blob: 75c6a1197d3b0bd781c912bd21047edc213d18c0 [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/ztest.h>
#include <zephyr/pm/pm.h>
#define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACK_SIZE)
#define NUM_THREAD 4
static K_THREAD_STACK_ARRAY_DEFINE(tstack, NUM_THREAD, STACK_SIZE);
static struct k_thread tdata[NUM_THREAD];
#define IDLE_THRESH 20
/*sleep duration tickless*/
#define SLEEP_TICKLESS k_ticks_to_ms_floor64(IDLE_THRESH)
/*sleep duration with tick*/
#define SLEEP_TICKFUL k_ticks_to_ms_floor64(IDLE_THRESH - 1)
/*slice size is set as half of the sleep duration*/
#define SLICE_SIZE k_ticks_to_ms_floor64(IDLE_THRESH >> 1)
/*maximum slice duration accepted by the test*/
#define SLICE_SIZE_LIMIT k_ticks_to_ms_floor64((IDLE_THRESH >> 1) + 1)
/*align to millisecond boundary*/
#if defined(CONFIG_ARCH_POSIX)
#define ALIGN_MS_BOUNDARY() \
do { \
uint32_t t = k_uptime_get_32(); \
while (t == k_uptime_get_32()) \
k_busy_wait(50); \
} while (0)
#else
#define ALIGN_MS_BOUNDARY() \
do { \
uint32_t t = k_uptime_get_32(); \
while (t == k_uptime_get_32()) \
; \
} while (0)
#endif
K_SEM_DEFINE(sema, 0, NUM_THREAD);
static int64_t elapsed_slice;
static void thread_tslice(void *p1, void *p2, void *p3)
{
int64_t t = k_uptime_delta(&elapsed_slice);
TC_PRINT("elapsed slice %" PRId64 ", expected: <%" PRId64 ", %" PRId64 ">\n",
t, SLICE_SIZE, SLICE_SIZE_LIMIT);
/**TESTPOINT: verify slicing scheduler behaves as expected*/
zassert_true(t >= SLICE_SIZE);
/*less than one tick delay*/
zassert_true(t <= SLICE_SIZE_LIMIT);
/*keep the current thread busy for more than one slice*/
k_busy_wait(1000 * SLEEP_TICKLESS);
k_sem_give(&sema);
}
/**
* @defgroup kernel_tickless_tests Tickless
* @ingroup all_tests
* @{
*/
/**
* @brief Verify system clock with and without tickless idle
*
* @details Check if system clock recovers and works as expected
* when tickless idle is enabled and disabled.
*/
ZTEST(tickless_concept, test_tickless_sysclock)
{
volatile uint32_t t0, t1;
ALIGN_MS_BOUNDARY();
t0 = k_uptime_get_32();
k_msleep(SLEEP_TICKLESS);
t1 = k_uptime_get_32();
TC_PRINT("time %d, %d\n", t0, t1);
/**TESTPOINT: verify system clock recovery after exiting tickless idle*/
zassert_true((t1 - t0) >= SLEEP_TICKLESS);
ALIGN_MS_BOUNDARY();
t0 = k_uptime_get_32();
k_sem_take(&sema, K_MSEC(SLEEP_TICKFUL));
t1 = k_uptime_get_32();
TC_PRINT("time %d, %d\n", t0, t1);
/**TESTPOINT: verify system clock recovery after exiting tickful idle*/
zassert_true((t1 - t0) >= SLEEP_TICKFUL);
}
/**
* @brief Verify tickless functionality with time slice
*
* @details Create threads of equal priority and enable time
* slice. Check if the threads execute more than a tick.
*/
ZTEST(tickless_concept, test_tickless_slice)
{
k_tid_t tid[NUM_THREAD];
k_sem_reset(&sema);
/*enable time slice*/
k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(0));
/*create delayed threads with equal preemptive priority*/
for (int i = 0; i < NUM_THREAD; i++) {
tid[i] = k_thread_create(&tdata[i], tstack[i], STACK_SIZE,
thread_tslice, NULL, NULL, NULL,
K_PRIO_PREEMPT(0), 0,
K_MSEC(SLICE_SIZE));
}
k_uptime_delta(&elapsed_slice);
/*relinquish CPU and wait for each thread to complete*/
for (int i = 0; i < NUM_THREAD; i++) {
k_sem_take(&sema, K_FOREVER);
}
/*test case teardown*/
for (int i = 0; i < NUM_THREAD; i++) {
k_thread_abort(tid[i]);
}
/*disable time slice*/
k_sched_time_slice_set(0, K_PRIO_PREEMPT(0));
}
/**
* @}
*/
ZTEST_SUITE(tickless_concept, NULL, NULL,
ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL);