blob: 50e319e4226053def100f143b4f86687779e8b48 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 Nordic Semiconductor ASA
* Copyright (c) 2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Public APIs for UART drivers
*/
#ifndef ZEPHYR_INCLUDE_DRIVERS_UART_H_
#define ZEPHYR_INCLUDE_DRIVERS_UART_H_
/**
* @brief UART Interface
* @defgroup uart_interface UART Interface
* @ingroup io_interfaces
* @{
*/
#include <errno.h>
#include <stddef.h>
#include <device.h>
#ifdef __cplusplus
extern "C" {
#endif
/** @brief Line control signals. */
enum uart_line_ctrl {
UART_LINE_CTRL_BAUD_RATE = BIT(0),
UART_LINE_CTRL_RTS = BIT(1),
UART_LINE_CTRL_DTR = BIT(2),
UART_LINE_CTRL_DCD = BIT(3),
UART_LINE_CTRL_DSR = BIT(4),
};
/**
* @brief Types of events passed to callback in UART_ASYNC_API
*
* Receiving:
* 1. To start receiving, uart_rx_enable has to be called with first buffer
* 2. When receiving starts to current buffer,
* @ref uart_event_type::UART_RX_BUF_REQUEST will be generated, in response
* to that user can either:
*
* - Provide second buffer using uart_rx_buf_rsp, when first buffer is
* filled, receiving will automatically start to second buffer.
* - Ignore the event, this way when current buffer is filled
* @ref uart_event_type::UART_RX_RDY event will be generated and
* receiving will be stopped.
*
* 3. If some data was received and timeout occurred
* @ref uart_event_type::UART_RX_RDY event will be generated. It can happen
* multiples times for the same buffer. RX timeout is counted from last byte
* received i.e. if no data was received, there won't be any timeout event.
* 4. After buffer is filled @ref uart_event_type::UART_RX_RDY will be
* generated, immediately followed by
* @ref uart_event_type::UART_RX_BUF_RELEASED indicating that current buffer
* is no longer used.
* 5. If there was second buffer provided, it will become current buffer and
* we start again at point 2.
* If no second buffer was specified receiving is stopped and
* @ref uart_event_type::UART_RX_DISABLED event is generated. After that
* whole process can be repeated.
*
* Any time during reception @ref uart_event_type::UART_RX_STOPPED event can
* occur. if there is any data received, @ref uart_event_type::UART_RX_RDY
* event will be generated. It will be followed by
* @ref uart_event_type::UART_RX_BUF_RELEASED event for every buffer currently
* passed to driver and finally by @ref uart_event_type::UART_RX_DISABLED event.
*
* Receiving can be disabled using uart_rx_disable, after calling that
* function, if there is any data received,
* @ref uart_event_type::UART_RX_RDY event will be generated.
* @ref uart_event_type::UART_RX_BUF_RELEASED event will be generated for every
* buffer currently passed to driver and finally
* @ref uart_event_type::UART_RX_DISABLED event will occur.
*
* Transmitting:
* 1. Transmitting starts by uart_tx function.
* 2. If whole buffer was transmitted @ref uart_event_type::UART_TX_DONE is
* generated. If timeout occurred @ref uart_event_type::UART_TX_ABORTED will
* be generated.
*
* Transmitting can be aborted using @ref uart_tx_abort, after calling that
* function @ref uart_event_type::UART_TX_ABORTED event will be generated.
*
*/
enum uart_event_type {
/** @brief Whole TX buffer was transmitted. */
UART_TX_DONE,
/**
* @brief Transmitting aborted due to timeout or uart_tx_abort call
*
* When flow control is enabled, there is a possibility that TX transfer
* won't finish in the allotted time. Some data may have been
* transferred, information about it can be found in event data.
*/
UART_TX_ABORTED,
/**
* @brief Received data is ready for processing.
*
* This event is generated in the following cases:
* - When RX timeout occurred, and data was stored in provided buffer.
* This can happen multiple times in the same buffer.
* - When provided buffer is full.
* - After uart_rx_disable().
* - After stopping due to external event
* (@ref uart_event_type::UART_RX_STOPPED).
*/
UART_RX_RDY,
/**
* @brief Driver requests next buffer for continuous reception.
*
* This event is triggered when receiving has started for a new buffer,
* i.e. it's time to provide a next buffer for a seamless switchover to
* it. For continuous reliable receiving, user should provide another RX
* buffer in response to this event, using uart_rx_buf_rsp function
*
* If uart_rx_buf_rsp is not called before current buffer
* is filled up, receiving will stop.
*/
UART_RX_BUF_REQUEST,
/**
* @brief Buffer is no longer used by UART driver.
*/
UART_RX_BUF_RELEASED,
/**
* @brief RX has been disabled and can be reenabled.
*
* This event is generated whenever receiver has been stopped, disabled
* or finished its operation and can be enabled again using
* uart_rx_enable
*/
UART_RX_DISABLED,
/**
* @brief RX has stopped due to external event.
*
* Reason is one of uart_rx_stop_reason.
*/
UART_RX_STOPPED,
};
/**
* @brief Reception stop reasons.
*
* Values that correspond to events or errors responsible for stopping
* receiving.
*/
enum uart_rx_stop_reason {
/** @brief Overrun error */
UART_ERROR_OVERRUN = (1U << 0),
/** @brief Parity error */
UART_ERROR_PARITY = (1U << 1),
/** @brief Framing error */
UART_ERROR_FRAMING = (1U << 2),
/**
* @brief Break interrupt
*
* A break interrupt was received. This happens when the serial input
* is held at a logic '0' state for longer than the sum of
* start time + data bits + parity + stop bits.
*/
UART_BREAK = (1U << 3),
/**
* @brief Collision error
*
* This error is raised when transmitted data does not match
* received data. Typically this is useful in scenarios where
* the TX and RX lines maybe connected together such as
* RS-485 half-duplex. This error is only valid on UARTs that
* support collision checking.
*/
UART_ERROR_COLLISION = (1U << 4),
};
/** @brief UART TX event data. */
struct uart_event_tx {
/** @brief Pointer to current buffer. */
const uint8_t *buf;
/** @brief Number of bytes sent. */
size_t len;
};
/**
* @brief UART RX event data.
*
* The data represented by the event is stored in rx.buf[rx.offset] to
* rx.buf[rx.offset+rx.len]. That is, the length is relative to the offset.
*/
struct uart_event_rx {
/** @brief Pointer to current buffer. */
uint8_t *buf;
/** @brief Currently received data offset in bytes. */
size_t offset;
/** @brief Number of new bytes received. */
size_t len;
};
/** @brief UART RX buffer released event data. */
struct uart_event_rx_buf {
/* @brief Pointer to buffer that is no longer in use. */
uint8_t *buf;
};
/** @brief UART RX stopped data. */
struct uart_event_rx_stop {
/** @brief Reason why receiving stopped */
enum uart_rx_stop_reason reason;
/** @brief Last received data. */
struct uart_event_rx data;
};
/** @brief Structure containing information about current event. */
struct uart_event {
/** @brief Type of event */
enum uart_event_type type;
/** @brief Event data */
union uart_event_data {
/** @brief @ref uart_event_type::UART_TX_DONE and
* @ref uart_event_type::UART_TX_ABORTED events data.
*/
struct uart_event_tx tx;
/** @brief @ref uart_event_type::UART_RX_RDY event data. */
struct uart_event_rx rx;
/** @brief @ref uart_event_type::UART_RX_BUF_RELEASED event
* data.
*/
struct uart_event_rx_buf rx_buf;
/** @brief @ref uart_event_type::UART_RX_STOPPED event data. */
struct uart_event_rx_stop rx_stop;
} data;
};
/**
* @typedef uart_callback_t
* @brief Define the application callback function signature for
* uart_callback_set() function.
*
* @param dev UART device structure.
* @param evt Pointer to uart_event structure.
* @param user_data Pointer to data specified by user.
*/
typedef void (*uart_callback_t)(const struct device *dev,
struct uart_event *evt, void *user_data);
/**
* @brief UART controller configuration structure
*
* @param baudrate Baudrate setting in bps
* @param parity Parity bit, use @ref uart_config_parity
* @param stop_bits Stop bits, use @ref uart_config_stop_bits
* @param data_bits Data bits, use @ref uart_config_data_bits
* @param flow_ctrl Flow control setting, use @ref uart_config_flow_control
*/
struct uart_config {
uint32_t baudrate;
uint8_t parity;
uint8_t stop_bits;
uint8_t data_bits;
uint8_t flow_ctrl;
};
/** @brief Parity modes */
enum uart_config_parity {
UART_CFG_PARITY_NONE,
UART_CFG_PARITY_ODD,
UART_CFG_PARITY_EVEN,
UART_CFG_PARITY_MARK,
UART_CFG_PARITY_SPACE,
};
/** @brief Number of stop bits. */
enum uart_config_stop_bits {
UART_CFG_STOP_BITS_0_5,
UART_CFG_STOP_BITS_1,
UART_CFG_STOP_BITS_1_5,
UART_CFG_STOP_BITS_2,
};
/** @brief Number of data bits. */
enum uart_config_data_bits {
UART_CFG_DATA_BITS_5,
UART_CFG_DATA_BITS_6,
UART_CFG_DATA_BITS_7,
UART_CFG_DATA_BITS_8,
UART_CFG_DATA_BITS_9,
};
/**
* @brief Hardware flow control options.
*
* With flow control set to none, any operations related to flow control
* signals can be managed by user with uart_line_ctrl functions.
* In other cases, flow control is managed by hardware/driver.
*/
enum uart_config_flow_control {
UART_CFG_FLOW_CTRL_NONE,
UART_CFG_FLOW_CTRL_RTS_CTS,
UART_CFG_FLOW_CTRL_DTR_DSR,
};
/**
* @typedef uart_irq_callback_user_data_t
* @brief Define the application callback function signature for
* uart_irq_callback_user_data_set() function.
*
* @param dev UART device structure.
* @param user_data Arbitrary user data.
*/
typedef void (*uart_irq_callback_user_data_t)(const struct device *dev,
void *user_data);
/**
* @typedef uart_irq_config_func_t
* @brief For configuring IRQ on each individual UART device.
*
* @param dev UART device structure.
*
* @internal
*/
typedef void (*uart_irq_config_func_t)(const struct device *dev);
/**
* @brief UART device configuration.
*
* @param port Base port number
* @param base Memory mapped base address
* @param regs Register address
* @param sys_clk_freq System clock frequency in Hz
*/
struct uart_device_config {
union {
uint32_t port;
uint8_t *base;
uint32_t regs;
};
uint32_t sys_clk_freq;
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
uart_irq_config_func_t irq_config_func;
#endif
};
/** @brief Driver API structure. */
__subsystem struct uart_driver_api {
#ifdef CONFIG_UART_ASYNC_API
int (*callback_set)(const struct device *dev,
uart_callback_t callback,
void *user_data);
int (*tx)(const struct device *dev, const uint8_t *buf, size_t len,
int32_t timeout);
int (*tx_abort)(const struct device *dev);
int (*rx_enable)(const struct device *dev, uint8_t *buf, size_t len,
int32_t timeout);
int (*rx_buf_rsp)(const struct device *dev, uint8_t *buf, size_t len);
int (*rx_disable)(const struct device *dev);
#endif
/** Console I/O function */
int (*poll_in)(const struct device *dev, unsigned char *p_char);
void (*poll_out)(const struct device *dev, unsigned char out_char);
/** Console I/O function */
int (*err_check)(const struct device *dev);
/** UART configuration functions */
int (*configure)(const struct device *dev,
const struct uart_config *cfg);
int (*config_get)(const struct device *dev, struct uart_config *cfg);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/** Interrupt driven FIFO fill function */
int (*fifo_fill)(const struct device *dev, const uint8_t *tx_data,
int len);
/** Interrupt driven FIFO read function */
int (*fifo_read)(const struct device *dev, uint8_t *rx_data,
const int size);
/** Interrupt driven transfer enabling function */
void (*irq_tx_enable)(const struct device *dev);
/** Interrupt driven transfer disabling function */
void (*irq_tx_disable)(const struct device *dev);
/** Interrupt driven transfer ready function */
int (*irq_tx_ready)(const struct device *dev);
/** Interrupt driven receiver enabling function */
void (*irq_rx_enable)(const struct device *dev);
/** Interrupt driven receiver disabling function */
void (*irq_rx_disable)(const struct device *dev);
/** Interrupt driven transfer complete function */
int (*irq_tx_complete)(const struct device *dev);
/** Interrupt driven receiver ready function */
int (*irq_rx_ready)(const struct device *dev);
/** Interrupt driven error enabling function */
void (*irq_err_enable)(const struct device *dev);
/** Interrupt driven error disabling function */
void (*irq_err_disable)(const struct device *dev);
/** Interrupt driven pending status function */
int (*irq_is_pending)(const struct device *dev);
/** Interrupt driven interrupt update function */
int (*irq_update)(const struct device *dev);
/** Set the irq callback function */
void (*irq_callback_set)(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *user_data);
#endif
#ifdef CONFIG_UART_LINE_CTRL
int (*line_ctrl_set)(const struct device *dev, uint32_t ctrl,
uint32_t val);
int (*line_ctrl_get)(const struct device *dev, uint32_t ctrl,
uint32_t *val);
#endif
#ifdef CONFIG_UART_DRV_CMD
int (*drv_cmd)(const struct device *dev, uint32_t cmd, uint32_t p);
#endif
};
/**
* @brief Set event handler function.
*
* Since it is mandatory to set callback to use other asynchronous functions,
* it can be used to detect if the device supports asynchronous API. Remaining
* API does not have that detection.
*
* @param dev UART device structure.
* @param callback Event handler.
* @param user_data Data to pass to event handler function.
*
* @retval -ENOSYS If not supported by the device.
* @retval -ENOTSUP If API not enabled.
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int uart_callback_set(const struct device *dev,
uart_callback_t callback,
void *user_data)
{
#ifdef CONFIG_UART_ASYNC_API
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->callback_set == NULL) {
return -ENOSYS;
}
return api->callback_set(dev, callback, user_data);
#else
ARG_UNUSED(dev);
ARG_UNUSED(callback);
ARG_UNUSED(user_data);
return -ENOTSUP;
#endif
}
/**
* @brief Send given number of bytes from buffer through UART.
*
* Function returns immediately and event handler,
* set using @ref uart_callback_set, is called after transfer is finished.
*
* @param dev UART device structure.
* @param buf Pointer to transmit buffer.
* @param len Length of transmit buffer.
* @param timeout Timeout in milliseconds. Valid only if flow control is
* enabled. @ref SYS_FOREVER_MS disables timeout.
*
* @retval -ENOTSUP If not supported.
* @retval -EBUSY There is already an ongoing transfer.
* @retval 0 If successful, negative errno code otherwise.
*/
__syscall int uart_tx(const struct device *dev, const uint8_t *buf,
size_t len,
int32_t timeout);
static inline int z_impl_uart_tx(const struct device *dev, const uint8_t *buf,
size_t len, int32_t timeout)
{
#ifdef CONFIG_UART_ASYNC_API
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
return api->tx(dev, buf, len, timeout);
#else
ARG_UNUSED(dev);
ARG_UNUSED(buf);
ARG_UNUSED(len);
ARG_UNUSED(timeout);
return -ENOTSUP;
#endif
}
/**
* @brief Abort current TX transmission.
*
* @ref uart_event_type::UART_TX_DONE event will be generated with amount of
* data sent.
*
* @param dev UART device structure.
*
* @retval -ENOTSUP If not supported.
* @retval -EFAULT There is no active transmission.
* @retval 0 If successful, negative errno code otherwise.
*/
__syscall int uart_tx_abort(const struct device *dev);
static inline int z_impl_uart_tx_abort(const struct device *dev)
{
#ifdef CONFIG_UART_ASYNC_API
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
return api->tx_abort(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Start receiving data through UART.
*
* Function sets given buffer as first buffer for receiving and returns
* immediately. After that event handler, set using @ref uart_callback_set,
* is called with @ref uart_event_type::UART_RX_RDY or
* @ref uart_event_type::UART_RX_BUF_REQUEST events.
*
* @param dev UART device structure.
* @param buf Pointer to receive buffer.
* @param len Buffer length.
* @param timeout Inactivity period after receiving at least a byte which
* triggers @ref uart_event_type::UART_RX_RDY event. Given in
* milliseconds. @ref SYS_FOREVER_MS disables timeout. See
* @ref uart_event_type for details.
*
* @retval -ENOTSUP If not supported.
* @retval -EBUSY RX already in progress.
* @retval 0 If successful, negative errno code otherwise.
*
*/
__syscall int uart_rx_enable(const struct device *dev, uint8_t *buf,
size_t len,
int32_t timeout);
static inline int z_impl_uart_rx_enable(const struct device *dev,
uint8_t *buf,
size_t len, int32_t timeout)
{
#ifdef CONFIG_UART_ASYNC_API
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
return api->rx_enable(dev, buf, len, timeout);
#else
ARG_UNUSED(dev);
ARG_UNUSED(buf);
ARG_UNUSED(len);
ARG_UNUSED(timeout);
return -ENOTSUP;
#endif
}
/**
* @brief Provide receive buffer in response to
* @ref uart_event_type::UART_RX_BUF_REQUEST event.
*
* Provide pointer to RX buffer, which will be used when current buffer is
* filled.
*
* @note Providing buffer that is already in usage by driver leads to
* undefined behavior. Buffer can be reused when it has been released
* by driver.
*
* @param dev UART device structure.
* @param buf Pointer to receive buffer.
* @param len Buffer length.
*
* @retval -ENOTSUP If not supported.
* @retval -EBUSY Next buffer already set.
* @retval -EACCES Receiver is already disabled (function called too late?).
* @retval 0 If successful, negative errno code otherwise.
*
*/
static inline int uart_rx_buf_rsp(const struct device *dev, uint8_t *buf,
size_t len)
{
#ifdef CONFIG_UART_ASYNC_API
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
return api->rx_buf_rsp(dev, buf, len);
#else
ARG_UNUSED(dev);
ARG_UNUSED(buf);
ARG_UNUSED(len);
return -ENOTSUP;
#endif
}
/**
* @brief Disable RX
*
* @ref uart_event_type::UART_RX_BUF_RELEASED event will be generated for every
* buffer scheduled, after that @ref uart_event_type::UART_RX_DISABLED event
* will be generated. Additionally, if there is any pending received data, the
* @ref uart_event_type::UART_RX_RDY event for that data will be generated
* before the @ref uart_event_type::UART_RX_BUF_RELEASED events.
*
* @param dev UART device structure.
*
* @retval -ENOTSUP If not supported.
* @retval -EFAULT There is no active reception.
* @retval 0 If successful, negative errno code otherwise.
*/
__syscall int uart_rx_disable(const struct device *dev);
static inline int z_impl_uart_rx_disable(const struct device *dev)
{
#ifdef CONFIG_UART_ASYNC_API
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
return api->rx_disable(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Check whether an error was detected.
*
* @param dev UART device structure.
*
* @retval uart_rx_stop_reason If error during receiving occurred.
* @retval 0 Otherwise.
* @retval -ENOSYS If this function is not supported.
*/
__syscall int uart_err_check(const struct device *dev);
static inline int z_impl_uart_err_check(const struct device *dev)
{
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->err_check == NULL) {
return -ENOSYS;
}
return api->err_check(dev);
}
/**
* @brief Poll the device for input.
*
* @param dev UART device structure.
* @param p_char Pointer to character.
*
* @retval 0 If a character arrived.
* @retval -1 If no character was available to read (i.e., the UART
* input buffer was empty).
* @retval -ENOSYS If the operation is not supported.
* @retval -EBUSY If reception was enabled using uart_rx_enabled
*/
__syscall int uart_poll_in(const struct device *dev, unsigned char *p_char);
static inline int z_impl_uart_poll_in(const struct device *dev,
unsigned char *p_char)
{
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->poll_in == NULL) {
return -ENOSYS;
}
return api->poll_in(dev, p_char);
}
/**
* @brief Output a character in polled mode.
*
* This routine checks if the transmitter is empty.
* When the transmitter is empty, it writes a character to the data
* register.
*
* To send a character when hardware flow control is enabled, the handshake
* signal CTS must be asserted.
*
* @param dev UART device structure.
* @param out_char Character to send.
*/
__syscall void uart_poll_out(const struct device *dev,
unsigned char out_char);
static inline void z_impl_uart_poll_out(const struct device *dev,
unsigned char out_char)
{
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
api->poll_out(dev, out_char);
}
/**
* @brief Set UART configuration.
*
* Sets UART configuration using data from *cfg.
*
* @param dev UART device structure.
* @param cfg UART configuration structure.
*
*
* @retval -ENOSYS If configuration is not supported by device.
* or driver does not support setting configuration in runtime.
* @retval 0 If successful, negative errno code otherwise.
*/
__syscall int uart_configure(const struct device *dev,
const struct uart_config *cfg);
static inline int z_impl_uart_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->configure == NULL) {
return -ENOSYS;
}
return api->configure(dev, cfg);
}
/**
* @brief Get UART configuration.
*
* Stores current UART configuration to *cfg, can be used to retrieve initial
* configuration after device was initialized using data from DTS.
*
* @param dev UART device structure.
* @param cfg UART configuration structure.
*
* @retval -ENOSYS If driver does not support getting current configuration.
* @retval 0 If successful, negative errno code otherwise.
*/
__syscall int uart_config_get(const struct device *dev,
struct uart_config *cfg);
static inline int z_impl_uart_config_get(const struct device *dev,
struct uart_config *cfg)
{
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->config_get == NULL) {
return -ENOSYS;
}
return api->config_get(dev, cfg);
}
/**
* @brief Fill FIFO with data.
*
* @details This function is expected to be called from UART
* interrupt handler (ISR), if uart_irq_tx_ready() returns true.
* Result of calling this function not from an ISR is undefined
* (hardware-dependent). Likewise, *not* calling this function
* from an ISR if uart_irq_tx_ready() returns true may lead to
* undefined behavior, e.g. infinite interrupt loops. It's
* mandatory to test return value of this function, as different
* hardware has different FIFO depth (oftentimes just 1).
*
* @param dev UART device structure.
* @param tx_data Data to transmit.
* @param size Number of bytes to send.
*
* @return Number of bytes sent.
* @retval -ENOSYS if this function is not supported
* @retval -ENOTSUP if API is not enabled.
*/
static inline int uart_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int size)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->fifo_fill == NULL) {
return -ENOSYS;
}
return api->fifo_fill(dev, tx_data, size);
#else
ARG_UNUSED(dev);
ARG_UNUSED(tx_data);
ARG_UNUSED(size);
return -ENOTSUP;
#endif
}
/**
* @brief Read data from FIFO.
*
* @details This function is expected to be called from UART
* interrupt handler (ISR), if uart_irq_rx_ready() returns true.
* Result of calling this function not from an ISR is undefined
* (hardware-dependent). It's unspecified whether "RX ready"
* condition as returned by uart_irq_rx_ready() is level- or
* edge- triggered. That means that once uart_irq_rx_ready() is
* detected, uart_fifo_read() must be called until it reads all
* available data in the FIFO (i.e. until it returns less data
* than was requested).
*
* Note that the calling context only applies to physical UARTs and
* no to the virtual ones found in USB CDC ACM code.
*
* @param dev UART device structure.
* @param rx_data Data container.
* @param size Container size.
*
* @return Number of bytes read.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
*/
static inline int uart_fifo_read(const struct device *dev, uint8_t *rx_data,
const int size)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->fifo_read == NULL) {
return -ENOSYS;
}
return api->fifo_read(dev, rx_data, size);
#else
ARG_UNUSED(dev);
ARG_UNUSED(rx_data);
ARG_UNUSED(size);
return -ENOTSUP;
#endif
}
/**
* @brief Enable TX interrupt in IER.
*
* @param dev UART device structure.
*
* @return N/A
*/
__syscall void uart_irq_tx_enable(const struct device *dev);
static inline void z_impl_uart_irq_tx_enable(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_tx_enable != NULL) {
api->irq_tx_enable(dev);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Disable TX interrupt in IER.
*
* @param dev UART device structure.
*
* @return N/A
*/
__syscall void uart_irq_tx_disable(const struct device *dev);
static inline void z_impl_uart_irq_tx_disable(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_tx_disable != NULL) {
api->irq_tx_disable(dev);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Check if UART TX buffer can accept a new char
*
* @details Check if UART TX buffer can accept at least one character
* for transmission (i.e. uart_fifo_fill() will succeed and return
* non-zero). This function must be called in a UART interrupt
* handler, or its result is undefined. Before calling this function
* in the interrupt handler, uart_irq_update() must be called once per
* the handler invocation.
*
* @param dev UART device structure.
*
* @retval 1 If at least one char can be written to UART.
* @retval 0 If device is not ready to write a new byte.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
*/
static inline int uart_irq_tx_ready(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_tx_ready == NULL) {
return -ENOSYS;
}
return api->irq_tx_ready(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Enable RX interrupt.
*
* @param dev UART device structure.
*
* @return N/A
*/
__syscall void uart_irq_rx_enable(const struct device *dev);
static inline void z_impl_uart_irq_rx_enable(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_rx_enable != NULL) {
api->irq_rx_enable(dev);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Disable RX interrupt.
*
* @param dev UART device structure.
*
* @return N/A
*/
__syscall void uart_irq_rx_disable(const struct device *dev);
static inline void z_impl_uart_irq_rx_disable(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_rx_disable != NULL) {
api->irq_rx_disable(dev);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Check if UART TX block finished transmission
*
* @details Check if any outgoing data buffered in UART TX block was
* fully transmitted and TX block is idle. When this condition is
* true, UART device (or whole system) can be power off. Note that
* this function is *not* useful to check if UART TX can accept more
* data, use uart_irq_tx_ready() for that. This function must be called
* in a UART interrupt handler, or its result is undefined. Before
* calling this function in the interrupt handler, uart_irq_update()
* must be called once per the handler invocation.
*
* @param dev UART device structure.
*
* @retval 1 If nothing remains to be transmitted.
* @retval 0 If transmission is not completed.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
*/
static inline int uart_irq_tx_complete(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_tx_complete == NULL) {
return -ENOSYS;
}
return api->irq_tx_complete(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Check if UART RX buffer has a received char
*
* @details Check if UART RX buffer has at least one pending character
* (i.e. uart_fifo_read() will succeed and return non-zero). This function
* must be called in a UART interrupt handler, or its result is undefined.
* Before calling this function in the interrupt handler, uart_irq_update()
* must be called once per the handler invocation. It's unspecified whether
* condition as returned by this function is level- or edge- triggered (i.e.
* if this function returns true when RX FIFO is non-empty, or when a new
* char was received since last call to it). See description of
* uart_fifo_read() for implication of this.
*
* @param dev UART device structure.
*
* @retval 1 If a received char is ready.
* @retval 0 If a received char is not ready.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
*/
static inline int uart_irq_rx_ready(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_rx_ready == NULL) {
return -ENOSYS;
}
return api->irq_rx_ready(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Enable error interrupt.
*
* @param dev UART device structure.
*
* @return N/A
*/
__syscall void uart_irq_err_enable(const struct device *dev);
static inline void z_impl_uart_irq_err_enable(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_err_enable) {
api->irq_err_enable(dev);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Disable error interrupt.
*
* @param dev UART device structure.
*
* @retval 1 If an IRQ is ready.
* @retval 0 Otherwise.
*/
__syscall void uart_irq_err_disable(const struct device *dev);
static inline void z_impl_uart_irq_err_disable(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_err_disable) {
api->irq_err_disable(dev);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Check if any IRQs is pending.
*
* @param dev UART device structure.
*
* @retval 1 If an IRQ is pending.
* @retval 0 If an IRQ is not pending.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
*/
__syscall int uart_irq_is_pending(const struct device *dev);
static inline int z_impl_uart_irq_is_pending(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_is_pending == NULL) {
return -ENOSYS;
}
return api->irq_is_pending(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Start processing interrupts in ISR.
*
* This function should be called the first thing in the ISR. Calling
* uart_irq_rx_ready(), uart_irq_tx_ready(), uart_irq_tx_complete()
* allowed only after this.
*
* The purpose of this function is:
*
* * For devices with auto-acknowledge of interrupt status on register
* read to cache the value of this register (rx_ready, etc. then use
* this case).
* * For devices with explicit acknowledgement of interrupts, to ack
* any pending interrupts and likewise to cache the original value.
* * For devices with implicit acknowledgement, this function will be
* empty. But the ISR must perform the actions needs to ack the
* interrupts (usually, call uart_fifo_read() on rx_ready, and
* uart_fifo_fill() on tx_ready).
*
* @param dev UART device structure.
*
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
* @retval 1 On success.
*/
__syscall int uart_irq_update(const struct device *dev);
static inline int z_impl_uart_irq_update(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->irq_update == NULL) {
return -ENOSYS;
}
return api->irq_update(dev);
#else
ARG_UNUSED(dev);
return -ENOTSUP;
#endif
}
/**
* @brief Set the IRQ callback function pointer.
*
* This sets up the callback for IRQ. When an IRQ is triggered,
* the specified function will be called with specified user data.
* See description of uart_irq_update() for the requirements on ISR.
*
* @param dev UART device structure.
* @param cb Pointer to the callback function.
* @param user_data Data to pass to callback function.
*
* @return N/A
*/
static inline void uart_irq_callback_user_data_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *user_data)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if ((api != NULL) && (api->irq_callback_set != NULL)) {
api->irq_callback_set(dev, cb, user_data);
}
#else
ARG_UNUSED(dev);
ARG_UNUSED(cb);
ARG_UNUSED(user_data);
#endif
}
/**
* @brief Set the IRQ callback function pointer (legacy).
*
* This sets up the callback for IRQ. When an IRQ is triggered,
* the specified function will be called with the device pointer.
*
* @param dev UART device structure.
* @param cb Pointer to the callback function.
*
* @return N/A
*/
static inline void uart_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb)
{
uart_irq_callback_user_data_set(dev, cb, NULL);
}
/**
* @brief Manipulate line control for UART.
*
* @param dev UART device structure.
* @param ctrl The line control to manipulate (see enum uart_line_ctrl).
* @param val Value to set to the line control.
*
* @retval 0 If successful.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
* @retval negative value if failed.
*/
__syscall int uart_line_ctrl_set(const struct device *dev,
uint32_t ctrl, uint32_t val);
static inline int z_impl_uart_line_ctrl_set(const struct device *dev,
uint32_t ctrl, uint32_t val)
{
#ifdef CONFIG_UART_LINE_CTRL
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->line_ctrl_set == NULL) {
return -ENOSYS;
}
return api->line_ctrl_set(dev, ctrl, val);
#else
ARG_UNUSED(dev);
ARG_UNUSED(ctrl);
ARG_UNUSED(val);
return -ENOTSUP;
#endif
}
/**
* @brief Retrieve line control for UART.
*
* @param dev UART device structure.
* @param ctrl The line control to retrieve (see enum uart_line_ctrl).
* @param val Pointer to variable where to store the line control value.
*
* @retval 0 If successful.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
* @retval negative value if failed.
*/
__syscall int uart_line_ctrl_get(const struct device *dev, uint32_t ctrl,
uint32_t *val);
static inline int z_impl_uart_line_ctrl_get(const struct device *dev,
uint32_t ctrl, uint32_t *val)
{
#ifdef CONFIG_UART_LINE_CTRL
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->line_ctrl_get == NULL) {
return -ENOSYS;
}
return api->line_ctrl_get(dev, ctrl, val);
#else
ARG_UNUSED(dev);
ARG_UNUSED(ctrl);
ARG_UNUSED(val);
return -ENOTSUP;
#endif
}
/**
* @brief Send extra command to driver.
*
* Implementation and accepted commands are driver specific.
* Refer to the drivers for more information.
*
* @param dev UART device structure.
* @param cmd Command to driver.
* @param p Parameter to the command.
*
* @retval 0 If successful.
* @retval -ENOSYS if this function is not supported.
* @retval -ENOTSUP if API is not enabled.
* @retval negative value if failed.
*/
__syscall int uart_drv_cmd(const struct device *dev, uint32_t cmd, uint32_t p);
static inline int z_impl_uart_drv_cmd(const struct device *dev, uint32_t cmd,
uint32_t p)
{
#ifdef CONFIG_UART_DRV_CMD
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
if (api->drv_cmd == NULL) {
return -ENOSYS;
}
return api->drv_cmd(dev, cmd, p);
#else
ARG_UNUSED(dev);
ARG_UNUSED(cmd);
ARG_UNUSED(p);
return -ENOTSUP;
#endif
}
#ifdef __cplusplus
}
#endif
/**
* @}
*/
#include <syscalls/uart.h>
#endif /* ZEPHYR_INCLUDE_DRIVERS_UART_H_ */