blob: e6f4061c6e225d2ae18b39321144146f483bf561 [file] [log] [blame]
/*
* Copyright (c) 2023 Intel Corporation.
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_penwell_spi
#include <errno.h>
#include <stdint.h>
#include <stdbool.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/spi.h>
#if DT_ANY_INST_ON_BUS_STATUS_OKAY(pcie)
BUILD_ASSERT(IS_ENABLED(CONFIG_PCIE), "DT need CONFIG_PCIE");
#include <zephyr/drivers/pcie/pcie.h>
#endif
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_pw, CONFIG_SPI_LOG_LEVEL);
#include "spi_pw.h"
static uint32_t spi_pw_reg_read(const struct device *dev, uint32_t offset)
{
return sys_read32(DEVICE_MMIO_GET(dev) + offset);
}
static void spi_pw_reg_write(const struct device *dev,
uint32_t offset,
uint32_t val)
{
return sys_write32(val, DEVICE_MMIO_GET(dev) + offset);
}
static void spi_pw_ssp_reset(const struct device *dev)
{
/* Bring the controller from reset state in to operational mode */
spi_pw_reg_write(dev, PW_SPI_REG_RESETS, 0x00);
spi_pw_reg_write(dev, PW_SPI_REG_RESETS, PW_SPI_INST_RESET);
}
#ifndef CONFIG_SPI_PW_INTERRUPT
static bool is_spi_transfer_ongoing(struct spi_pw_data *spi)
{
return spi_context_tx_on(&spi->ctx) || spi_context_rx_on(&spi->ctx);
}
#endif
static void spi_pw_enable_cs_hw_ctrl(const struct device *dev)
{
uint32_t cs_ctrl;
cs_ctrl = spi_pw_reg_read(dev, PW_SPI_REG_CS_CTRL);
cs_ctrl &= PW_SPI_CS_CTRL_HW_MODE;
spi_pw_reg_write(dev, PW_SPI_REG_CS_CTRL, cs_ctrl);
}
static void spi_pw_cs_sw_ctrl(const struct device *dev, bool enable)
{
uint32_t cs_ctrl;
cs_ctrl = spi_pw_reg_read(dev, PW_SPI_REG_CS_CTRL);
cs_ctrl &= ~(PW_SPI_CS_CTRL_CS_MASK);
/* Enable chip select software control method */
cs_ctrl |= PW_SPI_CS_CTRL_SW_MODE;
if (enable) {
cs_ctrl &= PW_SPI_CS_LOW;
} else {
cs_ctrl |= PW_SPI_CS_HIGH;
}
spi_pw_reg_write(dev, PW_SPI_REG_CS_CTRL, cs_ctrl);
}
#ifdef CONFIG_SPI_PW_INTERRUPT
static void spi_pw_intr_enable(const struct device *dev, bool rx_mask)
{
uint32_t ctrlr1;
ctrlr1 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR1);
if (rx_mask) {
ctrlr1 |= PW_SPI_INTR_BITS;
} else {
ctrlr1 |= PW_SPI_INTR_BITS;
ctrlr1 &= ~(PW_SPI_INTR_MASK_RX);
}
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR1, ctrlr1);
}
static void spi_pw_intr_disable(const struct device *dev)
{
uint32_t ctrlr1;
ctrlr1 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR1);
ctrlr1 &= ~(PW_SPI_INTR_BITS);
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR1, ctrlr1);
}
#endif
static void spi_pw_ssp_enable(const struct device *dev)
{
uint32_t ctrlr0;
ctrlr0 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR0);
ctrlr0 |= PW_SPI_CTRLR0_SSE_BIT;
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR0, ctrlr0);
}
static void spi_pw_ssp_disable(const struct device *dev)
{
uint32_t ctrlr0;
ctrlr0 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR0);
ctrlr0 &= ~(PW_SPI_CTRLR0_SSE_BIT);
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR0, ctrlr0);
}
static bool is_pw_ssp_busy(const struct device *dev)
{
uint32_t status;
status = spi_pw_reg_read(dev, PW_SPI_REG_SSSR);
return (status & PW_SPI_SSSR_BSY_BIT) ? true : false;
}
static uint8_t spi_pw_get_frame_size(const struct spi_config *config)
{
uint8_t dfs = SPI_WORD_SIZE_GET(config->operation);
dfs /= PW_SPI_WIDTH_8BITS;
if ((dfs == 0) || (dfs > PW_SPI_FRAME_SIZE_4_BYTES)) {
LOG_WRN("Unsupported dfs, 1-byte size will be used");
dfs = PW_SPI_FRAME_SIZE_1_BYTE;
}
return dfs;
}
void spi_pw_cs_ctrl_enable(const struct device *dev, bool enable)
{
struct spi_pw_data *spi = dev->data;
if (enable == true) {
if (spi->cs_mode == CS_SW_MODE) {
spi_pw_cs_sw_ctrl(dev, true);
} else if (spi->cs_mode == CS_GPIO_MODE) {
spi_context_cs_control(&spi->ctx, true);
}
} else {
if (spi->cs_mode == CS_SW_MODE) {
spi_pw_cs_sw_ctrl(dev, false);
} else if (spi->cs_mode == CS_GPIO_MODE) {
spi_context_cs_control(&spi->ctx, false);
}
}
}
static void spi_pw_cs_ctrl_init(const struct device *dev)
{
uint32_t cs_ctrl;
struct spi_pw_data *spi = dev->data;
/* Enable chip select output CS0/CS1 */
cs_ctrl = spi_pw_reg_read(dev, PW_SPI_REG_CS_CTRL);
if (spi->cs_output == PW_SPI_CS1_OUTPUT_SELECT) {
cs_ctrl &= ~(PW_SPI_CS_CTRL_CS_MASK << PW_SPI_CS_EN_SHIFT);
/* Set chip select CS1 */
cs_ctrl |= PW_SPI_CS1_SELECT;
} else {
/* Set chip select CS0 */
cs_ctrl &= ~(PW_SPI_CS_CTRL_CS_MASK << PW_SPI_CS_EN_SHIFT);
}
spi_pw_reg_write(dev, PW_SPI_REG_CS_CTRL, cs_ctrl);
if (spi->cs_mode == CS_HW_MODE) {
spi_pw_enable_cs_hw_ctrl(dev);
} else if (spi->cs_mode == CS_SW_MODE) {
spi_pw_cs_sw_ctrl(dev, false);
} else if (spi->cs_mode == CS_GPIO_MODE) {
spi_pw_cs_sw_ctrl(dev, false);
}
}
static void spi_pw_tx_thld_set(const struct device *dev)
{
uint32_t reg_data;
/* Tx threshold */
reg_data = spi_pw_reg_read(dev, PW_SPI_REG_SITF);
/* mask high water mark bits in tx fifo reg */
reg_data &= ~(PW_SPI_WM_MASK);
/* mask low water mark bits in tx fifo reg */
reg_data &= ~(PW_SPI_WM_MASK << PW_SPI_SITF_LWMTF_SHIFT);
reg_data |= (PW_SPI_SITF_HIGH_WM_DFLT | PW_SPI_SITF_LOW_WM_DFLT);
spi_pw_reg_write(dev, PW_SPI_REG_SITF, reg_data);
}
static void spi_pw_rx_thld_set(const struct device *dev,
struct spi_pw_data *spi)
{
uint32_t reg_data;
/* Rx threshold */
reg_data = spi_pw_reg_read(dev, PW_SPI_REG_SIRF);
reg_data = (uint32_t) ~(PW_SPI_WM_MASK);
reg_data = PW_SPI_SIRF_WM_DFLT;
if (spi->ctx.rx_len && spi->ctx.rx_len < spi->fifo_depth) {
reg_data = spi->ctx.rx_len - 1;
}
spi_pw_reg_write(dev, PW_SPI_REG_SIRF, reg_data);
}
static int spi_pw_set_data_size(const struct device *dev,
const struct spi_config *config)
{
uint32_t ctrlr0;
ctrlr0 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR0);
/* Full duplex mode */
ctrlr0 &= ~(PW_SPI_CTRLR0_MOD_BIT);
ctrlr0 &= PW_SPI_CTRLR0_DATA_MASK;
ctrlr0 &= PW_SPI_CTRLR0_EDSS_MASK;
/* Set the word size */
if (SPI_WORD_SIZE_GET(config->operation) == 4) {
ctrlr0 |= PW_SPI_DATA_SIZE_4_BIT;
} else if (SPI_WORD_SIZE_GET(config->operation) == 8) {
ctrlr0 |= PW_SPI_DATA_SIZE_8_BIT;
} else if (SPI_WORD_SIZE_GET(config->operation) == 16) {
ctrlr0 |= PW_SPI_DATA_SIZE_16_BIT;
} else if (SPI_WORD_SIZE_GET(config->operation) == 32) {
ctrlr0 |= PW_SPI_DATA_SIZE_32_BIT;
} else {
LOG_ERR("Invalid word size");
return -ENOTSUP;
}
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR0, ctrlr0);
return 0;
}
static void spi_pw_config_phase_polarity(const struct device *dev,
const struct spi_config *config)
{
uint8_t mode;
uint32_t ctrlr1;
ctrlr1 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR1);
mode = (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) |
(SPI_MODE_GET(config->operation) & SPI_MODE_CPHA);
LOG_DBG("mode: 0x%x", (mode >> 1));
switch (mode >> 1) {
case SPI_PW_MODE0:
ctrlr1 &= ~(PW_SPI_CTRL1_SPO_SPH_MASK);
ctrlr1 &= ~(PW_SPI_CTRL1_SPO_BIT);
ctrlr1 &= ~(PW_SPI_CTRL1_SPH_BIT);
break;
case SPI_PW_MODE1:
ctrlr1 &= ~(PW_SPI_CTRL1_SPO_SPH_MASK);
ctrlr1 |= PW_SPI_CTRL1_SPO_BIT;
ctrlr1 &= ~(PW_SPI_CTRL1_SPH_BIT);
break;
case SPI_PW_MODE2:
ctrlr1 &= ~(PW_SPI_CTRL1_SPO_SPH_MASK);
ctrlr1 &= ~(PW_SPI_CTRL1_SPO_BIT);
ctrlr1 |= PW_SPI_CTRL1_SPH_BIT;
break;
case SPI_PW_MODE3:
ctrlr1 |= PW_SPI_CTRL1_SPO_BIT;
ctrlr1 |= PW_SPI_CTRL1_SPH_BIT;
break;
}
/* Set Polarity & Phase */
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR1, ctrlr1);
}
static void spi_pw_enable_clk(const struct device *dev)
{
uint32_t clks;
/*Update M:N value & enable clock */
clks = spi_pw_reg_read(dev, PW_SPI_REG_CLKS);
clks &= ~(PW_SPI_CLKS_MVAL_MASK);
clks &= ~(PW_SPI_CLKS_NVAL_MASK);
clks |= (PW_SPI_CLKS_MVAL | PW_SPI_CLKS_NVAL |
PW_SPI_CLKS_EN_BIT | PW_SPI_CLKS_UPDATE_BIT);
spi_pw_reg_write(dev, PW_SPI_REG_CLKS, clks);
}
static void spi_pw_config_clk(const struct device *dev,
const struct spi_pw_config *info,
const struct spi_config *config)
{
uint32_t ctrlr0, scr;
/* Update scr control bits */
if (!config->frequency) {
scr = PW_SPI_BR_2MHZ;
} else if (config->frequency > PW_SPI_BR_MAX_FRQ) {
scr = (info->clock_freq / PW_SPI_BR_MAX_FRQ) - 1;
} else {
scr = (info->clock_freq / config->frequency) - 1;
}
ctrlr0 = spi_pw_reg_read(dev, PW_SPI_REG_CTRLR0);
ctrlr0 &= ~(PW_SPI_SCR_MASK);
ctrlr0 |= (scr << PW_SPI_SCR_SHIFT);
spi_pw_reg_write(dev, PW_SPI_REG_CTRLR0, ctrlr0);
}
static void spi_pw_completed(const struct device *dev, int err)
{
struct spi_pw_data *spi = dev->data;
if (!err && (spi_context_tx_on(&spi->ctx) ||
spi_context_rx_on(&spi->ctx))) {
return;
}
/* need to give time for FIFOs to drain before issuing more commands */
while (is_pw_ssp_busy(dev)) {
}
#ifdef CONFIG_SPI_PW_INTERRUPT
/* Disabling interrupts */
spi_pw_intr_disable(dev);
#endif
/* Disabling the controller operation, which also clear's all status bits
* in status register
*/
spi_pw_ssp_disable(dev);
spi_pw_cs_ctrl_enable(dev, false);
LOG_DBG("SPI transaction completed %s error\n",
err ? "with" : "without");
spi_context_complete(&spi->ctx, dev, err);
}
static void spi_pw_clear_intr(const struct device *dev)
{
uint32_t sssr;
sssr = spi_pw_reg_read(dev, PW_SPI_REG_SSSR);
sssr &= ~(PW_SPI_INTR_ERRORS_MASK);
spi_pw_reg_write(dev, PW_SPI_REG_SSSR, sssr);
}
static int spi_pw_get_tx_fifo_level(const struct device *dev)
{
uint32_t tx_fifo_level;
tx_fifo_level = spi_pw_reg_read(dev, PW_SPI_REG_SITF);
tx_fifo_level = ((tx_fifo_level & PW_SPI_SITF_SITFL_MASK) >>
PW_SPI_SITF_SITFL_SHIFT);
return tx_fifo_level;
}
static int spi_pw_get_rx_fifo_level(const struct device *dev)
{
uint32_t rx_fifo_level;
rx_fifo_level = spi_pw_reg_read(dev, PW_SPI_REG_SIRF);
rx_fifo_level = ((rx_fifo_level & PW_SPI_SIRF_SIRFL_MASK) >>
PW_SPI_SIRF_SIRFL_SHIFT);
return rx_fifo_level;
}
static void spi_pw_reset_tx_fifo_level(const struct device *dev)
{
uint32_t tx_fifo_level;
tx_fifo_level = spi_pw_reg_read(dev, PW_SPI_REG_SITF);
tx_fifo_level &= ~(PW_SPI_SITF_SITFL_MASK);
spi_pw_reg_write(dev, PW_SPI_REG_SITF, tx_fifo_level);
}
static void spi_pw_update_rx_fifo_level(uint32_t len,
const struct device *dev)
{
uint32_t rx_fifo_level;
rx_fifo_level = spi_pw_reg_read(dev, PW_SPI_REG_SIRF);
rx_fifo_level &= ~(PW_SPI_SIRF_SIRFL_MASK);
rx_fifo_level |= (len << PW_SPI_SIRF_SIRFL_SHIFT);
spi_pw_reg_write(dev, PW_SPI_REG_SIRF, rx_fifo_level);
}
static void spi_pw_tx_data(const struct device *dev)
{
struct spi_pw_data *spi = dev->data;
uint32_t data = 0U;
int32_t fifo_len;
if (spi_context_rx_on(&spi->ctx)) {
fifo_len = spi->fifo_depth -
spi_pw_get_tx_fifo_level(dev) -
spi_pw_get_rx_fifo_level(dev);
if (fifo_len < 0) {
fifo_len = 0U;
}
} else {
fifo_len = spi->fifo_depth - spi_pw_get_tx_fifo_level(dev);
}
while (fifo_len > 0) {
if (spi_context_tx_buf_on(&spi->ctx)) {
switch (spi->dfs) {
case 1:
data = UNALIGNED_GET((uint8_t *)
(spi->ctx.tx_buf));
break;
case 2:
data = UNALIGNED_GET((uint16_t *)
(spi->ctx.tx_buf));
break;
case 4:
data = UNALIGNED_GET((uint32_t *)
(spi->ctx.tx_buf));
break;
}
} else if (spi_context_rx_on(&spi->ctx)) {
if ((int)(spi->ctx.rx_len - spi->fifo_diff) <= 0) {
break;
}
data = 0U;
} else if (spi_context_tx_on(&spi->ctx)) {
data = 0U;
} else {
break;
}
spi_pw_reg_write(dev, PW_SPI_REG_SSDR, data);
spi_context_update_tx(&spi->ctx, spi->dfs, 1);
spi->fifo_diff++;
fifo_len--;
}
if (!spi_context_tx_on(&spi->ctx)) {
spi_pw_reset_tx_fifo_level(dev);
}
}
static void spi_pw_rx_data(const struct device *dev)
{
struct spi_pw_data *spi = dev->data;
while (spi_pw_get_rx_fifo_level(dev)) {
uint32_t data = spi_pw_reg_read(dev, PW_SPI_REG_SSDR);
if (spi_context_rx_buf_on(&spi->ctx)) {
switch (spi->dfs) {
case 1:
UNALIGNED_PUT(data,
(uint8_t *)spi->ctx.rx_buf);
break;
case 2:
UNALIGNED_PUT(data,
(uint16_t *)spi->ctx.rx_buf);
break;
case 4:
UNALIGNED_PUT(data,
(uint32_t *)spi->ctx.rx_buf);
break;
}
}
spi_context_update_rx(&spi->ctx, spi->dfs, 1);
spi->fifo_diff--;
}
if (!spi->ctx.rx_len && spi->ctx.tx_len < spi->fifo_depth) {
spi_pw_update_rx_fifo_level(spi->ctx.tx_len - 1, dev);
} else if (spi_pw_get_rx_fifo_level(dev) >= spi->ctx.rx_len) {
spi_pw_update_rx_fifo_level(spi->ctx.rx_len - 1, dev);
}
}
static int spi_pw_transfer(const struct device *dev)
{
uint32_t intr_status;
int err;
intr_status = spi_pw_reg_read(dev, PW_SPI_REG_SSSR);
if (intr_status & PW_SPI_SSSR_ROR_BIT) {
LOG_ERR("Receive FIFO overrun");
err = -EIO;
goto out;
}
if (intr_status & PW_SPI_SSSR_TUR_BIT) {
LOG_ERR("Transmit FIFO underrun");
err = -EIO;
goto out;
}
if (intr_status & PW_SPI_SSSR_TINT_BIT) {
LOG_ERR("Receiver timeout interrupt");
err = -EIO;
goto out;
}
err = 0;
if (intr_status & PW_SPI_SSSR_RNE_BIT) {
spi_pw_rx_data(dev);
}
if (intr_status & PW_SPI_SSSR_TNF_BIT) {
spi_pw_tx_data(dev);
}
out:
if (err) {
spi_pw_clear_intr(dev);
}
return err;
}
static int spi_pw_configure(const struct device *dev,
const struct spi_pw_config *info,
struct spi_pw_data *spi,
const struct spi_config *config)
{
int err;
/* At this point, it's mandatory to set this on the context! */
spi->ctx.config = config;
if (!spi_cs_is_gpio(spi->ctx.config)) {
if (spi->cs_mode == CS_GPIO_MODE) {
LOG_DBG("cs gpio is NULL, switch to hw mode");
spi->cs_mode = CS_HW_MODE;
spi_pw_enable_cs_hw_ctrl(dev);
}
}
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
/* Verify if requested op mode is relevant to this controller */
if (config->operation & SPI_OP_MODE_SLAVE) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
if ((config->operation & SPI_TRANSFER_LSB) ||
(IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(config->operation & (SPI_LINES_DUAL |
SPI_LINES_QUAD |
SPI_LINES_OCTAL)))) {
LOG_ERR("Extended mode Unsupported configuration");
return -EINVAL;
}
if (config->operation & SPI_FRAME_FORMAT_TI) {
LOG_ERR("TI frame format not supported");
return -ENOTSUP;
}
if (config->operation & SPI_HOLD_ON_CS) {
LOG_ERR("Chip select hold not supported");
return -ENOTSUP;
}
/* Set mode & data size */
err = spi_pw_set_data_size(dev, config);
if (err) {
LOG_ERR("Invalid data size");
return -ENOTSUP;
}
/* Set Polarity & Phase */
spi_pw_config_phase_polarity(dev, config);
/* enable clock */
spi_pw_enable_clk(dev);
/* configure */
spi_pw_config_clk(dev, info, config);
return 0;
}
static int transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_pw_config *info = dev->config;
struct spi_pw_data *spi = dev->data;
int err;
if (!tx_bufs && !rx_bufs) {
LOG_ERR(" Tx & Rx buff null");
return 0;
}
if (asynchronous) {
LOG_ERR("Async not supported");
return -ENOTSUP;
}
spi_context_lock(&spi->ctx, asynchronous, cb, userdata, config);
/* Configure */
err = spi_pw_configure(dev, info, spi, config);
if (err) {
LOG_ERR("spi pw config fail");
goto out;
}
/* Frame size in number of data bytes */
spi->dfs = spi_pw_get_frame_size(config);
spi_context_buffers_setup(&spi->ctx, tx_bufs, rx_bufs,
spi->dfs);
spi->fifo_diff = 0U;
/* Tx threshold */
spi_pw_tx_thld_set(dev);
/* Rx threshold */
spi_pw_rx_thld_set(dev, spi);
spi_pw_cs_ctrl_enable(dev, true);
/* Enable ssp operation */
spi_pw_ssp_enable(dev);
#ifdef CONFIG_SPI_PW_INTERRUPT
LOG_DBG("Interrupt Mode");
/* Enable interrupts */
if (rx_bufs) {
spi_pw_intr_enable(dev, true);
} else {
spi_pw_intr_enable(dev, false);
}
err = spi_context_wait_for_completion(&spi->ctx);
#else
LOG_DBG("Polling Mode");
do {
err = spi_pw_transfer(dev);
} while ((!err) && is_spi_transfer_ongoing(spi));
spi_pw_completed(dev, err);
#endif
out:
spi_context_release(&spi->ctx, err);
return err;
}
static int spi_pw_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
LOG_DBG("%p, %p, %p\n", dev, tx_bufs, rx_bufs);
return transceive(dev, config, tx_bufs, rx_bufs,
false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_pw_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
LOG_DBG("%p, %p, %p, %p, %p\n", dev, tx_bufs, rx_bufs,
cb, userdata);
return transceive(dev, config, tx_bufs, rx_bufs, true,
cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_pw_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_pw_data *spi = dev->data;
if (!spi_context_configured(&spi->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
#ifdef CONFIG_SPI_PW_INTERRUPT
static void spi_pw_isr(const void *arg)
{
const struct device *dev = (const struct device *)arg;
int err;
err = spi_pw_transfer(dev);
spi_pw_completed(dev, err);
}
#endif
static const struct spi_driver_api pw_spi_api = {
.transceive = spi_pw_transceive,
.release = spi_pw_release,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_pw_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
};
static int spi_pw_init(const struct device *dev)
{
const struct spi_pw_config *info = dev->config;
struct spi_pw_data *spi = dev->data;
int err;
#if DT_ANY_INST_ON_BUS_STATUS_OKAY(pcie)
if (info->pcie) {
struct pcie_bar mbar;
if (info->pcie->bdf == PCIE_BDF_NONE) {
LOG_ERR("Cannot probe PCI device");
return -ENODEV;
}
if (!pcie_probe_mbar(info->pcie->bdf, 0, &mbar)) {
LOG_ERR("MBAR not found");
return -EINVAL;
}
pcie_set_cmd(info->pcie->bdf, PCIE_CONF_CMDSTAT_MEM,
true);
device_map(DEVICE_MMIO_RAM_PTR(dev), mbar.phys_addr,
mbar.size, K_MEM_CACHE_NONE);
pcie_set_cmd(info->pcie->bdf,
PCIE_CONF_CMDSTAT_MASTER,
true);
} else {
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
}
#else
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
#endif
/* Bring ssp out of reset */
spi_pw_ssp_reset(dev);
/* Disable ssp operation */
spi_pw_ssp_disable(dev);
/* Chip select control */
spi_pw_cs_ctrl_init(dev);
#if defined(CONFIG_SPI_PW_INTERRUPT)
/* Mask interrupts */
spi_pw_intr_disable(dev);
/* Init and connect IRQ */
info->irq_config(dev);
#endif
if (spi->cs_mode == CS_GPIO_MODE) {
err = spi_context_cs_configure_all(&spi->ctx);
if (err < 0) {
LOG_ERR("Failed to configure CS pins: %d", err);
return err;
}
}
spi_context_unlock_unconditionally(&spi->ctx);
LOG_DBG("SPI pw init success");
return 0;
}
#define INIT_PCIE0(n)
#define INIT_PCIE1(n) DEVICE_PCIE_INST_INIT(n, pcie),
#define INIT_PCIE(n) _CONCAT(INIT_PCIE, DT_INST_ON_BUS(n, pcie))(n)
#define DEFINE_PCIE0(n)
#define DEFINE_PCIE1(n) DEVICE_PCIE_INST_DECLARE(n)
#define SPI_PCIE_DEFINE(n) _CONCAT(DEFINE_PCIE, DT_INST_ON_BUS(n, pcie))(n)
#ifdef CONFIG_SPI_PW_INTERRUPT
#define SPI_INTEL_IRQ_FLAGS_SENSE0(n) 0
#define SPI_INTEL_IRQ_FLAGS_SENSE1(n) DT_INST_IRQ(n, sense)
#define SPI_INTEL_IRQ_FLAGS(n) \
_CONCAT(SPI_INTEL_IRQ_FLAGS_SENSE, DT_INST_IRQ_HAS_CELL(n, sense))(n)
#define SPI_INTEL_IRQ_INIT(n) \
BUILD_ASSERT(IS_ENABLED(CONFIG_DYNAMIC_INTERRUPTS), \
"SPI PCIe requires dynamic interrupts"); \
static void spi_##n##_irq_init(const struct device *dev) \
{ \
const struct spi_pw_config *info = dev->config; \
unsigned int irq; \
if (DT_INST_IRQN(n) == PCIE_IRQ_DETECT) { \
irq = pcie_alloc_irq(info->pcie->bdf); \
if (irq == PCIE_CONF_INTR_IRQ_NONE) { \
return; \
} \
} else { \
irq = DT_INST_IRQN(n); \
pcie_conf_write(info->pcie->bdf, \
PCIE_CONF_INTR, irq); \
} \
pcie_connect_dynamic_irq(info->pcie->bdf, irq, \
DT_INST_IRQ(n, priority), \
(void (*)(const void *))spi_pw_isr, \
DEVICE_DT_INST_GET(n), \
SPI_INTEL_IRQ_FLAGS(n)); \
pcie_irq_enable(info->pcie->bdf, irq); \
LOG_DBG("lpass spi Configure irq %d", irq); \
}
#define SPI_PW_DEV_INIT(n) \
static struct spi_pw_data spi_##n##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##n##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##n##_data, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
.cs_mode = DT_INST_PROP(n, pw_cs_mode), \
.cs_output = DT_INST_PROP(n, pw_cs_output), \
.fifo_depth = DT_INST_PROP(n, pw_fifo_depth), \
}; \
SPI_PCIE_DEFINE(n); \
SPI_INTEL_IRQ_INIT(n) \
static const struct spi_pw_config spi_##n##_config = { \
.irq_config = spi_##n##_irq_init, \
.clock_freq = DT_INST_PROP(n, clock_frequency), \
INIT_PCIE(n) \
}; \
DEVICE_DT_INST_DEFINE(n, spi_pw_init, NULL, \
&spi_##n##_data, &spi_##n##_config, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&pw_spi_api);
#else
#define SPI_PW_DEV_INIT(n) \
static struct spi_pw_data spi_##n##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##n##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##n##_data, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
.cs_mode = DT_INST_PROP(n, pw_cs_mode), \
.cs_output = DT_INST_PROP(n, pw_cs_output), \
.fifo_depth = DT_INST_PROP(n, pw_fifo_depth), \
}; \
SPI_PCIE_DEFINE(n); \
static const struct spi_pw_config spi_##n##_config = { \
.clock_freq = DT_INST_PROP(n, clock_frequency), \
INIT_PCIE(n) \
}; \
DEVICE_DT_INST_DEFINE(n, spi_pw_init, NULL, \
&spi_##n##_data, &spi_##n##_config, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&pw_spi_api);
#endif
DT_INST_FOREACH_STATUS_OKAY(SPI_PW_DEV_INIT)