blob: 01dc3cff196ab842c5d2852ece19905b8ec62818 [file] [log] [blame]
/*
* Copyright (c) 2024, Yishai Jaffe
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT silabs_eusart_uart
#include <errno.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_silabs.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <em_eusart.h>
struct uart_silabs_eusart_config {
EUSART_TypeDef *eusart;
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
const struct silabs_clock_control_cmu_config clock_cfg;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif
};
struct uart_silabs_eusart_data {
struct uart_config uart_cfg;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
};
static int uart_silabs_eusart_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_silabs_eusart_config *config = dev->config;
if (EUSART_StatusGet(config->eusart) & EUSART_STATUS_RXFL) {
*c = EUSART_Rx(config->eusart);
return 0;
}
return -1;
}
static void uart_silabs_eusart_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_silabs_eusart_config *config = dev->config;
/* EUSART_Tx function already waits for the transmit buffer being empty
* and waits for the bus to be free to transmit.
*/
EUSART_Tx(config->eusart, c);
}
static int uart_silabs_eusart_err_check(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
uint32_t flags = EUSART_IntGet(config->eusart);
int err = 0;
if (flags & EUSART_IF_RXOF) {
err |= UART_ERROR_OVERRUN;
}
if (flags & EUSART_IF_PERR) {
err |= UART_ERROR_PARITY;
}
if (flags & EUSART_IF_FERR) {
err |= UART_ERROR_FRAMING;
}
EUSART_IntClear(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_silabs_eusart_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int len)
{
const struct uart_silabs_eusart_config *config = dev->config;
int num_tx = 0;
while ((len - num_tx > 0) &&
(EUSART_StatusGet(config->eusart) & EUSART_STATUS_TXFL)) {
config->eusart->TXDATA = (uint32_t)tx_data[num_tx++];
}
if (!(EUSART_StatusGet(config->eusart) & EUSART_STATUS_TXFL)) {
EUSART_IntClear(config->eusart, EUSART_IF_TXFL);
}
return num_tx;
}
static int uart_silabs_eusart_fifo_read(const struct device *dev, uint8_t *rx_data,
const int len)
{
const struct uart_silabs_eusart_config *config = dev->config;
int num_rx = 0;
while ((len - num_rx > 0) &&
(EUSART_StatusGet(config->eusart) & EUSART_STATUS_RXFL)) {
rx_data[num_rx++] = (uint8_t)config->eusart->RXDATA;
}
if (!(EUSART_StatusGet(config->eusart) & EUSART_STATUS_RXFL)) {
EUSART_IntClear(config->eusart, EUSART_IF_RXFL);
}
return num_rx;
}
static void uart_silabs_eusart_irq_tx_enable(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
EUSART_IntClear(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC);
EUSART_IntEnable(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC);
}
static void uart_silabs_eusart_irq_tx_disable(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
EUSART_IntDisable(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC);
EUSART_IntClear(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC);
}
static int uart_silabs_eusart_irq_tx_complete(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
uint32_t flags = EUSART_IntGet(config->eusart);
EUSART_IntClear(config->eusart, EUSART_IF_TXC);
return (flags & EUSART_IF_TXC) != 0;
}
static int uart_silabs_eusart_irq_tx_ready(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
return (config->eusart->IEN & EUSART_IEN_TXFL)
&& (EUSART_IntGet(config->eusart) & EUSART_IF_TXFL);
}
static void uart_silabs_eusart_irq_rx_enable(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
EUSART_IntClear(config->eusart, EUSART_IEN_RXFL);
EUSART_IntEnable(config->eusart, EUSART_IEN_RXFL);
}
static void uart_silabs_eusart_irq_rx_disable(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
EUSART_IntDisable(config->eusart, EUSART_IEN_RXFL);
EUSART_IntClear(config->eusart, EUSART_IEN_RXFL);
}
static int uart_silabs_eusart_irq_rx_ready(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
return (config->eusart->IEN & EUSART_IEN_RXFL)
&& (EUSART_IntGet(config->eusart) & EUSART_IF_RXFL);
}
static void uart_silabs_eusart_irq_err_enable(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
EUSART_IntClear(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR);
EUSART_IntEnable(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR);
}
static void uart_silabs_eusart_irq_err_disable(const struct device *dev)
{
const struct uart_silabs_eusart_config *config = dev->config;
EUSART_IntDisable(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR);
EUSART_IntClear(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR);
}
static int uart_silabs_eusart_irq_is_pending(const struct device *dev)
{
return uart_silabs_eusart_irq_tx_ready(dev) || uart_silabs_eusart_irq_rx_ready(dev);
}
static int uart_silabs_eusart_irq_update(const struct device *dev)
{
return 1;
}
static void uart_silabs_eusart_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_silabs_eusart_data *data = dev->data;
data->callback = cb;
data->cb_data = cb_data;
}
static void uart_silabs_eusart_isr(const struct device *dev)
{
struct uart_silabs_eusart_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static inline EUSART_Parity_TypeDef uart_silabs_eusart_cfg2ll_parity(
enum uart_config_parity parity)
{
switch (parity) {
case UART_CFG_PARITY_ODD:
return eusartOddParity;
case UART_CFG_PARITY_EVEN:
return eusartEvenParity;
case UART_CFG_PARITY_NONE:
default:
return eusartNoParity;
}
}
static inline enum uart_config_parity uart_silabs_eusart_ll2cfg_parity(
EUSART_Parity_TypeDef parity)
{
switch (parity) {
case eusartOddParity:
return UART_CFG_PARITY_ODD;
case eusartEvenParity:
return UART_CFG_PARITY_EVEN;
case eusartNoParity:
default:
return UART_CFG_PARITY_NONE;
}
}
static inline EUSART_Stopbits_TypeDef uart_silabs_eusart_cfg2ll_stopbits(
enum uart_config_stop_bits sb)
{
switch (sb) {
case UART_CFG_STOP_BITS_0_5:
return eusartStopbits0p5;
case UART_CFG_STOP_BITS_1:
return eusartStopbits1;
case UART_CFG_STOP_BITS_2:
return eusartStopbits2;
case UART_CFG_STOP_BITS_1_5:
return eusartStopbits1p5;
default:
return eusartStopbits1;
}
}
static inline enum uart_config_stop_bits uart_silabs_eusart_ll2cfg_stopbits(
EUSART_Stopbits_TypeDef sb)
{
switch (sb) {
case eusartStopbits0p5:
return UART_CFG_STOP_BITS_0_5;
case eusartStopbits1:
return UART_CFG_STOP_BITS_1;
case eusartStopbits1p5:
return UART_CFG_STOP_BITS_1_5;
case eusartStopbits2:
return UART_CFG_STOP_BITS_2;
default:
return UART_CFG_STOP_BITS_1;
}
}
static inline EUSART_Databits_TypeDef uart_silabs_eusart_cfg2ll_databits(
enum uart_config_data_bits db, enum uart_config_parity p)
{
switch (db) {
case UART_CFG_DATA_BITS_7:
if (p == UART_CFG_PARITY_NONE) {
return eusartDataBits7;
} else {
return eusartDataBits8;
}
case UART_CFG_DATA_BITS_9:
return eusartDataBits9;
case UART_CFG_DATA_BITS_8:
default:
if (p == UART_CFG_PARITY_NONE) {
return eusartDataBits8;
} else {
return eusartDataBits9;
}
return eusartDataBits8;
}
}
static inline enum uart_config_data_bits uart_silabs_eusart_ll2cfg_databits(
EUSART_Databits_TypeDef db, EUSART_Parity_TypeDef p)
{
switch (db) {
case eusartDataBits7:
if (p == eusartNoParity) {
return UART_CFG_DATA_BITS_7;
} else {
return UART_CFG_DATA_BITS_6;
}
case eusartDataBits9:
if (p == eusartNoParity) {
return UART_CFG_DATA_BITS_9;
} else {
return UART_CFG_DATA_BITS_8;
}
case eusartDataBits8:
default:
if (p == eusartNoParity) {
return UART_CFG_DATA_BITS_8;
} else {
return UART_CFG_DATA_BITS_7;
}
}
}
/**
* @brief Get LL hardware flow control define from
* Zephyr hardware flow control option.
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485.
* @param fc: Zephyr hardware flow control option.
* @retval eusartHwFlowControlCtsAndRts, or eusartHwFlowControlNone.
*/
static inline EUSART_HwFlowControl_TypeDef uart_silabs_eusart_cfg2ll_hwctrl(
enum uart_config_flow_control fc)
{
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
return eusartHwFlowControlCtsAndRts;
}
return eusartHwFlowControlNone;
}
/**
* @brief Get Zephyr hardware flow control option from
* LL hardware flow control define.
* @note Supports only eusartHwFlowControlCtsAndRts.
* @param fc: LL hardware flow control definition.
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE.
*/
static inline enum uart_config_flow_control uart_silabs_eusart_ll2cfg_hwctrl(
EUSART_HwFlowControl_TypeDef fc)
{
if (fc == eusartHwFlowControlCtsAndRts) {
return UART_CFG_FLOW_CTRL_RTS_CTS;
}
return UART_CFG_FLOW_CTRL_NONE;
}
/**
* @brief Main initializer for UART
*
* @param dev UART device to be initialized
* @return int 0
*/
static int uart_silabs_eusart_init(const struct device *dev)
{
int err;
const struct uart_silabs_eusart_config *config = dev->config;
struct uart_silabs_eusart_data *data = dev->data;
struct uart_config *uart_cfg = &data->uart_cfg;
EUSART_UartInit_TypeDef eusartInit = EUSART_UART_INIT_DEFAULT_HF;
EUSART_AdvancedInit_TypeDef advancedSettings = EUSART_ADVANCED_INIT_DEFAULT;
/* The peripheral and gpio clock are already enabled from soc and gpio
* driver
*/
/* Enable EUSART clock */
err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg);
if (err < 0) {
return err;
}
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
/* Init EUSART */
eusartInit.baudrate = uart_cfg->baudrate;
eusartInit.parity = uart_silabs_eusart_cfg2ll_parity(uart_cfg->parity);
eusartInit.stopbits = uart_silabs_eusart_cfg2ll_stopbits(uart_cfg->stop_bits);
eusartInit.databits = uart_silabs_eusart_cfg2ll_databits(uart_cfg->data_bits,
uart_cfg->parity);
advancedSettings.hwFlowControl = uart_silabs_eusart_cfg2ll_hwctrl(uart_cfg->flow_ctrl);
eusartInit.advancedSettings = &advancedSettings;
EUSART_UartInitHf(config->eusart, &eusartInit);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
#endif
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int uart_silabs_eusart_pm_action(const struct device *dev, enum pm_device_action action)
{
__maybe_unused const struct uart_silabs_eusart_config *config = dev->config;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
#ifdef EUSART_STATUS_TXIDLE
/* Wait for TX FIFO to flush before suspending */
while (!(EUSART_StatusGet(config->eusart) & EUSART_STATUS_TXIDLE)) {
}
#endif
break;
case PM_DEVICE_ACTION_RESUME:
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif
static DEVICE_API(uart, uart_silabs_eusart_driver_api) = {
.poll_in = uart_silabs_eusart_poll_in,
.poll_out = uart_silabs_eusart_poll_out,
.err_check = uart_silabs_eusart_err_check,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_silabs_eusart_fifo_fill,
.fifo_read = uart_silabs_eusart_fifo_read,
.irq_tx_enable = uart_silabs_eusart_irq_tx_enable,
.irq_tx_disable = uart_silabs_eusart_irq_tx_disable,
.irq_tx_complete = uart_silabs_eusart_irq_tx_complete,
.irq_tx_ready = uart_silabs_eusart_irq_tx_ready,
.irq_rx_enable = uart_silabs_eusart_irq_rx_enable,
.irq_rx_disable = uart_silabs_eusart_irq_rx_disable,
.irq_rx_ready = uart_silabs_eusart_irq_rx_ready,
.irq_err_enable = uart_silabs_eusart_irq_err_enable,
.irq_err_disable = uart_silabs_eusart_irq_err_disable,
.irq_is_pending = uart_silabs_eusart_irq_is_pending,
.irq_update = uart_silabs_eusart_irq_update,
.irq_callback_set = uart_silabs_eusart_irq_callback_set,
#endif
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_IRQ_HANDLER_FUNC(idx) \
.irq_config_func = uart_silabs_eusart_config_func_##idx,
#define UART_IRQ_HANDLER(idx) \
static void uart_silabs_eusart_config_func_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \
DT_INST_IRQ_BY_NAME(idx, rx, priority), \
uart_silabs_eusart_isr, DEVICE_DT_INST_GET(idx), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \
DT_INST_IRQ_BY_NAME(idx, tx, priority), \
uart_silabs_eusart_isr, DEVICE_DT_INST_GET(idx), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \
}
#else
#define UART_IRQ_HANDLER_FUNC(idx)
#define UART_IRQ_HANDLER(idx)
#endif
#define UART_INIT(idx) \
UART_IRQ_HANDLER(idx) \
\
PINCTRL_DT_INST_DEFINE(idx); \
\
static const struct uart_silabs_eusart_config uart_silabs_eusart_cfg_##idx = { \
.eusart = (EUSART_TypeDef *)DT_INST_REG_ADDR(idx), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clock_cfg = SILABS_DT_INST_CLOCK_CFG(idx), \
UART_IRQ_HANDLER_FUNC(idx) \
}; \
\
static struct uart_silabs_eusart_data uart_silabs_eusart_data_##idx = { \
.uart_cfg = { \
.baudrate = DT_INST_PROP(idx, current_speed), \
.parity = DT_INST_ENUM_IDX(idx, parity), \
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \
.flow_ctrl = DT_INST_PROP(idx, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}, \
}; \
\
PM_DEVICE_DT_INST_DEFINE(idx, uart_silabs_eusart_pm_action); \
\
DEVICE_DT_INST_DEFINE(idx, uart_silabs_eusart_init, PM_DEVICE_DT_INST_GET(idx), \
&uart_silabs_eusart_data_##idx, \
&uart_silabs_eusart_cfg_##idx, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_silabs_eusart_driver_api);
DT_INST_FOREACH_STATUS_OKAY(UART_INIT)