blob: e08612114323b7b2efe67adce86ea702ba0b291d [file] [log] [blame]
/*
* Copyright (c) 2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT adi_max32_i2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <zephyr/irq.h>
#if defined(CONFIG_I2C_MAX32_DMA)
#include <zephyr/drivers/dma.h>
#endif /* CONFIG_I2C_MAX32_DMA */
#include <wrap_max32_i2c.h>
#define ADI_MAX32_I2C_INT_FL0_MASK 0x00FFFFFF
#define ADI_MAX32_I2C_INT_FL1_MASK 0x7
#define ADI_MAX32_I2C_STATUS_MASTER_BUSY BIT(5)
#define I2C_RECOVER_MAX_RETRIES 3
#ifdef CONFIG_I2C_MAX32_DMA
struct max32_i2c_dma_config {
const struct device *dev;
const uint32_t channel;
const uint32_t slot;
};
#endif /* CONFIG_I2C_MAX32_DMA */
/* Driver config */
struct max32_i2c_config {
mxc_i2c_regs_t *regs;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
uint32_t bitrate;
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
uint8_t irqn;
void (*irq_config_func)(const struct device *dev);
#endif
#ifdef CONFIG_I2C_MAX32_DMA
struct max32_i2c_dma_config tx_dma;
struct max32_i2c_dma_config rx_dma;
#endif /* CONFIG_I2C_MAX32_DMA */
};
struct max32_i2c_data {
mxc_i2c_req_t req;
const struct device *dev;
struct k_sem lock;
uint8_t target_mode;
uint8_t flags;
#ifdef CONFIG_I2C_TARGET
struct i2c_target_config *target_cfg;
bool first_write;
#endif /* CONFIG_I2C_TARGET */
uint32_t readb;
uint32_t written;
#if defined(CONFIG_I2C_MAX32_INTERRUPT) || defined(CONFIG_I2C_MAX32_DMA)
struct k_sem xfer;
int err;
#endif
};
static int api_configure(const struct device *dev, uint32_t dev_cfg)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
mxc_i2c_regs_t *i2c = cfg->regs;
switch (I2C_SPEED_GET(dev_cfg)) {
case I2C_SPEED_STANDARD: /** I2C Standard Speed: 100 kHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_STD_MODE);
break;
case I2C_SPEED_FAST: /** I2C Fast Speed: 400 kHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_FAST_SPEED);
break;
#if defined(MXC_I2C_FASTPLUS_SPEED)
case I2C_SPEED_FAST_PLUS: /** I2C Fast Plus Speed: 1 MHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_FASTPLUS_SPEED);
break;
#endif
#if defined(MXC_I2C_HIGH_SPEED)
case I2C_SPEED_HIGH: /** I2C High Speed: 3.4 MHz */
ret = MXC_I2C_SetFrequency(i2c, MXC_I2C_HIGH_SPEED);
break;
#endif
default:
/* Speed not supported */
return -ENOTSUP;
}
return ret;
}
#ifdef CONFIG_I2C_TARGET
static int api_target_register(const struct device *dev, struct i2c_target_config *cfg)
{
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = config->regs;
int ret;
data->target_cfg = cfg;
ret = MXC_I2C_Init(i2c, 0, cfg->address);
if (ret == E_NO_ERROR) {
data->target_mode = 1;
irq_enable(config->irqn);
MXC_I2C_SlaveTransactionAsync(i2c, NULL);
}
return ret == E_NO_ERROR ? 0 : E_FAIL;
}
static int api_target_unregister(const struct device *dev, struct i2c_target_config *cfg)
{
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = config->regs;
data->target_cfg = NULL;
data->target_mode = 0;
#ifndef CONFIG_I2C_MAX32_INTERRUPT
irq_disable(config->irqn);
#endif
return MXC_I2C_Init(i2c, 1, 0);
}
static int i2c_max32_target_callback(const struct device *dev, mxc_i2c_regs_t *i2c,
mxc_i2c_slave_event_t event)
{
struct max32_i2c_data *data = dev->data;
const struct i2c_target_callbacks *target_cb = data->target_cfg->callbacks;
static uint8_t rxval, txval, rxcnt;
switch (event) {
case MXC_I2C_EVT_MASTER_WR:
if (data->first_write && target_cb->write_requested) {
target_cb->write_requested(data->target_cfg);
data->first_write = false;
}
break;
case MXC_I2C_EVT_MASTER_RD:
break;
case MXC_I2C_EVT_RX_THRESH:
case MXC_I2C_EVT_OVERFLOW:
rxcnt = MXC_I2C_GetRXFIFOAvailable(i2c);
if (target_cb->write_received) {
while (rxcnt--) {
MXC_I2C_ReadRXFIFO(i2c, &rxval, 1);
target_cb->write_received(data->target_cfg, rxval);
}
} else {
MXC_I2C_ClearRXFIFO(i2c);
}
break;
case MXC_I2C_EVT_TX_THRESH:
case MXC_I2C_EVT_UNDERFLOW:
if (target_cb->read_requested) {
target_cb->read_requested(data->target_cfg, &txval);
MXC_I2C_WriteTXFIFO(i2c, &txval, 1);
}
if (target_cb->read_processed) {
target_cb->read_processed(data->target_cfg, &txval);
}
break;
case MXC_I2C_EVT_TRANS_COMP:
if (target_cb->stop) {
target_cb->stop(data->target_cfg);
}
data->first_write = true;
break;
}
return 0;
}
#endif /* CONFIG_I2C_TARGET */
static int api_recover_bus(const struct device *dev)
{
int ret;
const struct max32_i2c_config *const cfg = dev->config;
mxc_i2c_regs_t *i2c = cfg->regs;
ret = MXC_I2C_Recover(i2c, I2C_RECOVER_MAX_RETRIES);
return ret;
}
#ifndef CONFIG_I2C_MAX32_INTERRUPT
static int i2c_max32_transfer_sync(mxc_i2c_regs_t *i2c, struct max32_i2c_data *data)
{
uint32_t int_fl0, int_fl1;
uint32_t readb = 0;
mxc_i2c_req_t *req = &data->req;
/* Wait for acknowledge */
if (data->flags & (I2C_MSG_RESTART | I2C_MSG_READ)) {
do {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
} while (!(int_fl0 & ADI_MAX32_I2C_INT_FL0_ADDR_ACK) &&
!(int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR));
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
while (req->tx_len > data->written) {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_TX_THD) {
data->written += MXC_I2C_WriteTXFIFO(i2c, &req->tx_buf[data->written],
req->tx_len - data->written);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_TX_THD, 0);
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
}
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_DONE, 0);
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len);
while (req->rx_len > readb) {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if (int_fl0 & (ADI_MAX32_I2C_INT_FL0_RX_THD | ADI_MAX32_I2C_INT_FL0_DONE)) {
readb += MXC_I2C_ReadRXFIFO(i2c, &req->rx_buf[readb], req->rx_len - readb);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_RX_THD, 0);
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if ((int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE) && (req->rx_len > readb) &&
MXC_I2C_GetRXFIFOAvailable(i2c) == 0) {
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len - readb);
Wrap_MXC_I2C_Restart(i2c);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_DONE, 0);
i2c->fifo = (req->addr << 1) | 0x1;
}
}
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
return -EIO;
}
if (data->flags & I2C_MSG_STOP) {
MXC_I2C_Stop(i2c);
do {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
} while (!(int_fl0 & ADI_MAX32_I2C_INT_FL0_STOP));
}
if (req->rx_len) {
do {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
} while (!(int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE));
} else {
while (Wrap_MXC_I2C_GetTxFIFOLevel(i2c) > 0) {
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
}
}
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
return 0;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
#if defined(CONFIG_I2C_MAX32_DMA)
static void i2c_max32_dma_callback(const struct device *dev, void *arg, uint32_t channel,
int status)
{
struct max32_i2c_data *data = arg;
const struct device *i2c_dev = data->dev;
const struct max32_i2c_config *const cfg = i2c_dev->config;
if (status < 0) {
data->err = -EIO;
} else {
if (data->req.restart) {
Wrap_MXC_I2C_Restart(cfg->regs);
} else {
Wrap_MXC_I2C_Stop(cfg->regs);
}
}
}
static int i2c_max32_tx_dma_load(const struct device *dev, struct i2c_msg *msg)
{
int ret;
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = i2c_max32_dma_callback;
dma_cfg.user_data = (void *)data;
dma_cfg.dma_slot = config->tx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = msg->len;
dma_blk.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_blk.source_address = (uint32_t)msg->buf;
ret = dma_config(config->tx_dma.dev, config->tx_dma.channel, &dma_cfg);
if (ret < 0) {
return ret;
}
return dma_start(config->tx_dma.dev, config->tx_dma.channel);
}
static int i2c_max32_rx_dma_load(const struct device *dev, struct i2c_msg *msg)
{
int ret;
const struct max32_i2c_config *config = dev->config;
struct max32_i2c_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
dma_cfg.dma_callback = i2c_max32_dma_callback;
dma_cfg.user_data = (void *)data;
dma_cfg.dma_slot = config->rx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = msg->len;
dma_blk.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_blk.dest_address = (uint32_t)msg->buf;
ret = dma_config(config->rx_dma.dev, config->rx_dma.channel, &dma_cfg);
if (ret < 0) {
return ret;
}
return dma_start(config->rx_dma.dev, config->rx_dma.channel);
}
static int i2c_max32_transfer_dma(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
uint8_t target_rw;
unsigned int i = 0;
k_sem_take(&data->lock, K_FOREVER);
MXC_I2C_SetRXThreshold(i2c, 1);
MXC_I2C_SetTXThreshold(i2c, 2);
MXC_I2C_ClearTXFIFO(i2c);
MXC_I2C_ClearRXFIFO(i2c);
for (i = 0; i < num_msgs; i++) {
data->req.restart = !(msgs[i].flags & I2C_MSG_STOP);
if (msgs[i].flags & I2C_MSG_READ) {
target_rw = (target_address << 1) | 0x1;
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
Wrap_MXC_I2C_SetRxCount(i2c, msgs[i].len);
ret = i2c_max32_rx_dma_load(dev, &msgs[i]);
if (ret < 0) {
break;
}
MXC_I2C_EnableInt(
i2c, ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR, 0);
i2c->dma |= ADI_MAX32_I2C_DMA_RX_EN;
} else {
target_rw = (target_address << 1) & ~0x1;
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
ret = i2c_max32_tx_dma_load(dev, &msgs[i]);
if (ret < 0) {
break;
}
MXC_I2C_EnableInt(
i2c, ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR, 0);
i2c->dma |= ADI_MAX32_I2C_DMA_TX_EN;
}
data->err = 0;
Wrap_MXC_I2C_Start(i2c);
ret = k_sem_take(&data->xfer, K_FOREVER);
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
i2c->dma &= ~(ADI_MAX32_I2C_DMA_TX_EN | ADI_MAX32_I2C_DMA_RX_EN);
if (data->err) {
ret = data->err;
}
if (ret) {
MXC_I2C_Stop(i2c);
dma_stop(cfg->tx_dma.dev, cfg->tx_dma.channel);
dma_stop(cfg->rx_dma.dev, cfg->rx_dma.channel);
}
}
k_sem_give(&data->lock);
return ret;
}
#endif /* CONFIG_I2C_MAX32_DMA */
#ifdef CONFIG_I2C_MAX32_INTERRUPT
static int i2c_max32_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
mxc_i2c_req_t *req = &data->req;
uint8_t target_rw;
unsigned int i = 0;
req->i2c = i2c;
req->addr = target_address;
k_sem_take(&data->lock, K_FOREVER);
MXC_I2C_ClearRXFIFO(i2c);
MXC_I2C_ClearTXFIFO(i2c);
MXC_I2C_SetRXThreshold(i2c, 1);
/* First message should always begin with a START condition */
msgs[0].flags |= I2C_MSG_RESTART;
for (i = 0; i < num_msgs; i++) {
if (msgs[i].flags & I2C_MSG_READ) {
req->rx_buf = (unsigned char *)msgs[i].buf;
req->rx_len = msgs[i].len;
req->tx_buf = NULL;
req->tx_len = 0;
target_rw = (target_address << 1) | 0x1;
} else {
req->tx_buf = (unsigned char *)msgs[i].buf;
req->tx_len = msgs[i].len;
req->rx_buf = NULL;
req->rx_len = 0;
target_rw = (target_address << 1) & ~0x1;
}
/*
* If previous message ends with a STOP condition, this message
* should begin with a START
*/
if (i > 0) {
if ((msgs[i - 1].flags & (I2C_MSG_STOP | I2C_MSG_READ))) {
msgs[i].flags |= I2C_MSG_RESTART;
}
}
data->flags = msgs[i].flags;
data->readb = 0;
data->written = 0;
data->err = 0;
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_ERR, 0);
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len);
if ((data->flags & I2C_MSG_RESTART)) {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_ADDR_ACK, 0);
MXC_I2C_Start(i2c);
Wrap_MXC_I2C_WaitForRestart(i2c);
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
} else {
if (req->tx_len) {
data->written = MXC_I2C_WriteTXFIFO(i2c, req->tx_buf, 1);
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_TX_THD, 0);
} else {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_RX_THD, 0);
}
}
ret = k_sem_take(&data->xfer, K_FOREVER);
if (data->err) {
MXC_I2C_Stop(i2c);
ret = data->err;
} else {
if (data->flags & I2C_MSG_STOP) {
/* Wait for busy flag to be cleared */
while (i2c->status & ADI_MAX32_I2C_STATUS_MASTER_BUSY) {
}
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK,
ADI_MAX32_I2C_INT_FL1_MASK);
}
}
if (ret) {
break;
}
}
k_sem_give(&data->lock);
return ret;
}
#else
static int i2c_max32_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
int ret = 0;
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
mxc_i2c_req_t *req = &data->req;
uint8_t target_rw;
unsigned int i = 0;
req->i2c = i2c;
req->addr = target_address;
k_sem_take(&data->lock, K_FOREVER);
MXC_I2C_ClearRXFIFO(i2c);
/* First message should always begin with a START condition */
msgs[0].flags |= I2C_MSG_RESTART;
for (i = 0; i < num_msgs; i++) {
if (msgs[i].flags & I2C_MSG_READ) {
req->rx_buf = (unsigned char *)msgs[i].buf;
req->rx_len = msgs[i].len;
req->tx_buf = NULL;
req->tx_len = 0;
target_rw = (target_address << 1) | 0x1;
} else {
req->tx_buf = (unsigned char *)msgs[i].buf;
req->tx_len = msgs[i].len;
req->rx_buf = NULL;
req->rx_len = 0;
target_rw = (target_address << 1) & ~0x1;
}
/*
* If previous message ends with a STOP condition, this message
* should begin with a START
*/
if (i > 0) {
if ((msgs[i - 1].flags & (I2C_MSG_STOP | I2C_MSG_READ))) {
msgs[i].flags |= I2C_MSG_RESTART;
}
}
data->flags = msgs[i].flags;
data->readb = 0;
data->written = 0;
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
if (data->flags & I2C_MSG_RESTART) {
MXC_I2C_Start(i2c);
Wrap_MXC_I2C_WaitForRestart(i2c);
MXC_I2C_WriteTXFIFO(i2c, &target_rw, 1);
}
ret = i2c_max32_transfer_sync(i2c, data);
if (ret) {
MXC_I2C_Stop(i2c);
break;
}
}
k_sem_give(&data->lock);
return ret;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
static int api_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t target_address)
{
#if CONFIG_I2C_MAX32_DMA
const struct max32_i2c_config *cfg = dev->config;
if ((cfg->tx_dma.channel != 0xFF) && (cfg->rx_dma.channel != 0xFF)) {
return i2c_max32_transfer_dma(dev, msgs, num_msgs, target_address);
}
#endif
return i2c_max32_transfer(dev, msgs, num_msgs, target_address);
}
#ifdef CONFIG_I2C_TARGET
static void i2c_max32_isr_target(const struct device *dev, mxc_i2c_regs_t *i2c)
{
uint32_t ctrl;
uint32_t int_fl0;
uint32_t int_fl1;
uint32_t int_en0;
uint32_t int_en1;
ctrl = i2c->ctrl;
Wrap_MXC_I2C_GetIntEn(i2c, &int_en0, &int_en1);
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
/* Error occurred, notify callback function and end transaction */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TRANS_COMP);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
MXC_I2C_ClearTXFIFO(i2c);
MXC_I2C_ClearRXFIFO(i2c);
}
/* Check whether data is available if we received an interrupt occurred while receiving */
if (int_en0 & ADI_MAX32_I2C_INT_EN0_RX_THD || int_en1 & ADI_MAX32_I2C_INT_EN1_RX_OVERFLOW) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_RX_THD) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_RX_THRESH);
}
if (int_fl1 & ADI_MAX32_I2C_INT_FL1_RX_OVERFLOW) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_OVERFLOW);
}
}
/* Check whether TX FIFO needs to be refilled if interrupt ocurred while transmitting */
if (int_en0 & (ADI_MAX32_I2C_INT_EN0_TX_THD | ADI_MAX32_I2C_INT_EN0_TX_LOCK_OUT) ||
int_en1 & ADI_MAX32_I2C_INT_EN1_TX_UNDERFLOW) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_TX_THD) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TX_THRESH);
}
if (int_fl1 & ADI_MAX32_I2C_INT_EN1_TX_UNDERFLOW) {
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_UNDERFLOW);
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_TX_LOCK_OUT) {
int_en0 = ADI_MAX32_I2C_INT_EN0_ADDR_MATCH;
int_en1 = 0;
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TRANS_COMP);
}
}
/* Check if transaction completed or restart occurred */
if (int_en0 & ADI_MAX32_I2C_INT_EN0_DONE) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_STOP) {
/* Stop/NACK condition occurred, transaction complete */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_TRANS_COMP);
int_en0 = ADI_MAX32_I2C_INT_EN0_ADDR_MATCH;
} else if (int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE) {
/* Restart detected, re-arm address match interrupt */
int_en0 = ADI_MAX32_I2C_INT_EN0_ADDR_MATCH;
}
int_en1 = 0;
}
/* Check for address match interrupt */
if (int_en0 & ADI_MAX32_I2C_INT_EN0_ADDR_MATCH) {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ADDR_MATCH) {
/* Address match occurred, prepare for transaction */
if (i2c->ctrl & MXC_F_I2C_CTRL_READ) {
/* Read request received from the master */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_MASTER_RD);
int_en0 = ADI_MAX32_I2C_INT_EN0_TX_THD |
ADI_MAX32_I2C_INT_EN0_TX_LOCK_OUT |
ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR;
int_en1 = ADI_MAX32_I2C_INT_EN1_TX_UNDERFLOW;
} else {
/* Write request received from the master */
i2c_max32_target_callback(dev, i2c, MXC_I2C_EVT_MASTER_WR);
int_en0 = ADI_MAX32_I2C_INT_EN0_RX_THD |
ADI_MAX32_I2C_INT_EN0_DONE | ADI_MAX32_I2C_INT_EN0_ERR;
int_en1 = ADI_MAX32_I2C_INT_EN1_RX_OVERFLOW;
}
}
}
Wrap_MXC_I2C_SetIntEn(i2c, int_en0, int_en1);
}
#endif /* CONFIG_I2C_TARGET */
#ifdef CONFIG_I2C_MAX32_INTERRUPT
static void i2c_max32_isr_controller(const struct device *dev, mxc_i2c_regs_t *i2c)
{
struct max32_i2c_data *data = dev->data;
mxc_i2c_req_t *req = &data->req;
uint32_t written, readb;
uint32_t txfifolevel;
uint32_t int_fl0, int_fl1;
uint32_t int_en0, int_en1;
written = data->written;
readb = data->readb;
Wrap_MXC_I2C_GetIntEn(i2c, &int_en0, &int_en1);
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
txfifolevel = Wrap_MXC_I2C_GetTxFIFOLevel(i2c);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
data->err = -EIO;
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
k_sem_give(&data->xfer);
return;
}
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ADDR_ACK) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_ADDR_ACK, 0);
if (written < req->tx_len) {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_TX_THD, 0);
} else if (readb < req->rx_len) {
MXC_I2C_EnableInt(
i2c, ADI_MAX32_I2C_INT_EN0_RX_THD | ADI_MAX32_I2C_INT_EN0_DONE, 0);
}
}
if (req->tx_len &&
(int_fl0 & (ADI_MAX32_I2C_INT_FL0_TX_THD | ADI_MAX32_I2C_INT_FL0_DONE))) {
if (written < req->tx_len) {
written += MXC_I2C_WriteTXFIFO(i2c, &req->tx_buf[written],
req->tx_len - written);
} else {
if (!(int_en0 & ADI_MAX32_I2C_INT_EN0_DONE)) {
/* We are done, stop sending more data */
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_TX_THD, 0);
if (data->flags & I2C_MSG_STOP) {
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
/* Done flag is not set if stop/restart is not set */
Wrap_MXC_I2C_Stop(i2c);
} else {
k_sem_give(&data->xfer);
}
}
if ((int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE)) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
k_sem_give(&data->xfer);
}
}
} else if ((int_fl0 & (ADI_MAX32_I2C_INT_FL0_RX_THD | ADI_MAX32_I2C_INT_FL0_DONE))) {
readb += MXC_I2C_ReadRXFIFO(i2c, &req->rx_buf[readb], req->rx_len - readb);
if (readb == req->rx_len) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_RX_THD, 0);
if (data->flags & I2C_MSG_STOP) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
Wrap_MXC_I2C_Stop(i2c);
k_sem_give(&data->xfer);
} else {
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE) {
MXC_I2C_DisableInt(i2c, ADI_MAX32_I2C_INT_EN0_DONE, 0);
k_sem_give(&data->xfer);
}
}
} else if ((int_en0 & ADI_MAX32_I2C_INT_EN0_DONE) &&
(int_fl0 & ADI_MAX32_I2C_INT_FL0_DONE)) {
MXC_I2C_DisableInt(
i2c, (ADI_MAX32_I2C_INT_EN0_RX_THD | ADI_MAX32_I2C_INT_EN0_DONE),
0);
Wrap_MXC_I2C_SetRxCount(i2c, req->rx_len - readb);
MXC_I2C_EnableInt(i2c, ADI_MAX32_I2C_INT_EN0_ADDR_ACK, 0);
i2c->fifo = (req->addr << 1) | 0x1;
Wrap_MXC_I2C_Restart(i2c);
}
}
data->written = written;
data->readb = readb;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
#ifdef CONFIG_I2C_MAX32_DMA
static void i2c_max32_isr_controller_dma(const struct device *dev, mxc_i2c_regs_t *i2c)
{
struct max32_i2c_data *data = dev->data;
uint32_t int_fl0, int_fl1;
uint32_t int_en0, int_en1;
Wrap_MXC_I2C_GetIntEn(i2c, &int_en0, &int_en1);
MXC_I2C_GetFlags(i2c, &int_fl0, &int_fl1);
MXC_I2C_ClearFlags(i2c, ADI_MAX32_I2C_INT_FL0_MASK, ADI_MAX32_I2C_INT_FL1_MASK);
if (int_fl0 & ADI_MAX32_I2C_INT_FL0_ERR) {
data->err = -EIO;
Wrap_MXC_I2C_SetIntEn(i2c, 0, 0);
k_sem_give(&data->xfer);
} else {
if (!data->err && (int_en0 & ADI_MAX32_I2C_INT_EN0_DONE)) {
k_sem_give(&data->xfer);
}
}
}
#endif /* CONFIG_I2C_MAX32_DMA */
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
static void i2c_max32_isr(const struct device *dev)
{
const struct max32_i2c_config *cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
#ifdef CONFIG_I2C_MAX32_INTERRUPT
if (data->target_mode == 0) {
#ifdef CONFIG_I2C_MAX32_DMA
if ((cfg->tx_dma.channel != 0xFF) && (cfg->rx_dma.channel != 0xFF)) {
i2c_max32_isr_controller_dma(dev, i2c);
return;
}
#endif
i2c_max32_isr_controller(dev, i2c);
return;
}
#endif /* CONFIG_I2C_MAX32_INTERRUPT */
#ifdef CONFIG_I2C_TARGET
if (data->target_mode == 1) {
i2c_max32_isr_target(dev, i2c);
}
#endif
}
#endif /* CONFIG_I2C_TARGET || CONFIG_I2C_MAX32_INTERRUPT */
static const struct i2c_driver_api api = {
.configure = api_configure,
.transfer = api_transfer,
#ifdef CONFIG_I2C_TARGET
.target_register = api_target_register,
.target_unregister = api_target_unregister,
#endif
#ifdef CONFIG_I2C_RTIO
.iodev_submit = i2c_iodev_submit_fallback,
#endif
.recover_bus = api_recover_bus,
};
static int i2c_max32_init(const struct device *dev)
{
const struct max32_i2c_config *const cfg = dev->config;
struct max32_i2c_data *data = dev->data;
mxc_i2c_regs_t *i2c = cfg->regs;
int ret = 0;
if (!device_is_ready(cfg->clock)) {
return -ENODEV;
}
MXC_I2C_Shutdown(i2c); /* Clear everything out */
ret = clock_control_on(cfg->clock, (clock_control_subsys_t)&cfg->perclk);
if (ret) {
return ret;
}
ret = pinctrl_apply_state(cfg->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
ret = MXC_I2C_Init(i2c, 1, 0); /* Configure as master */
if (ret) {
return ret;
}
MXC_I2C_SetFrequency(i2c, cfg->bitrate);
k_sem_init(&data->lock, 1, 1);
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
cfg->irq_config_func(dev);
#endif
#ifdef CONFIG_I2C_MAX32_INTERRUPT
irq_enable(cfg->irqn);
k_sem_init(&data->xfer, 0, 1);
#endif
#if defined(CONFIG_I2C_TARGET)
data->first_write = true;
data->target_mode = 0;
#endif
data->dev = dev;
return ret;
}
#if defined(CONFIG_I2C_TARGET) || defined(CONFIG_I2C_MAX32_INTERRUPT)
#define I2C_MAX32_CONFIG_IRQ_FUNC(n) \
.irq_config_func = i2c_max32_irq_config_func_##n, .irqn = DT_INST_IRQN(n),
#define I2C_MAX32_IRQ_CONFIG_FUNC(n) \
static void i2c_max32_irq_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), i2c_max32_isr, \
DEVICE_DT_INST_GET(n), 0); \
}
#else
#define I2C_MAX32_CONFIG_IRQ_FUNC(n)
#define I2C_MAX32_IRQ_CONFIG_FUNC(n)
#endif
#if CONFIG_I2C_MAX32_DMA
#define MAX32_DT_INST_DMA_CTLR(n, name) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
(DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, name))), (NULL))
#define MAX32_DT_INST_DMA_CELL(n, name, cell) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (DT_INST_DMAS_CELL_BY_NAME(n, name, cell)), \
(0xff))
#define MAX32_I2C_TX_DMA_INIT(n) \
.tx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, tx), \
.tx_dma.channel = MAX32_DT_INST_DMA_CELL(n, tx, channel), \
.tx_dma.slot = MAX32_DT_INST_DMA_CELL(n, tx, slot),
#define MAX32_I2C_RX_DMA_INIT(n) \
.rx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, rx), \
.rx_dma.channel = MAX32_DT_INST_DMA_CELL(n, rx, channel), \
.rx_dma.slot = MAX32_DT_INST_DMA_CELL(n, rx, slot),
#else
#define MAX32_I2C_TX_DMA_INIT(n)
#define MAX32_I2C_RX_DMA_INIT(n)
#endif
#define DEFINE_I2C_MAX32(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
I2C_MAX32_IRQ_CONFIG_FUNC(_num) \
static const struct max32_i2c_config max32_i2c_dev_cfg_##_num = { \
.regs = (mxc_i2c_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
.bitrate = DT_INST_PROP(_num, clock_frequency), \
I2C_MAX32_CONFIG_IRQ_FUNC(_num) MAX32_I2C_TX_DMA_INIT(_num) \
MAX32_I2C_RX_DMA_INIT(_num)}; \
static struct max32_i2c_data max32_i2c_data_##_num; \
I2C_DEVICE_DT_INST_DEFINE(_num, i2c_max32_init, NULL, &max32_i2c_data_##_num, \
&max32_i2c_dev_cfg_##_num, PRE_KERNEL_2, \
CONFIG_I2C_INIT_PRIORITY, &api);
DT_INST_FOREACH_STATUS_OKAY(DEFINE_I2C_MAX32)