n <= 1 means the kernel wants |
| * the tick announced as soon as possible, ideally no more than one tick |
| * in the future. |
| * |
| * Per comment below we don't clear RTMR pending interrupt. |
| * RTMR counter register is read-only and is loaded from the preload |
| * register by a 0->1 transition of the control register start bit. |
| * Writing a new value to preload only takes effect once the count |
| * register reaches 0. |
| */ |
| void sys_clock_set_timeout(int32_t n, bool idle) |
| { |
| ARG_UNUSED(idle); |
| |
| uint32_t ccr, temp; |
| int full_ticks; /* number of complete ticks we'll wait */ |
| uint32_t full_cycles; /* full_ticks represented as cycles */ |
| uint32_t partial_cycles; /* number of cycles to first tick boundary */ |
| |
| if (idle && (n == K_TICKS_FOREVER)) { |
| /* |
| * We are not in a locked section. Are writes to two |
| * global objects safe from pre-emption? |
| */ |
| mec_hal_rtimer_stop(rtimer); |
| cached_icr = RTIMER_STOPPED; |
| return; |
| } |
| |
| if (n < 1) { |
| full_ticks = 0; |
| } else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) { |
| full_ticks = MAX_TICKS - 1; |
| } else { |
| full_ticks = n - 1; |
| } |
| |
| full_cycles = full_ticks * CYCLES_PER_TICK; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| ccr = rtimer_count(); |
| |
| /* turn off to clear any pending interrupt status */ |
| mec_hal_rtimer_stop(rtimer); |
| mec_hal_rtimer_status_clear_all(rtimer); |
| NVIC_ClearPendingIRQ(RTIMER_NVIC_NO); |
| |
| temp = total_cycles; |
| temp += (cached_icr - ccr); |
| temp &= RTIMER_COUNT_MASK; |
| total_cycles = temp; |
| |
| partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK); |
| cached_icr = full_cycles + partial_cycles; |
| /* adjust for up to one 32KHz cycle startup time */ |
| temp = cached_icr; |
| if (temp > RTIMER_ADJUST_LIMIT) { |
| temp -= RTIMER_ADJUST_CYCLES; |
| } |
| |
| mec_hal_rtimer_stop_and_load(rtimer, temp, RTIMER_START_VAL); |
| |
| k_spin_unlock(&lock, key); |
| } |
| |
| /* |
| * Return the number of Zephyr ticks elapsed from last call to |
| * sys_clock_announce in the ISR. The caller casts uint32_t to int32_t. |
| * We must make sure bit[31] is 0 in the return value. |
| */ |
| uint32_t sys_clock_elapsed(void) |
| { |
| uint32_t ccr; |
| uint32_t ticks; |
| int32_t elapsed; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| ccr = rtimer_count(); |
| |
| /* It may not look efficient but the compiler does a good job */ |
| elapsed = (int32_t)total_cycles - (int32_t)last_announcement; |
| if (elapsed < 0) { |
| elapsed = -1 * elapsed; |
| } |
| ticks = (uint32_t)elapsed; |
| ticks += cached_icr - ccr; |
| ticks /= CYCLES_PER_TICK; |
| ticks &= RTIMER_COUNT_MASK; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ticks; |
| } |
| |
| static void mec5_ktimer_isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| uint32_t cycles; |
| int32_t ticks; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| mec_hal_rtimer_status_clear_all(rtimer); |
| |
| /* Restart the timer as early as possible to minimize drift... */ |
| mec_hal_rtimer_stop_and_load(rtimer, MAX_TICKS * CYCLES_PER_TICK, RTIMER_START_VAL); |
| |
| cycles = cached_icr; |
| cached_icr = MAX_TICKS * CYCLES_PER_TICK; |
| |
| total_cycles += cycles; |
| total_cycles &= RTIMER_COUNT_MASK; |
| |
| /* handle wrap by using (power of 2) - 1 mask */ |
| ticks = total_cycles - last_announcement; |
| ticks &= RTIMER_COUNT_MASK; |
| ticks /= CYCLES_PER_TICK; |
| |
| last_announcement = total_cycles; |
| |
| k_spin_unlock(&lock, key); |
| sys_clock_announce(ticks); |
| } |
| |
| #else |
| /* Non-tickless kernel build. */ |
| static void mec5_ktimer_isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| mec_hal_rtimer_status_clear_all(rtimer); |
| |
| /* Restart the timer as early as possible to minimize drift... */ |
| mec_hal_rtimer_stop_and_load(rtimer, cached_icr, RTIMER_START_VAL); |
| |
| uint32_t temp = total_cycles + CYCLES_PER_TICK; |
| |
| total_cycles = temp & RTIMER_COUNT_MASK; |
| k_spin_unlock(&lock, key); |
| |
| sys_clock_announce(1); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| return 0U; |
| } |
| #endif /* CONFIG_TICKLESS_KERNEL */ |
| |
| /* |
| * Warning RTOS timer resolution is 30.5 us. |
| * This is called by two code paths: |
| * 1. Kernel call to k_cycle_get_32() -> arch_k_cycle_get_32() -> here. |
| * The kernel is casting return to (int) and using it uncasted in math |
| * expressions with int types. Expression result is stored in an int. |
| * 2. If CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined then |
| * z_impl_k_busy_wait calls here. This code path uses the value as uint32_t. |
| * |
| */ |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| uint32_t ret; |
| uint32_t ccr; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| ccr = rtimer_count(); |
| ret = (total_cycles + (cached_icr - ccr)) & RTIMER_COUNT_MASK; |
| |
| k_spin_unlock(&lock, key); |
| |
| return ret; |
| } |
| |
| void sys_clock_idle_exit(void) |
| { |
| if (cached_icr == RTIMER_STOPPED) { |
| cached_icr = CYCLES_PER_TICK; |
| mec_hal_rtimer_stop_and_load(rtimer, cached_icr, RTIMER_START_VAL); |
| } |
| } |
| |
| void sys_clock_disable(void) |
| { |
| mec_hal_rtimer_stop(rtimer); |
| } |
| |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT |
| /* Custom kernel busy wait API implementation using a 48MHz based |
| * 32-bit basic timer divided down to 1 MHz. Basic timer configured |
| * for count up, auto-reload, and no interrupt mode. |
| */ |
| void arch_busy_wait(uint32_t usec_to_wait) |
| { |
| if (usec_to_wait == 0) { |
| return; |
| } |
| |
| uint32_t start = mec_hal_btimer_count(btimer); |
| |
| for (;;) { |
| uint32_t curr = mec_hal_btimer_count(btimer); |
| |
| if ((curr - start) >= usec_to_wait) { |
| break; |
| } |
| } |
| } |
| |
| /* k_busy_wait parameter is the number of microseconds to wait. |
| * Configure basic timer for 1 MHz (1 us tick) operation. |
| */ |
| static int config_custom_busy_wait(void) |
| { |
| uint32_t bflags = |
| (BIT(MEC5_BTIMER_CFG_FLAG_START_POS) | BIT(MEC5_BTIMER_CFG_FLAG_AUTO_RELOAD_POS) | |
| BIT(MEC5_BTIMER_CFG_FLAG_COUNT_UP_POS)); |
| uint32_t count = 0; |
| |
| mec_hal_btimer_init(btimer, MEC5_BTIMER_FDIV, count, bflags); |
| |
| return 0; |
| } |
| |
| void soc_ktimer_pm_entry(bool is_deep_sleep) |
| { |
| if (is_deep_sleep) { |
| mec_hal_btimer_disable(btimer); |
| } |
| } |
| |
| void soc_ktimer_pm_exit(bool is_deep_sleep) |
| { |
| if (is_deep_sleep) { |
| mec_hal_btimer_enable(btimer); |
| } |
| } |
| #else |
| void soc_ktimer_pm_entry(void) |
| { |
| } |
| void soc_ktimer_pm_exit(void) |
| { |
| } |
| #endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */ |
| |
| static int sys_clock_driver_init(void) |
| { |
| uint32_t rtmr_cfg = BIT(MEC_RTMR_CFG_EN_POS) | BIT(MEC_RTMR_CFG_IEN_POS); |
| |
| if (IS_ENABLED(CONFIG_SOC_MEC_DEBUG_AND_TRACING)) { |
| rtmr_cfg |= BIT(MEC_RTMR_CFG_DBG_HALT_POS); |
| } |
| |
| #ifdef CONFIG_TICKLESS_KERNEL |
| cached_icr = MAX_TICKS; |
| #endif |
| |
| mec_hal_rtimer_init(rtimer, rtmr_cfg, cached_icr); |
| |
| IRQ_CONNECT(RTIMER_NVIC_NO, RTIMER_NVIC_PRIO, mec5_ktimer_isr, 0, 0); |
| irq_enable(RTIMER_NVIC_NO); |
| |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT |
| config_custom_busy_wait(); |
| #endif |
| |
| mec_hal_rtimer_start(rtimer); |
| while (!mec_hal_rtimer_is_counting(rtimer)) { |
| ; |
| } |
| |
| return 0; |
| } |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |