blob: f11f9f0eec18f07ed2dacad8e8903789b24e0659 [file] [log] [blame]
/*
* Copyright (c) 2019 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @defgroup arch-interface Architecture Interface
* @brief Internal kernel APIs with public scope
*
* Any public kernel APIs that are implemented as inline functions and need to
* call architecture-specific API so will have the prototypes for the
* architecture-specific APIs here. Architecture APIs that aren't used in this
* way go in kernel/include/kernel_arch_interface.h.
*
* The set of architecture-specific APIs used internally by public macros and
* inline functions in public headers are also specified and documented.
*
* For all macros and inline function prototypes described herein, <arch/cpu.h>
* must eventually pull in full definitions for all of them (the actual macro
* defines and inline function bodies)
*
* include/kernel.h and other public headers depend on definitions in this
* header.
*/
#ifndef ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
#define ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
#ifndef _ASMLANGUAGE
#include <toolchain.h>
#include <stddef.h>
#include <zephyr/types.h>
#include <arch/cpu.h>
#include <irq_offload.h>
#ifdef __cplusplus
extern "C" {
#endif
/* NOTE: We cannot pull in kernel.h here, need some forward declarations */
struct k_thread;
struct k_mem_domain;
typedef struct _k_thread_stack_element k_thread_stack_t;
typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
/**
* @defgroup arch-timing Architecture timing APIs
* @ingroup arch-interface
* @{
*/
/**
* Obtain the current cycle count, in units that are hardware-specific
*
* @see k_cycle_get_32()
*/
static inline u32_t arch_k_cycle_get_32(void);
/** @} */
/**
* @addtogroup arch-threads
* @{
*/
/**
* @def ARCH_THREAD_STACK_DEFINE(sym, size)
*
* @see K_THREAD_STACK_DEFINE()
*/
/**
* @def ARCH_THREAD_STACK_ARRAY_DEFINE(sym, size)
*
* @see K_THREAD_STACK_ARRAY_DEFINE()
*/
/**
* @def ARCH_THREAD_STACK_LEN(size)
*
* @see K_THREAD_STACK_LEN()
*/
/**
* @def ARCH_THREAD_STACK_MEMBER(sym, size)
*
* @see K_THREAD_STACK_MEMBER()
*/
/*
* @def ARCH_THREAD_STACK_SIZEOF(sym)
*
* @see K_THREAD_STACK_SIZEOF()
*/
/**
* @def ARCH_THREAD_STACK_RESERVED
*
* @see K_THREAD_STACK_RESERVED
*/
/**
* @def ARCH_THREAD_STACK_BUFFER(sym)
*
* @see K_THREAD_STACK_RESERVED
*/
/** @} */
/**
* @addtogroup arch-pm
* @{
*/
/**
* @brief Power save idle routine
*
* This function will be called by the kernel idle loop or possibly within
* an implementation of z_sys_power_save_idle in the kernel when the
* '_sys_power_save_flag' variable is non-zero.
*
* Architectures that do not implement power management instructions may
* immediately return, otherwise a power-saving instruction should be
* issued to wait for an interrupt.
*
* @see k_cpu_idle()
*/
void arch_cpu_idle(void);
/**
* @brief Atomically re-enable interrupts and enter low power mode
*
* The requirements for arch_cpu_atomic_idle() are as follows:
*
* -# Enabling interrupts and entering a low-power mode needs to be
* atomic, i.e. there should be no period of time where interrupts are
* enabled before the processor enters a low-power mode. See the comments
* in k_lifo_get(), for example, of the race condition that
* occurs if this requirement is not met.
*
* -# After waking up from the low-power mode, the interrupt lockout state
* must be restored as indicated in the 'key' input parameter.
*
* @see k_cpu_atomic_idle()
*
* @param key Lockout key returned by previous invocation of arch_irq_lock()
*/
void arch_cpu_atomic_idle(unsigned int key);
/** @} */
/**
* @addtogroup arch-smp
* @{
*/
/**
* @brief Start a numbered CPU on a MP-capable system
*
* This starts and initializes a specific CPU. The main thread on startup is
* running on CPU zero, other processors are numbered sequentially. On return
* from this function, the CPU is known to have begun operating and will enter
* the provided function. Its interrupts will be initialized but disabled such
* that irq_unlock() with the provided key will work to enable them.
*
* Normally, in SMP mode this function will be called by the kernel
* initialization and should not be used as a user API. But it is defined here
* for special-purpose apps which want Zephyr running on one core and to use
* others for design-specific processing.
*
* @param cpu_num Integer number of the CPU
* @param stack Stack memory for the CPU
* @param sz Stack buffer size, in bytes
* @param fn Function to begin running on the CPU. First argument is
* an irq_unlock() key.
* @param arg Untyped argument to be passed to "fn"
*/
void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
void (*fn)(int key, void *data), void *arg);
/** @} */
/**
* @addtogroup arch-irq
* @{
*/
/**
* Lock interrupts on the current CPU
*
* @see irq_lock()
*/
static inline unsigned int arch_irq_lock(void);
/**
* Unlock interrupts on the current CPU
*
* @see irq_unlock()
*/
static inline void arch_irq_unlock(unsigned int key);
/**
* Test if calling arch_irq_unlock() with this key would unlock irqs
*
* @param key value returned by arch_irq_lock()
* @return true if interrupts were unlocked prior to the arch_irq_lock()
* call that produced the key argument.
*/
static inline bool arch_irq_unlocked(unsigned int key);
/**
* Disable the specified interrupt line
*
* @see irq_disable()
*/
void arch_irq_disable(unsigned int irq);
/**
* Enable the specified interrupt line
*
* @see irq_enable()
*/
void arch_irq_enable(unsigned int irq);
/**
* Test if an interrupt line is enabled
*
* @see irq_is_enabled()
*/
int arch_irq_is_enabled(unsigned int irq);
/**
* Arch-specific hook to install a dynamic interrupt.
*
* @param irq IRQ line number
* @param priority Interrupt priority
* @param routine Interrupt service routine
* @param parameter ISR parameter
* @param flags Arch-specific IRQ configuration flag
*
* @return The vector assigned to this interrupt
*/
int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
void (*routine)(void *parameter),
void *parameter, u32_t flags);
/**
* @def ARCH_IRQ_CONNECT(irq, pri, isr, arg, flags)
*
* @see IRQ_CONNECT()
*/
/**
* @def ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)
*
* @see IRQ_DIRECT_CONNECT()
*/
/**
* @def ARCH_ISR_DIRECT_PM()
*
* @see ISR_DIRECT_PM()
*/
/**
* @def ARCH_ISR_DIRECT_HEADER()
*
* @see ISR_DIRECT_HEADER()
*/
/**
* @def ARCH_ISR_DIRECT_FOOTER(swap)
*
* @see ISR_DIRECT_FOOTER()
*/
/**
* @def ARCH_ISR_DIRECT_DECLARE(name)
*
* @see ISR_DIRECT_DECLARE()
*/
/**
* @def ARCH_EXCEPT(reason_p)
*
* Generate a software induced fatal error.
*
* If the caller is running in user mode, only K_ERR_KERNEL_OOPS or
* K_ERR_STACK_CHK_FAIL may be induced.
*
* This should ideally generate a software trap, with exception context
* indicating state when this was invoked. General purpose register state at
* the time of trap should not be disturbed from the calling context.
*
* @param reason_p K_ERR_ scoped reason code for the fatal error.
*/
#ifdef CONFIG_IRQ_OFFLOAD
/**
* Run a function in interrupt context.
*
* Implementations should invoke an exception such that the kernel goes through
* its interrupt handling dispatch path, to include switching to the interrupt
* stack, and runs the provided routine and parameter.
*
* The only intended use-case for this function is for test code to simulate
* the correctness of kernel APIs in interrupt handling context. This API
* is not intended for real applications.
*
* @see irq_offload()
*
* @param routine Function to run in interrupt context
* @param parameter Value to pass to the function when invoked
*/
void arch_irq_offload(irq_offload_routine_t routine, void *parameter);
#endif /* CONFIG_IRQ_OFFLOAD */
/** @} */
/**
* @defgroup arch-smp Architecture-specific SMP APIs
* @ingroup arch-interface
* @{
*/
#ifdef CONFIG_SMP
/** Return the CPU struct for the currently executing CPU */
static inline struct _cpu *arch_curr_cpu(void);
/**
* Broadcast an interrupt to all CPUs
*
* This will invoke z_sched_ipi() on other CPUs in the system.
*/
void arch_sched_ipi(void);
#endif /* CONFIG_SMP */
/** @} */
/**
* @defgroup arch-userspace Architecture-specific userspace APIs
* @ingroup arch-interface
* @{
*/
#ifdef CONFIG_USERSPACE
/**
* Invoke a system call with 0 arguments.
*
* No general-purpose register state other than return value may be preserved
* when transitioning from supervisor mode back down to user mode for
* security reasons.
*
* It is required that all arguments be stored in registers when elevating
* privileges from user to supervisor mode.
*
* Processing of the syscall takes place on a separate kernel stack. Interrupts
* should be enabled when invoking the system call marshallers from the
* dispatch table. Thread preemption may occur when handling system calls.
*
* Call ids are untrusted and must be bounds-checked, as the value is used to
* index the system call dispatch table, containing function pointers to the
* specific system call code.
*
* @param call_id System call ID
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke0(uintptr_t call_id);
/**
* Invoke a system call with 1 argument.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke1(uintptr_t arg1,
uintptr_t call_id);
/**
* Invoke a system call with 2 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke2(uintptr_t arg1, uintptr_t arg2,
uintptr_t call_id);
/**
* Invoke a system call with 3 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke3(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3,
uintptr_t call_id);
/**
* Invoke a system call with 4 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke4(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3, uintptr_t arg4,
uintptr_t call_id);
/**
* Invoke a system call with 5 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param arg5 Fifth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke5(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3, uintptr_t arg4,
uintptr_t arg5,
uintptr_t call_id);
/**
* Invoke a system call with 6 arguments.
*
* @see arch_syscall_invoke0()
*
* @param arg1 First argument to the system call.
* @param arg2 Second argument to the system call.
* @param arg3 Third argument to the system call.
* @param arg4 Fourth argument to the system call.
* @param arg5 Fifth argument to the system call.
* @param arg6 Sixth argument to the system call.
* @param call_id System call ID, will be bounds-checked and used to reference
* kernel-side dispatch table
* @return Return value of the system call. Void system calls return 0 here.
*/
static inline uintptr_t arch_syscall_invoke6(uintptr_t arg1, uintptr_t arg2,
uintptr_t arg3, uintptr_t arg4,
uintptr_t arg5, uintptr_t arg6,
uintptr_t call_id);
/**
* Indicate whether we are currently running in user mode
*
* @return true if the CPU is currently running with user permissions
*/
static inline bool arch_is_user_context(void);
/**
* @brief Get the maximum number of partitions for a memory domain
*
* @return Max number of partitions, or -1 if there is no limit
*/
int arch_mem_domain_max_partitions_get(void);
/**
* @brief Add a thread to a memory domain (arch-specific)
*
* Architecture-specific hook to manage internal data structures or hardware
* state when the provided thread has been added to a memory domain.
*
* The thread's memory domain pointer will be set to the domain to be added
* to.
*
* @param thread Thread which needs to be configured.
*/
void arch_mem_domain_thread_add(struct k_thread *thread);
/**
* @brief Remove a thread from a memory domain (arch-specific)
*
* Architecture-specific hook to manage internal data structures or hardware
* state when the provided thread has been removed from a memory domain.
*
* The thread's memory domain pointer will be the domain that the thread
* is being removed from.
*
* @param thread Thread being removed from its memory domain
*/
void arch_mem_domain_thread_remove(struct k_thread *thread);
/**
* @brief Remove a partition from the memory domain (arch-specific)
*
* Architecture-specific hook to manage internal data structures or hardware
* state when a memory domain has had a partition removed.
*
* The partition index data, and the number of partitions configured, are not
* respectively cleared and decremented in the domain until after this function
* runs.
*
* @param domain The memory domain structure
* @param partition_id The partition index that needs to be deleted
*/
void arch_mem_domain_partition_remove(struct k_mem_domain *domain,
u32_t partition_id);
/**
* @brief Add a partition to the memory domain
*
* Architecture-specific hook to manage internal data structures or hardware
* state when a memory domain has a partition added.
*
* @param domain The memory domain structure
* @param partition_id The partition that needs to be added
*/
void arch_mem_domain_partition_add(struct k_mem_domain *domain,
u32_t partition_id);
/**
* @brief Remove the memory domain
*
* Architecture-specific hook to manage internal data structures or hardware
* state when a memory domain has been destroyed.
*
* Thread assignments to the memory domain are only cleared after this function
* runs.
*
* @param domain The memory domain structure which needs to be deleted.
*/
void arch_mem_domain_destroy(struct k_mem_domain *domain);
/**
* @brief Check memory region permissions
*
* Given a memory region, return whether the current memory management hardware
* configuration would allow a user thread to read/write that region. Used by
* system calls to validate buffers coming in from userspace.
*
* Notes:
* The function is guaranteed to never return validation success, if the entire
* buffer area is not user accessible.
*
* The function is guaranteed to correctly validate the permissions of the
* supplied buffer, if the user access permissions of the entire buffer are
* enforced by a single, enabled memory management region.
*
* In some architectures the validation will always return failure
* if the supplied memory buffer spans multiple enabled memory management
* regions (even if all such regions permit user access).
*
* @param addr start address of the buffer
* @param size the size of the buffer
* @param write If nonzero, additionally check if the area is writable.
* Otherwise, just check if the memory can be read.
*
* @return nonzero if the permissions don't match.
*/
int arch_buffer_validate(void *addr, size_t size, int write);
/**
* Perform a one-way transition from supervisor to kernel mode.
*
* Implementations of this function must do the following:
*
* - Reset the thread's stack pointer to a suitable initial value. We do not
* need any prior context since this is a one-way operation.
* - Set up any kernel stack region for the CPU to use during privilege
* elevation
* - Put the CPU in whatever its equivalent of user mode is
* - Transfer execution to arch_new_thread() passing along all the supplied
* arguments, in user mode.
*
* @param user_entry Entry point to start executing as a user thread
* @param p1 1st parameter to user thread
* @param p2 2nd parameter to user thread
* @param p3 3rd parameter to user thread
*/
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3);
/**
* @brief Induce a kernel oops that appears to come from a specific location
*
* Normally, k_oops() generates an exception that appears to come from the
* call site of the k_oops() itself.
*
* However, when validating arguments to a system call, if there are problems
* we want the oops to appear to come from where the system call was invoked
* and not inside the validation function.
*
* @param ssf System call stack frame pointer. This gets passed as an argument
* to _k_syscall_handler_t functions and its contents are completely
* architecture specific.
*/
FUNC_NORETURN void arch_syscall_oops(void *ssf);
/**
* @brief Safely take the length of a potentially bad string
*
* This must not fault, instead the err parameter must have -1 written to it.
* This function otherwise should work exactly like libc strnlen(). On success
* *err should be set to 0.
*
* @param s String to measure
* @param maxsize Max length of the string
* @param err Error value to write
* @return Length of the string, not counting NULL byte, up to maxsize
*/
size_t arch_user_string_nlen(const char *s, size_t maxsize, int *err);
#endif /* CONFIG_USERSPACE */
/** @} */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#include <arch/arch_inlines.h>
#endif /* _ASMLANGUAGE */
#endif /* ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_ */