blob: 0adf7052c986032cb1365a738fd20ed857623291 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/tc_util.h>
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/kernel_structs.h>
#if CONFIG_MP_MAX_NUM_CPUS < 2
#error SMP test requires at least two CPUs!
#endif
#define RUN_FACTOR (CONFIG_SMP_TEST_RUN_FACTOR / 100.0)
#define T2_STACK_SIZE (2048 + CONFIG_TEST_EXTRA_STACK_SIZE)
#define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACK_SIZE)
#define DELAY_US 50000
#define TIMEOUT 1000
#define EQUAL_PRIORITY 1
#define TIME_SLICE_MS 500
#define THREAD_DELAY 1
#define SLEEP_MS_LONG ((int)(15000 * RUN_FACTOR))
struct k_thread t2;
K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE);
volatile int t2_count;
volatile int sync_count = -1;
static int main_thread_id;
static int child_thread_id;
volatile int rv;
K_SEM_DEFINE(cpuid_sema, 0, 1);
K_SEM_DEFINE(sema, 0, 1);
static struct k_mutex smutex;
static struct k_sem smp_sem;
#define MAX_NUM_THREADS CONFIG_MP_MAX_NUM_CPUS
struct thread_info {
k_tid_t tid;
int executed;
int priority;
int cpu_id;
};
static ZTEST_BMEM volatile struct thread_info tinfo[MAX_NUM_THREADS];
static struct k_thread tthread[MAX_NUM_THREADS];
static K_THREAD_STACK_ARRAY_DEFINE(tstack, MAX_NUM_THREADS, STACK_SIZE);
static volatile int thread_started[MAX_NUM_THREADS - 1];
static struct k_poll_signal tsignal[MAX_NUM_THREADS];
static struct k_poll_event tevent[MAX_NUM_THREADS];
static int curr_cpu(void)
{
unsigned int k = arch_irq_lock();
int ret = arch_curr_cpu()->id;
arch_irq_unlock(k);
return ret;
}
/**
* @brief SMP
* @defgroup kernel_smp_tests SMP Tests
* @ingroup all_tests
* @{
* @}
*/
/**
* @defgroup kernel_smp_integration_tests SMP Integration Tests
* @ingroup kernel_smp_tests
* @{
* @}
*/
/**
* @defgroup kernel_smp_module_tests SMP Module Tests
* @ingroup kernel_smp_tests
* @{
* @}
*/
static void t2_fn(void *a, void *b, void *c)
{
ARG_UNUSED(a);
ARG_UNUSED(b);
ARG_UNUSED(c);
t2_count = 0;
/* This thread simply increments a counter while spinning on
* the CPU. The idea is that it will always be iterating
* faster than the other thread so long as it is fairly
* scheduled (and it's designed to NOT be fairly schedulable
* without a separate CPU!), so the main thread can always
* check its progress.
*/
while (1) {
k_busy_wait(DELAY_US);
t2_count++;
}
}
/**
* @brief Verify SMP with 2 cooperative threads
*
* @ingroup kernel_smp_tests
*
* @details Multi processing is verified by checking whether
* 2 cooperative threads run simultaneously at different cores
*/
ZTEST(smp, test_smp_coop_threads)
{
int i, ok = 1;
if (!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
/* The spawned thread enters an infinite loop, so it can't be
* successfully aborted via an IPI. Just skip in that
* configuration.
*/
ztest_test_skip();
}
k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn,
NULL, NULL, NULL,
K_PRIO_COOP(2), 0, K_NO_WAIT);
/* Wait for the other thread (on a separate CPU) to actually
* start running. We want synchrony to be as perfect as
* possible.
*/
t2_count = -1;
while (t2_count == -1) {
}
for (i = 0; i < 10; i++) {
/* Wait slightly longer than the other thread so our
* count will always be lower
*/
k_busy_wait(DELAY_US + (DELAY_US / 8));
if (t2_count <= i) {
ok = 0;
break;
}
}
k_thread_abort(tid);
k_thread_join(tid, K_FOREVER);
zassert_true(ok, "SMP test failed");
}
static void child_fn(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
int parent_cpu_id = POINTER_TO_INT(p1);
zassert_true(parent_cpu_id != curr_cpu(),
"Parent isn't on other core");
sync_count++;
k_sem_give(&cpuid_sema);
}
/**
* @brief Verify CPU IDs of threads in SMP
*
* @ingroup kernel_smp_tests
*
* @details Verify whether thread running on other core is
* parent thread from child thread
*/
ZTEST(smp, test_cpu_id_threads)
{
/* Make sure idle thread runs on each core */
k_sleep(K_MSEC(1000));
int parent_cpu_id = curr_cpu();
k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, child_fn,
INT_TO_POINTER(parent_cpu_id), NULL,
NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
while (sync_count == -1) {
}
k_sem_take(&cpuid_sema, K_FOREVER);
k_thread_abort(tid);
k_thread_join(tid, K_FOREVER);
}
static void thread_entry(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
int thread_num = POINTER_TO_INT(p1);
int count = 0;
tinfo[thread_num].executed = 1;
tinfo[thread_num].cpu_id = curr_cpu();
while (count++ < 5) {
k_busy_wait(DELAY_US);
}
}
static void spin_for_threads_exit(void)
{
unsigned int num_threads = arch_num_cpus();
for (int i = 0; i < num_threads - 1; i++) {
volatile uint8_t *p = &tinfo[i].tid->base.thread_state;
while (!(*p & _THREAD_DEAD)) {
}
}
k_busy_wait(DELAY_US);
}
static void spawn_threads(int prio, int thread_num, int equal_prio,
k_thread_entry_t thread_entry, int delay)
{
int i;
/* Spawn threads of priority higher than
* the previously created thread
*/
for (i = 0; i < thread_num; i++) {
if (equal_prio) {
tinfo[i].priority = prio;
} else {
/* Increase priority for each thread */
tinfo[i].priority = prio - 1;
prio = tinfo[i].priority;
}
tinfo[i].tid = k_thread_create(&tthread[i], tstack[i],
STACK_SIZE, thread_entry,
INT_TO_POINTER(i), NULL, NULL,
tinfo[i].priority, 0,
K_MSEC(delay));
if (delay) {
/* Increase delay for each thread */
delay = delay + 10;
}
}
}
static void abort_threads(int num)
{
for (int i = 0; i < num; i++) {
k_thread_abort(tinfo[i].tid);
}
for (int i = 0; i < num; i++) {
k_thread_join(tinfo[i].tid, K_FOREVER);
}
}
static void cleanup_resources(void)
{
unsigned int num_threads = arch_num_cpus();
for (int i = 0; i < num_threads; i++) {
tinfo[i].tid = 0;
tinfo[i].executed = 0;
tinfo[i].priority = 0;
}
}
static void __no_optimization thread_ab_entry(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p1);
ARG_UNUSED(p2);
ARG_UNUSED(p3);
while (true) {
}
}
#define SPAWN_AB_PRIO K_PRIO_COOP(10)
/**
* @brief Verify the code path when we do context switch in k_thread_abort on SMP system
*
* @ingroup kernel_smp_tests
*
* @details test logic:
* - The ztest thread has cooperative priority.
* - From ztest thread we spawn N number of cooperative threads, where N = number of CPUs.
* - The spawned cooperative are executing infinite loop (so they occupy CPU core until they are
* aborted).
* - We have (number of CPUs - 1) spawned threads run and executing infinite loop, as current CPU
* is occupied by ztest cooperative thread. Due to that the last of spawned threads is ready but
* not executing.
* - We abort spawned threads one-by-one from the ztest thread.
* - At the first k_thread_abort call the ztest thread will be preempted by the remaining spawned
* thread which has higher priority than ztest thread.
* But... k_thread_abort call should has destroyed one of the spawned threads, so ztest thread
* should have a CPU available to run on.
* - We expect that all spawned threads will be aborted successfully.
*
* This was the test case for zephyrproject-rtos/zephyr#58040 issue where this test caused system
* hang.
*/
ZTEST(smp, test_coop_switch_in_abort)
{
k_tid_t tid[MAX_NUM_THREADS];
unsigned int num_threads = arch_num_cpus();
unsigned int i;
zassert_true(_current->base.prio < 0, "test case relies on ztest thread be cooperative");
zassert_true(_current->base.prio > SPAWN_AB_PRIO,
"spawn test need to have higher priority than ztest thread");
/* Spawn N number of cooperative threads, where N = number of CPUs */
for (i = 0; i < num_threads; i++) {
tid[i] = k_thread_create(&tthread[i], tstack[i],
STACK_SIZE, thread_ab_entry,
NULL, NULL, NULL,
SPAWN_AB_PRIO, 0, K_NO_WAIT);
}
/* Wait for some time to let spawned threads on other cores run and start executing infinite
* loop.
*/
k_busy_wait(DELAY_US * 4);
/* At this time we have (number of CPUs - 1) spawned threads run and executing infinite loop
* on other CPU cores, as current CPU is occupied by this ztest cooperative thread.
* Due to that the last of spawned threads is ready but not executing.
*/
/* Abort all spawned threads one-by-one. At the first k_thread_abort call the context
* switch will happen and the last 'spawned' thread will start.
* We should successfully abort all threads.
*/
for (i = 0; i < num_threads; i++) {
k_thread_abort(tid[i]);
}
/* Cleanup */
for (i = 0; i < num_threads; i++) {
zassert_equal(k_thread_join(tid[i], K_FOREVER), 0);
}
}
/**
* @brief Test cooperative threads non-preemption
*
* @ingroup kernel_smp_tests
*
* @details Spawn cooperative threads equal to number of cores
* supported. Main thread will already be running on 1 core.
* Check if the last thread created preempts any threads
* already running.
*/
ZTEST(smp, test_coop_resched_threads)
{
unsigned int num_threads = arch_num_cpus();
/* Spawn threads equal to number of cores,
* since we don't give up current CPU, last thread
* will not get scheduled
*/
spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY,
&thread_entry, THREAD_DELAY);
/* Wait for some time to let other core's thread run */
k_busy_wait(DELAY_US);
/* Reassure that cooperative thread's are not preempted
* by checking last thread's execution
* status. We know that all threads got rescheduled on
* other cores except the last one
*/
for (int i = 0; i < num_threads - 1; i++) {
zassert_true(tinfo[i].executed == 1,
"cooperative thread %d didn't run", i);
}
zassert_true(tinfo[num_threads - 1].executed == 0,
"cooperative thread is preempted");
/* Abort threads created */
abort_threads(num_threads);
cleanup_resources();
}
/**
* @brief Test preemptness of preemptive thread
*
* @ingroup kernel_smp_tests
*
* @details Create preemptive thread and let it run
* on another core and verify if it gets preempted
* if another thread of higher priority is spawned
*/
ZTEST(smp, test_preempt_resched_threads)
{
unsigned int num_threads = arch_num_cpus();
/* Spawn threads equal to number of cores,
* lower priority thread should
* be preempted by higher ones
*/
spawn_threads(K_PRIO_PREEMPT(10), num_threads, !EQUAL_PRIORITY,
&thread_entry, THREAD_DELAY);
spin_for_threads_exit();
for (int i = 0; i < num_threads; i++) {
zassert_true(tinfo[i].executed == 1,
"preemptive thread %d didn't run", i);
}
/* Abort threads created */
abort_threads(num_threads);
cleanup_resources();
}
/**
* @brief Validate behavior of thread when it yields
*
* @ingroup kernel_smp_tests
*
* @details Spawn cooperative threads equal to number
* of cores, so last thread would be pending, call
* yield() from main thread. Now, all threads must be
* executed
*/
ZTEST(smp, test_yield_threads)
{
unsigned int num_threads = arch_num_cpus();
/* Spawn threads equal to the number
* of cores, so the last thread would be
* pending.
*/
spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY,
&thread_entry, !THREAD_DELAY);
k_yield();
k_busy_wait(DELAY_US);
for (int i = 0; i < num_threads; i++) {
zassert_true(tinfo[i].executed == 1,
"thread %d did not execute", i);
}
abort_threads(num_threads);
cleanup_resources();
}
/**
* @brief Test behavior of thread when it sleeps
*
* @ingroup kernel_smp_tests
*
* @details Spawn cooperative thread and call
* sleep() from main thread. After timeout, all
* threads has to be scheduled.
*/
ZTEST(smp, test_sleep_threads)
{
unsigned int num_threads = arch_num_cpus();
spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY,
&thread_entry, !THREAD_DELAY);
k_msleep(TIMEOUT);
for (int i = 0; i < num_threads; i++) {
zassert_true(tinfo[i].executed == 1,
"thread %d did not execute", i);
}
abort_threads(num_threads);
cleanup_resources();
}
static void thread_wakeup_entry(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
int thread_num = POINTER_TO_INT(p1);
thread_started[thread_num] = 1;
k_msleep(DELAY_US * 1000);
tinfo[thread_num].executed = 1;
}
static void wakeup_on_start_thread(int tnum)
{
int threads_started = 0, i;
/* For each thread, spin waiting for it to first flag that
* it's going to sleep, and then that it's actually blocked
*/
for (i = 0; i < tnum; i++) {
while (thread_started[i] == 0) {
}
while (!z_is_thread_prevented_from_running(tinfo[i].tid)) {
}
}
for (i = 0; i < tnum; i++) {
if (thread_started[i] == 1 && threads_started <= tnum) {
threads_started++;
k_wakeup(tinfo[i].tid);
}
}
zassert_equal(threads_started, tnum,
"All threads haven't started");
}
static void check_wokeup_threads(int tnum)
{
int threads_woke_up = 0, i;
/* k_wakeup() isn't synchronous, give the other CPU time to
* schedule them
*/
k_busy_wait(200000);
for (i = 0; i < tnum; i++) {
if (tinfo[i].executed == 1 && threads_woke_up <= tnum) {
threads_woke_up++;
}
}
zassert_equal(threads_woke_up, tnum, "Threads did not wakeup");
}
/**
* @brief Test behavior of wakeup() in SMP case
*
* @ingroup kernel_smp_tests
*
* @details Spawn number of threads equal to number of
* remaining cores and let them sleep for a while. Call
* wakeup() of those threads from parent thread and check
* if they are all running
*/
ZTEST(smp, test_wakeup_threads)
{
unsigned int num_threads = arch_num_cpus();
/* Spawn threads to run on all remaining cores */
spawn_threads(K_PRIO_COOP(10), num_threads - 1, !EQUAL_PRIORITY,
&thread_wakeup_entry, !THREAD_DELAY);
/* Check if all the threads have started, then call wakeup */
wakeup_on_start_thread(num_threads - 1);
/* Count threads which are woken up */
check_wokeup_threads(num_threads - 1);
/* Abort all threads and cleanup */
abort_threads(num_threads - 1);
cleanup_resources();
}
/* a thread for testing get current cpu */
static void thread_get_cpu_entry(void *p1, void *p2, void *p3)
{
int bsp_id = *(int *)p1;
int cpu_id = -1;
/* get current cpu number for running thread */
_cpu_t *curr_cpu = arch_curr_cpu();
/**TESTPOINT: call arch_curr_cpu() to get cpu struct */
zassert_true(curr_cpu != NULL,
"test failed to get current cpu.");
cpu_id = curr_cpu->id;
zassert_true(bsp_id != cpu_id,
"should not be the same with our BSP");
/* loop forever to ensure running on this CPU */
while (1) {
k_busy_wait(DELAY_US);
}
}
/**
* @brief Test get a pointer of CPU
*
* @ingroup kernel_smp_module_tests
*
* @details
* Test Objective:
* - To verify architecture layer provides a mechanism to return a pointer to the
* current kernel CPU record of the running CPU.
* We call arch_curr_cpu() and get its member, both in main and spawned thread
* separately, and compare them. They shall be different in SMP environment.
*
* Testing techniques:
* - Interface testing, function and block box testing,
* dynamic analysis and testing,
*
* Prerequisite Conditions:
* - CONFIG_SMP=y, and the HW platform must support SMP.
*
* Input Specifications:
* - N/A
*
* Test Procedure:
* -# In main thread, call arch_curr_cpu() to get it's member "id",then store it
* into a variable thread_id.
* -# Spawn a thread t2, and pass the stored thread_id to it, then call
* k_busy_wait() 50us to wait for thread run and won't be swapped out.
* -# In thread t2, call arch_curr_cpu() to get pointer of current cpu data. Then
* check if it not NULL.
* -# Store the member id via accessing pointer of current cpu data to var cpu_id.
* -# Check if cpu_id is not equaled to bsp_id that we pass into thread.
* -# Call k_busy_wait() and loop forever.
* -# In main thread, terminate the thread t2 before exit.
*
* Expected Test Result:
* - The pointer of current cpu data that we got from function call is correct.
*
* Pass/Fail Criteria:
* - Successful if the check of step 3,5 are all passed.
* - Failure if one of the check of step 3,5 is failed.
*
* Assumptions and Constraints:
* - This test using for the platform that support SMP, in our current scenario
* , only x86_64, arc and xtensa supported.
*
* @see arch_curr_cpu()
*/
static int _cpu_id;
ZTEST(smp, test_get_cpu)
{
k_tid_t thread_id;
if (!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
/* The spawned thread enters an infinite loop, so it can't be
* successfully aborted via an IPI. Just skip in that
* configuration.
*/
ztest_test_skip();
}
/* get current cpu number */
_cpu_id = arch_curr_cpu()->id;
thread_id = k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
(k_thread_entry_t)thread_get_cpu_entry,
&_cpu_id, NULL, NULL,
K_PRIO_COOP(2),
K_INHERIT_PERMS, K_NO_WAIT);
k_busy_wait(DELAY_US);
k_thread_abort(thread_id);
k_thread_join(thread_id, K_FOREVER);
}
#ifdef CONFIG_TRACE_SCHED_IPI
/* global variable for testing send IPI */
static volatile int sched_ipi_has_called;
void z_trace_sched_ipi(void)
{
sched_ipi_has_called++;
}
#endif
/**
* @brief Test interprocessor interrupt
*
* @ingroup kernel_smp_integration_tests
*
* @details
* Test Objective:
* - To verify architecture layer provides a mechanism to issue an interprocessor
* interrupt to all other CPUs in the system that calls the scheduler IPI.
* We simply add a hook in z_sched_ipi(), in order to check if it has been
* called once in another CPU except the caller, when arch_sched_ipi() is
* called.
*
* Testing techniques:
* - Interface testing, function and block box testing,
* dynamic analysis and testing
*
* Prerequisite Conditions:
* - CONFIG_SMP=y, and the HW platform must support SMP.
* - CONFIG_TRACE_SCHED_IPI=y was set.
*
* Input Specifications:
* - N/A
*
* Test Procedure:
* -# In main thread, given a global variable sched_ipi_has_called equaled zero.
* -# Call arch_sched_ipi() then sleep for 100ms.
* -# In z_sched_ipi() handler, increment the sched_ipi_has_called.
* -# In main thread, check the sched_ipi_has_called is not equaled to zero.
* -# Repeat step 1 to 4 for 3 times.
*
* Expected Test Result:
* - The pointer of current cpu data that we got from function call is correct.
*
* Pass/Fail Criteria:
* - Successful if the check of step 4 are all passed.
* - Failure if one of the check of step 4 is failed.
*
* Assumptions and Constraints:
* - This test using for the platform that support SMP, in our current scenario
* , only x86_64 and arc supported.
*
* @see arch_sched_ipi()
*/
#ifdef CONFIG_SCHED_IPI_SUPPORTED
ZTEST(smp, test_smp_ipi)
{
#ifndef CONFIG_TRACE_SCHED_IPI
ztest_test_skip();
#endif
TC_PRINT("cpu num=%d", arch_num_cpus());
for (int i = 0; i < 3 ; i++) {
/* issue a sched ipi to tell other CPU to run thread */
sched_ipi_has_called = 0;
arch_sched_ipi();
/* Need to wait longer than we think, loaded CI
* systems need to wait for host scheduling to run the
* other CPU's thread.
*/
k_msleep(100);
/**TESTPOINT: check if enter our IPI interrupt handler */
zassert_true(sched_ipi_has_called != 0,
"did not receive IPI.(%d)",
sched_ipi_has_called);
}
}
#endif
void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *esf)
{
static int trigger;
if (reason != K_ERR_KERNEL_OOPS) {
printk("wrong error reason\n");
printk("PROJECT EXECUTION FAILED\n");
k_fatal_halt(reason);
}
if (trigger == 0) {
child_thread_id = curr_cpu();
trigger++;
} else {
main_thread_id = curr_cpu();
/* Verify the fatal was happened on different core */
zassert_true(main_thread_id != child_thread_id,
"fatal on the same core");
}
}
void entry_oops(void *p1, void *p2, void *p3)
{
k_oops();
TC_ERROR("SHOULD NEVER SEE THIS\n");
}
/**
* @brief Test fatal error can be triggered on different core
* @details When CONFIG_SMP is enabled, on some multiprocessor
* platforms, exception can be triggered on different core at
* the same time.
*
* @ingroup kernel_common_tests
*/
ZTEST(smp, test_fatal_on_smp)
{
/* Creat a child thread and trigger a crash */
k_thread_create(&t2, t2_stack, T2_STACK_SIZE, entry_oops,
NULL, NULL, NULL,
K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
/* hold cpu and wait for thread trigger exception and being terminated */
k_busy_wait(2 * DELAY_US);
/* Verify that child thread is no longer running. We can't simply use k_thread_join here
* as we don't want to introduce reschedule point here.
*/
zassert_true(z_is_thread_state_set(&t2, _THREAD_DEAD));
/* Manually trigger the crash in mainthread */
entry_oops(NULL, NULL, NULL);
/* should not be here */
ztest_test_fail();
}
static void workq_handler(struct k_work *work)
{
child_thread_id = curr_cpu();
}
/**
* @brief Test system workq run on different core
* @details When macro CONFIG_SMP is enabled, workq can be run
* on different core.
*
* @ingroup kernel_common_tests
*/
ZTEST(smp, test_workq_on_smp)
{
static struct k_work work;
k_work_init(&work, workq_handler);
/* submit work item on system workq */
k_work_submit(&work);
/* Wait for some time to let other core's thread run */
k_busy_wait(DELAY_US);
/* check work have finished */
zassert_equal(k_work_busy_get(&work), 0);
main_thread_id = curr_cpu();
/* Verify the ztest thread and system workq run on different core */
zassert_true(main_thread_id != child_thread_id,
"system workq run on the same core");
}
static void t1_mutex_lock(void *p1, void *p2, void *p3)
{
/* t1 will get mutex first */
k_mutex_lock((struct k_mutex *)p1, K_FOREVER);
k_msleep(2);
k_mutex_unlock((struct k_mutex *)p1);
}
static void t2_mutex_lock(void *p1, void *p2, void *p3)
{
zassert_equal(_current->base.global_lock_count, 0,
"thread global lock cnt %d is incorrect",
_current->base.global_lock_count);
k_mutex_lock((struct k_mutex *)p1, K_FOREVER);
zassert_equal(_current->base.global_lock_count, 0,
"thread global lock cnt %d is incorrect",
_current->base.global_lock_count);
k_mutex_unlock((struct k_mutex *)p1);
/**TESTPOINT: z_smp_release_global_lock() has been call during
* context switch but global_lock_cnt has not been decrease
* because no irq_lock() was called.
*/
zassert_equal(_current->base.global_lock_count, 0,
"thread global lock cnt %d is incorrect",
_current->base.global_lock_count);
}
/**
* @brief Test scenario that a thread release the global lock
*
* @ingroup kernel_smp_tests
*
* @details Validate the scenario that make the internal APIs of SMP
* z_smp_release_global_lock() to be called.
*/
ZTEST(smp, test_smp_release_global_lock)
{
k_mutex_init(&smutex);
tinfo[0].tid =
k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
(k_thread_entry_t)t1_mutex_lock,
&smutex, NULL, NULL,
K_PRIO_PREEMPT(5),
K_INHERIT_PERMS, K_NO_WAIT);
tinfo[1].tid =
k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
(k_thread_entry_t)t2_mutex_lock,
&smutex, NULL, NULL,
K_PRIO_PREEMPT(3),
K_INHERIT_PERMS, K_MSEC(1));
/* Hold one of the cpu to ensure context switch as we wanted
* can happen in another cpu.
*/
k_busy_wait(20000);
k_thread_join(tinfo[1].tid, K_FOREVER);
k_thread_join(tinfo[0].tid, K_FOREVER);
cleanup_resources();
}
#define LOOP_COUNT ((int)(20000 * RUN_FACTOR))
enum sync_t {
LOCK_IRQ,
LOCK_SEM,
LOCK_MUTEX
};
static int global_cnt;
static struct k_mutex smp_mutex;
static void (*sync_lock)(void *);
static void (*sync_unlock)(void *);
static void sync_lock_dummy(void *k)
{
/* no sync lock used */
}
static void sync_lock_irq(void *k)
{
*((unsigned int *)k) = irq_lock();
}
static void sync_unlock_irq(void *k)
{
irq_unlock(*(unsigned int *)k);
}
static void sync_lock_sem(void *k)
{
k_sem_take(&smp_sem, K_FOREVER);
}
static void sync_unlock_sem(void *k)
{
k_sem_give(&smp_sem);
}
static void sync_lock_mutex(void *k)
{
k_mutex_lock(&smp_mutex, K_FOREVER);
}
static void sync_unlock_mutex(void *k)
{
k_mutex_unlock(&smp_mutex);
}
static void sync_init(int lock_type)
{
switch (lock_type) {
case LOCK_IRQ:
sync_lock = sync_lock_irq;
sync_unlock = sync_unlock_irq;
break;
case LOCK_SEM:
sync_lock = sync_lock_sem;
sync_unlock = sync_unlock_sem;
k_sem_init(&smp_sem, 1, 3);
break;
case LOCK_MUTEX:
sync_lock = sync_lock_mutex;
sync_unlock = sync_unlock_mutex;
k_mutex_init(&smp_mutex);
break;
default:
sync_lock = sync_unlock = sync_lock_dummy;
}
}
static void inc_global_cnt(void *a, void *b, void *c)
{
int key;
for (int i = 0; i < LOOP_COUNT; i++) {
sync_lock(&key);
global_cnt++;
global_cnt--;
global_cnt++;
sync_unlock(&key);
}
}
static int run_concurrency(int type, void *func)
{
uint32_t start_t, end_t;
sync_init(type);
global_cnt = 0;
start_t = k_cycle_get_32();
tinfo[0].tid =
k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
(k_thread_entry_t)func,
NULL, NULL, NULL,
K_PRIO_PREEMPT(1),
K_INHERIT_PERMS, K_NO_WAIT);
tinfo[1].tid =
k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
(k_thread_entry_t)func,
NULL, NULL, NULL,
K_PRIO_PREEMPT(1),
K_INHERIT_PERMS, K_NO_WAIT);
k_tid_t tid =
k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
(k_thread_entry_t)func,
NULL, NULL, NULL,
K_PRIO_PREEMPT(1),
K_INHERIT_PERMS, K_NO_WAIT);
k_thread_join(tinfo[0].tid, K_FOREVER);
k_thread_join(tinfo[1].tid, K_FOREVER);
k_thread_join(tid, K_FOREVER);
cleanup_resources();
end_t = k_cycle_get_32();
printk("type %d: cnt %d, spend %u ms\n", type, global_cnt,
k_cyc_to_ms_ceil32(end_t - start_t));
return global_cnt == (LOOP_COUNT * 3);
}
/**
* @brief Test if the concurrency of SMP works or not
*
* @ingroup kernel_smp_tests
*
* @details Validate the global lock and unlock API of SMP are thread-safe.
* We make 3 thread to increase the global count in different cpu and
* they both do locking then unlocking for LOOP_COUNT times. It shall be no
* deadlock happened and total global count shall be 3 * LOOP COUNT.
*
* We show the 4 kinds of scenario:
* - No any lock used
* - Use global irq lock
* - Use semaphore
* - Use mutex
*/
ZTEST(smp, test_inc_concurrency)
{
/* increasing global var with irq lock */
zassert_true(run_concurrency(LOCK_IRQ, inc_global_cnt),
"total count %d is wrong(i)", global_cnt);
/* increasing global var with irq lock */
zassert_true(run_concurrency(LOCK_SEM, inc_global_cnt),
"total count %d is wrong(s)", global_cnt);
/* increasing global var with irq lock */
zassert_true(run_concurrency(LOCK_MUTEX, inc_global_cnt),
"total count %d is wrong(M)", global_cnt);
}
/**
* @brief Torture test for context switching code
*
* @ingroup kernel_smp_tests
*
* @details Leverage the polling API to stress test the context switching code.
* This test will hammer all the CPUs with thread swapping requests.
*/
static void process_events(void *arg0, void *arg1, void *arg2)
{
uintptr_t id = (uintptr_t) arg0;
while (1) {
k_poll(&tevent[id], 1, K_FOREVER);
if (tevent[id].signal->result != 0x55) {
ztest_test_fail();
}
tevent[id].signal->signaled = 0;
tevent[id].state = K_POLL_STATE_NOT_READY;
k_poll_signal_reset(&tsignal[id]);
}
}
static void signal_raise(void *arg0, void *arg1, void *arg2)
{
unsigned int num_threads = arch_num_cpus();
while (1) {
for (uintptr_t i = 0; i < num_threads; i++) {
k_poll_signal_raise(&tsignal[i], 0x55);
}
}
}
ZTEST(smp, test_smp_switch_torture)
{
unsigned int num_threads = arch_num_cpus();
for (uintptr_t i = 0; i < num_threads; i++) {
k_poll_signal_init(&tsignal[i]);
k_poll_event_init(&tevent[i], K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY, &tsignal[i]);
k_thread_create(&tthread[i], tstack[i], STACK_SIZE,
(k_thread_entry_t) process_events,
(void *) i, NULL, NULL, K_PRIO_PREEMPT(i + 1),
K_INHERIT_PERMS, K_NO_WAIT);
}
k_thread_create(&t2, t2_stack, T2_STACK_SIZE, signal_raise,
NULL, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT);
k_sleep(K_MSEC(SLEEP_MS_LONG));
k_thread_abort(&t2);
k_thread_join(&t2, K_FOREVER);
for (uintptr_t i = 0; i < num_threads; i++) {
k_thread_abort(&tthread[i]);
k_thread_join(&tthread[i], K_FOREVER);
}
}
static void *smp_tests_setup(void)
{
/* Sleep a bit to guarantee that both CPUs enter an idle
* thread from which they can exit correctly to run the main
* test.
*/
k_sleep(K_MSEC(10));
return NULL;
}
ZTEST_SUITE(smp, NULL, smp_tests_setup, NULL, NULL, NULL);