| /* |
| * Copyright (c) 2019 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <zephyr/sys/sys_heap.h> |
| #include <zephyr/sys/util.h> |
| #include <zephyr/kernel.h> |
| #include "heap.h" |
| |
| struct z_heap_stress_rec { |
| void *(*alloc_fn)(void *arg, size_t bytes); |
| void (*free_fn)(void *arg, void *p); |
| void *arg; |
| size_t total_bytes; |
| struct z_heap_stress_block *blocks; |
| size_t nblocks; |
| size_t blocks_alloced; |
| size_t bytes_alloced; |
| uint32_t target_percent; |
| }; |
| |
| struct z_heap_stress_block { |
| void *ptr; |
| size_t sz; |
| }; |
| |
| /* Very simple LCRNG (from https://nuclear.llnl.gov/CNP/rng/rngman/node4.html) |
| * |
| * Here to guarantee cross-platform test repeatability. |
| */ |
| static uint32_t rand32(void) |
| { |
| static uint64_t state = 123456789; /* seed */ |
| |
| state = state * 2862933555777941757UL + 3037000493UL; |
| |
| return (uint32_t)(state >> 32); |
| } |
| |
| static bool rand_alloc_choice(struct z_heap_stress_rec *sr) |
| { |
| /* Edge cases: no blocks allocated, and no space for a new one */ |
| if (sr->blocks_alloced == 0) { |
| return true; |
| } else if (sr->blocks_alloced >= sr->nblocks) { |
| return false; |
| } else { |
| |
| /* The way this works is to scale the chance of choosing to |
| * allocate vs. free such that it's even odds when the heap is |
| * at the target percent, with linear tapering on the low |
| * slope (i.e. we choose to always allocate with an empty |
| * heap, allocate 50% of the time when the heap is exactly at |
| * the target, and always free when above the target). In |
| * practice, the operations aren't quite symmetric (you can |
| * always free, but your allocation might fail), and the units |
| * aren't matched (we're doing math based on bytes allocated |
| * and ignoring the overhead) but this is close enough. And |
| * yes, the math here is coarse (in units of percent), but |
| * that's good enough and fits well inside 32 bit quantities. |
| * (Note precision issue when heap size is above 40MB |
| * though!). |
| */ |
| __ASSERT(sr->total_bytes < 0xffffffffU / 100, "too big for u32!"); |
| uint32_t full_pct = (100 * sr->bytes_alloced) / sr->total_bytes; |
| uint32_t target = sr->target_percent ? sr->target_percent : 1; |
| uint32_t free_chance = 0xffffffffU; |
| |
| if (full_pct < sr->target_percent) { |
| free_chance = full_pct * (0x80000000U / target); |
| } |
| |
| return rand32() > free_chance; |
| } |
| } |
| |
| /* Chooses a size of block to allocate, logarithmically favoring |
| * smaller blocks (i.e. blocks twice as large are half as frequent |
| */ |
| static size_t rand_alloc_size(struct z_heap_stress_rec *sr) |
| { |
| ARG_UNUSED(sr); |
| |
| /* Min scale of 4 means that the half of the requests in the |
| * smallest size have an average size of 8 |
| */ |
| int scale = 4 + __builtin_clz(rand32()); |
| |
| return rand32() & BIT_MASK(scale); |
| } |
| |
| /* Returns the index of a randomly chosen block to free */ |
| static size_t rand_free_choice(struct z_heap_stress_rec *sr) |
| { |
| return rand32() % sr->blocks_alloced; |
| } |
| |
| /* General purpose heap stress test. Takes function pointers to allow |
| * for testing multiple heap APIs with the same rig. The alloc and |
| * free functions are passed back the argument as a context pointer. |
| * The "log" function is for readable user output. The total_bytes |
| * argument should reflect the size of the heap being tested. The |
| * scratch array is used to store temporary state and should be sized |
| * about half as large as the heap itself. Returns true on success. |
| */ |
| void sys_heap_stress(void *(*alloc_fn)(void *arg, size_t bytes), |
| void (*free_fn)(void *arg, void *p), |
| void *arg, size_t total_bytes, |
| uint32_t op_count, |
| void *scratch_mem, size_t scratch_bytes, |
| int target_percent, |
| struct z_heap_stress_result *result) |
| { |
| struct z_heap_stress_rec sr = { |
| .alloc_fn = alloc_fn, |
| .free_fn = free_fn, |
| .arg = arg, |
| .total_bytes = total_bytes, |
| .blocks = scratch_mem, |
| .nblocks = scratch_bytes / sizeof(struct z_heap_stress_block), |
| .target_percent = target_percent, |
| }; |
| |
| *result = (struct z_heap_stress_result) {0}; |
| |
| for (uint32_t i = 0; i < op_count; i++) { |
| if (rand_alloc_choice(&sr)) { |
| size_t sz = rand_alloc_size(&sr); |
| void *p = sr.alloc_fn(sr.arg, sz); |
| |
| result->total_allocs++; |
| if (p != NULL) { |
| result->successful_allocs++; |
| sr.blocks[sr.blocks_alloced].ptr = p; |
| sr.blocks[sr.blocks_alloced].sz = sz; |
| sr.blocks_alloced++; |
| sr.bytes_alloced += sz; |
| } |
| } else { |
| int b = rand_free_choice(&sr); |
| void *p = sr.blocks[b].ptr; |
| size_t sz = sr.blocks[b].sz; |
| |
| result->total_frees++; |
| sr.blocks[b] = sr.blocks[sr.blocks_alloced - 1]; |
| sr.blocks_alloced--; |
| sr.bytes_alloced -= sz; |
| sr.free_fn(sr.arg, p); |
| } |
| result->accumulated_in_use_bytes += sr.bytes_alloced; |
| } |
| } |