blob: 8351c12162d3a1d94c0684e2e03ab53a364140f3 [file] [log] [blame]
/*
* Copyright (c) 2016 Linaro Limited
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <errno.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/sys/barrier.h>
#include "flash_priv.h"
#include "fsl_common.h"
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(flash_mcux);
#if DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_kinetis_ftfa))
#define DT_DRV_COMPAT nxp_kinetis_ftfa
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_kinetis_ftfe))
#define DT_DRV_COMPAT nxp_kinetis_ftfe
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_kinetis_ftfl))
#define DT_DRV_COMPAT nxp_kinetis_ftfl
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_iap_fmc55))
#define DT_DRV_COMPAT nxp_iap_fmc55
#define SOC_HAS_IAP 1
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_iap_fmc553))
#define DT_DRV_COMPAT nxp_iap_fmc553
#define SOC_HAS_IAP 1
#elif DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nxp_msf1))
#define DT_DRV_COMPAT nxp_msf1
#define SOC_HAS_MSF1 1
#else
#error No matching compatible for soc_flash_mcux.c
#endif
#if defined(SOC_HAS_IAP) && !defined(CONFIG_SOC_LPC55S36)
#include "fsl_iap.h"
#elif defined(CONFIG_SOC_MCXA156)
#include "fsl_romapi.h"
#define FLASH_Erase FLASH_EraseSector
#define FLASH_Program FLASH_ProgramPhrase
#elif defined(CONFIG_MCUX_FLASH_K4_API)
#include "fsl_k4_flash.h"
#else
#include "fsl_flash.h"
#endif /* SOC_HAS_IAP && !CONFIG_SOC_LPC55S36*/
#define SOC_NV_FLASH_NODE DT_INST(0, soc_nv_flash)
#if defined(CONFIG_CHECK_BEFORE_READING) && !defined(CONFIG_SOC_LPC55S36)
#define FMC_STATUS_FAIL FLASH_INT_CLR_ENABLE_FAIL_MASK
#define FMC_STATUS_ERR FLASH_INT_CLR_ENABLE_ERR_MASK
#define FMC_STATUS_DONE FLASH_INT_CLR_ENABLE_DONE_MASK
#define FMC_STATUS_ECC FLASH_INT_CLR_ENABLE_ECC_ERR_MASK
#define FMC_STATUS_FAILURES \
(FMC_STATUS_FAIL | FMC_STATUS_ERR | FMC_STATUS_ECC)
#define FMC_CMD_BLANK_CHECK 5
#define FMC_CMD_MARGIN_CHECK 6
/* Issue single command that uses an a start and stop address. */
static uint32_t get_cmd_status(uint32_t cmd, uint32_t addr, size_t len)
{
FLASH_Type *p_fmc = (FLASH_Type *)DT_INST_REG_ADDR(0);
uint32_t status;
/* issue low level command */
p_fmc->INT_CLR_STATUS = 0xF;
p_fmc->STARTA = (addr>>4) & 0x3FFFF;
p_fmc->STOPA = ((addr+len-1)>>4) & 0x3FFFF;
p_fmc->CMD = cmd;
barrier_dsync_fence_full();
barrier_isync_fence_full();
/* wait for command to be done */
while (!(p_fmc->INT_STATUS & FMC_STATUS_DONE))
;
/* get read status and then clear it */
status = p_fmc->INT_STATUS;
p_fmc->INT_CLR_STATUS = 0xF;
return status;
}
/* This function prevents erroneous reading. Some ECC enabled devices will
* crash when reading an erased or wrongly programmed area.
*/
static status_t is_area_readable(uint32_t addr, size_t len)
{
uint32_t key;
status_t status;
key = irq_lock();
/* Check if the are is correctly programmed and can be read. */
status = get_cmd_status(FMC_CMD_MARGIN_CHECK, addr, len);
if (status & FMC_STATUS_FAILURES) {
/* If the area was erased, ECC errors are triggered on read. */
status = get_cmd_status(FMC_CMD_BLANK_CHECK, addr, len);
if (!(status & FMC_STATUS_FAIL)) {
LOG_DBG("read request on erased addr:0x%08x size:%d",
addr, len);
irq_unlock(key);
return -ENODATA;
}
LOG_DBG("read request error for addr:0x%08x size:%d",
addr, len);
irq_unlock(key);
return -EIO;
}
irq_unlock(key);
return 0;
}
#endif /* CONFIG_CHECK_BEFORE_READING && ! CONFIG_SOC_LPC55S36 */
#define SOC_FLASH_NEED_CLEAR_CACHES 1
#ifdef CONFIG_SOC_SERIES_MCXW
static void clear_flash_caches(void)
{
volatile uint32_t *const smscm_ocmdr0 = (volatile uint32_t *)0x40015400;
/* this bit clears the flash cache */
*smscm_ocmdr0 |= BIT(8);
volatile uint32_t *mcm_cpcr2 = (volatile uint32_t *)0xe0080034;
/* this bit clears the code cache */
*mcm_cpcr2 |= BIT(0);
}
#elif CONFIG_SOC_SERIES_MCXN
static void clear_flash_caches(void)
{
volatile uint32_t *const nvm_ctrl = (volatile uint32_t *)0x40000400;
/* this bit clears the flash cache */
*nvm_ctrl |= BIT(5);
volatile uint32_t *const lpcac_ctrl = (volatile uint32_t *)0x40000824;
/* this bit clears the code cache */
*lpcac_ctrl |= BIT(1);
}
#else
#undef SOC_FLASH_NEED_CLEAR_CACHES
#define clear_flash_caches(...)
#endif
struct flash_priv {
flash_config_t config;
/*
* HACK: flash write protection is managed in software.
*/
struct k_sem write_lock;
uint32_t pflash_block_base;
};
static const struct flash_parameters flash_mcux_parameters = {
#if DT_NODE_HAS_PROP(SOC_NV_FLASH_NODE, write_block_size)
.write_block_size = DT_PROP(SOC_NV_FLASH_NODE, write_block_size),
#else
.write_block_size = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE,
#endif
.erase_value = 0xff,
};
/*
* Interrupt vectors could be executed from flash hence the need for locking.
* The underlying MCUX driver takes care of copying the functions to SRAM.
*
* For more information, see the application note below on Read-While-Write
* http://cache.freescale.com/files/32bit/doc/app_note/AN4695.pdf
*
*/
static int flash_mcux_erase(const struct device *dev, off_t offset,
size_t len)
{
struct flash_priv *priv = dev->data;
uint32_t addr;
status_t rc;
unsigned int key;
if (k_sem_take(&priv->write_lock, K_FOREVER)) {
return -EACCES;
}
addr = offset + priv->pflash_block_base;
key = irq_lock();
rc = FLASH_Erase(&priv->config,
#if CONFIG_MCUX_FLASH_K4_API
(FMU_Type *) DT_INST_REG_ADDR(0),
#endif
addr, len, kFLASH_ApiEraseKey);
if (IS_ENABLED(SOC_FLASH_NEED_CLEAR_CACHES)) {
clear_flash_caches();
}
irq_unlock(key);
k_sem_give(&priv->write_lock);
return (rc == kStatus_Success) ? 0 : -EINVAL;
}
/*
* @brief Read a flash memory area.
*
* @param dev Device struct
* @param offset The address's offset
* @param data The buffer to store or read the value
* @param length The size of the buffer
* @return 0 on success,
* -EIO for erroneous area
*/
static int flash_mcux_read(const struct device *dev, off_t offset,
void *data, size_t len)
{
struct flash_priv *priv = dev->data;
uint32_t addr;
status_t rc = 0;
/*
* The MCUX supports different flash chips whose valid ranges are
* hidden below the API: until the API export these ranges, we can not
* do any generic validation
*/
addr = offset + priv->pflash_block_base;
#ifdef CONFIG_CHECK_BEFORE_READING
/*
* Ensure the area is readable, since a direct access may cause faults
* on erased or otherwise unreadable pages. Emulate erased pages,
* return other errors.
*/
#ifdef CONFIG_SOC_LPC55S36
/* On LPC55S36, use a HAL function to safely copy from Flash. */
rc = FLASH_Read(&priv->config, addr, data, len);
switch (rc) {
case kStatus_FLASH_Success:
rc = 0;
break;
case kStatus_FLASH_EccError:
/* Check id the ECC issue is due to the Flash being erased
* ("addr" and "len" must be word-aligned for this call).
*/
rc = FLASH_VerifyErase(&priv->config,
ROUND_DOWN(addr, 4),
ROUND_DOWN(addr + len + 3, 4) - ROUND_DOWN(addr, 4));
if (rc == kStatus_FLASH_Success) {
rc = -ENODATA;
} else {
rc = -EIO;
}
break;
default:
rc = -EIO;
break;
}
#else /* CONFIG_SOC_LPC55S36 */
/* On all other targets, check if the Flash area is readable.
* If so, copy data from it directly.
*/
rc = is_area_readable(addr, len);
if (!rc) {
memcpy(data, (void *) addr, len);
}
#endif /* CONFIG_SOC_LPC55S36 */
if (rc == -ENODATA) {
/* Erased area, return dummy data as an erased page. */
memset(data, 0xFF, len);
rc = 0;
}
#else /* CONFIG_CHECK_BEFORE_READING */
/* No safety checks, directly copy the memory mapped data. */
memcpy(data, (void *) addr, len);
#endif /* CONFIG_CHECK_BEFORE_READING */
return rc;
}
static int flash_mcux_write(const struct device *dev, off_t offset,
const void *data, size_t len)
{
struct flash_priv *priv = dev->data;
uint32_t addr;
status_t rc;
unsigned int key;
if (k_sem_take(&priv->write_lock, K_FOREVER)) {
return -EACCES;
}
addr = offset + priv->pflash_block_base;
key = irq_lock();
rc = FLASH_Program(&priv->config,
#if CONFIG_MCUX_FLASH_K4_API
(FMU_Type *) DT_INST_REG_ADDR(0),
#endif
addr, (uint8_t *) data, len);
if (IS_ENABLED(SOC_FLASH_NEED_CLEAR_CACHES)) {
clear_flash_caches();
}
irq_unlock(key);
k_sem_give(&priv->write_lock);
return (rc == kStatus_Success) ? 0 : -EINVAL;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static const struct flash_pages_layout dev_layout = {
.pages_count = DT_REG_SIZE(SOC_NV_FLASH_NODE) /
DT_PROP(SOC_NV_FLASH_NODE, erase_block_size),
.pages_size = DT_PROP(SOC_NV_FLASH_NODE, erase_block_size),
};
static void flash_mcux_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
*layout = &dev_layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
flash_mcux_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_mcux_parameters;
}
static struct flash_priv flash_data;
static const struct flash_driver_api flash_mcux_api = {
.erase = flash_mcux_erase,
.write = flash_mcux_write,
.read = flash_mcux_read,
.get_parameters = flash_mcux_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_mcux_pages_layout,
#endif
};
#if (defined(SOC_HAS_IAP) || defined(SOC_HAS_MSF1)) && !defined(CONFIG_MCUX_FLASH_K4_API)
#define FLASH_PROP_BLOCK_BASE kFLASH_PropertyPflashBlockBaseAddr
#else
#define FLASH_PROP_BLOCK_BASE kFLASH_PropertyPflash0BlockBaseAddr
#endif
static int flash_mcux_init(const struct device *dev)
{
struct flash_priv *priv = dev->data;
uint32_t pflash_block_base;
status_t rc;
k_sem_init(&priv->write_lock, 1, 1);
rc = FLASH_Init(&priv->config);
FLASH_GetProperty(&priv->config, FLASH_PROP_BLOCK_BASE, &pflash_block_base);
priv->pflash_block_base = (uint32_t) pflash_block_base;
return (rc == kStatus_Success) ? 0 : -EIO;
}
DEVICE_DT_INST_DEFINE(0, flash_mcux_init, NULL,
&flash_data, NULL, POST_KERNEL,
CONFIG_FLASH_INIT_PRIORITY, &flash_mcux_api);