blob: fe375edca73acc1cc6478a6ce6e9346e69f59b17 [file] [log] [blame]
/**
* @file
*
* @brief Public APIs for the DMA drivers.
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_DRIVERS_DMA_H_
#define ZEPHYR_INCLUDE_DRIVERS_DMA_H_
#include <kernel.h>
#include <device.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief DMA Interface
* @defgroup dma_interface DMA Interface
* @ingroup io_interfaces
* @{
*/
enum dma_channel_direction {
MEMORY_TO_MEMORY = 0x0,
MEMORY_TO_PERIPHERAL,
PERIPHERAL_TO_MEMORY,
PERIPHERAL_TO_PERIPHERAL,
HOST_TO_MEMORY,
MEMORY_TO_HOST,
/**
* Number of all common channel directions.
*/
DMA_CHANNEL_DIRECTION_COMMON_COUNT,
/**
* This and higher values are dma controller or soc specific.
* Refer to the specified dma driver header file.
*/
DMA_CHANNEL_DIRECTION_PRIV_START = DMA_CHANNEL_DIRECTION_COMMON_COUNT,
/**
* Maximum allowed value (3 bit field!)
*/
DMA_CHANNEL_DIRECTION_MAX = 0x7
};
/** Valid values for @a source_addr_adj and @a dest_addr_adj */
enum dma_addr_adj {
DMA_ADDR_ADJ_INCREMENT,
DMA_ADDR_ADJ_DECREMENT,
DMA_ADDR_ADJ_NO_CHANGE,
};
/* channel attributes */
enum dma_channel_filter {
DMA_CHANNEL_NORMAL, /* normal DMA channel */
DMA_CHANNEL_PERIODIC, /* can be triggered by periodic sources */
};
/**
* @struct dma_block_config
* @brief DMA block configuration structure.
*
* @param source_address is block starting address at source
* @param source_gather_interval is the address adjustment at gather boundary
* @param dest_address is block starting address at destination
* @param dest_scatter_interval is the address adjustment at scatter boundary
* @param dest_scatter_count is the continuous transfer count between scatter
* boundaries
* @param source_gather_count is the continuous transfer count between gather
* boundaries
*
* @param block_size is the number of bytes to be transferred for this block.
*
* @param config is a bit field with the following parts:
*
* source_gather_en [ 0 ] - 0-disable, 1-enable.
* dest_scatter_en [ 1 ] - 0-disable, 1-enable.
* source_addr_adj [ 2 : 3 ] - 00-increment, 01-decrement,
* 10-no change.
* dest_addr_adj [ 4 : 5 ] - 00-increment, 01-decrement,
* 10-no change.
* source_reload_en [ 6 ] - reload source address at the end of
* block transfer
* 0-disable, 1-enable.
* dest_reload_en [ 7 ] - reload destination address at the end
* of block transfer
* 0-disable, 1-enable.
* fifo_mode_control [ 8 : 11 ] - How full of the fifo before transfer
* start. HW specific.
* flow_control_mode [ 12 ] - 0-source request served upon data
* availability.
* 1-source request postponed until
* destination request happens.
* reserved [ 13 : 15 ]
*/
struct dma_block_config {
#ifdef CONFIG_DMA_64BIT
uint64_t source_address;
uint64_t dest_address;
#else
uint32_t source_address;
uint32_t dest_address;
#endif
uint32_t source_gather_interval;
uint32_t dest_scatter_interval;
uint16_t dest_scatter_count;
uint16_t source_gather_count;
uint32_t block_size;
struct dma_block_config *next_block;
uint16_t source_gather_en : 1;
uint16_t dest_scatter_en : 1;
uint16_t source_addr_adj : 2;
uint16_t dest_addr_adj : 2;
uint16_t source_reload_en : 1;
uint16_t dest_reload_en : 1;
uint16_t fifo_mode_control : 4;
uint16_t flow_control_mode : 1;
uint16_t reserved : 3;
};
/**
* @typedef dma_callback_t
* @brief Callback function for DMA transfer completion
*
* If enabled, callback function will be invoked at transfer completion
* or when error happens.
*
* @param dev Pointer to the DMA device calling the callback.
* @param user_data A pointer to some user data or NULL
* @param channel The channel number
* @param status 0 on success, a negative errno otherwise
*/
typedef void (*dma_callback_t)(const struct device *dev, void *user_data,
uint32_t channel, int status);
/**
* @struct dma_config
* @brief DMA configuration structure.
*
* @param dma_slot [ 0 : 6 ] - which peripheral and direction
* (HW specific)
* @param channel_direction [ 7 : 9 ] - 000-memory to memory,
* 001-memory to peripheral,
* 010-peripheral to memory,
* 011-peripheral to peripheral,
* 100-host to memory
* 101-memory to host
* ...
* @param complete_callback_en [ 10 ] - 0-callback invoked at completion only
* 1-callback invoked at completion of
* each block
* @param error_callback_en [ 11 ] - 0-error callback enabled
* 1-error callback disabled
* @param source_handshake [ 12 ] - 0-HW, 1-SW
* @param dest_handshake [ 13 ] - 0-HW, 1-SW
* @param channel_priority [ 14 : 17 ] - DMA channel priority
* @param source_chaining_en [ 18 ] - enable/disable source block chaining
* 0-disable, 1-enable
* @param dest_chaining_en [ 19 ] - enable/disable destination block
* chaining.
* 0-disable, 1-enable
* @param linked_channel [ 20 : 26 ] - after channel count exhaust will
* initiate a channel service request
* at this channel
* @param cyclic [ 27 ] - enable/disable cyclic buffer
* 0-disable, 1-enable
* @param reserved [ 28 : 31 ]
* @param source_data_size [ 0 : 15 ] - width of source data (in bytes)
* @param dest_data_size [ 16 : 31 ] - width of dest data (in bytes)
* @param source_burst_length [ 0 : 15 ] - number of source data units
* @param dest_burst_length [ 16 : 31 ] - number of destination data units
* @param block_count is the number of blocks used for block chaining, this
* depends on availability of the DMA controller.
* @param user_data private data from DMA client.
* @param dma_callback see dma_callback_t for details
*/
struct dma_config {
uint32_t dma_slot : 7;
uint32_t channel_direction : 3;
uint32_t complete_callback_en : 1;
uint32_t error_callback_en : 1;
uint32_t source_handshake : 1;
uint32_t dest_handshake : 1;
uint32_t channel_priority : 4;
uint32_t source_chaining_en : 1;
uint32_t dest_chaining_en : 1;
uint32_t linked_channel : 7;
uint32_t cyclic : 1;
uint32_t reserved : 4;
uint32_t source_data_size : 16;
uint32_t dest_data_size : 16;
uint32_t source_burst_length : 16;
uint32_t dest_burst_length : 16;
uint32_t block_count;
struct dma_block_config *head_block;
void *user_data;
dma_callback_t dma_callback;
};
/**
* DMA runtime status structure
*
* busy - is current DMA transfer busy or idle
* dir - DMA transfer direction
* pending_length - data length pending to be transferred in bytes
* or platform dependent.
* free - free buffer space
* write_position - write position in a circular dma buffer
* read_position - read position in a circular dma buffer
*
*/
struct dma_status {
bool busy;
enum dma_channel_direction dir;
uint32_t pending_length;
uint32_t free;
uint32_t write_position;
uint32_t read_position;
};
/**
* DMA context structure
* Note: the dma_context shall be the first member
* of DMA client driver Data, got by dev->data
*
* magic - magic code to identify the context
* dma_channels - dma channels
* atomic - driver atomic_t pointer
*
*/
struct dma_context {
int32_t magic;
int dma_channels;
atomic_t *atomic;
};
/* magic code to identify context content */
#define DMA_MAGIC 0x47494749
/**
* @cond INTERNAL_HIDDEN
*
* These are for internal use only, so skip these in
* public documentation.
*/
typedef int (*dma_api_config)(const struct device *dev, uint32_t channel,
struct dma_config *config);
#ifdef CONFIG_DMA_64BIT
typedef int (*dma_api_reload)(const struct device *dev, uint32_t channel,
uint64_t src, uint64_t dst, size_t size);
#else
typedef int (*dma_api_reload)(const struct device *dev, uint32_t channel,
uint32_t src, uint32_t dst, size_t size);
#endif
typedef int (*dma_api_start)(const struct device *dev, uint32_t channel);
typedef int (*dma_api_stop)(const struct device *dev, uint32_t channel);
typedef int (*dma_api_suspend)(const struct device *dev, uint32_t channel);
typedef int (*dma_api_resume)(const struct device *dev, uint32_t channel);
typedef int (*dma_api_get_status)(const struct device *dev, uint32_t channel,
struct dma_status *status);
/**
* @typedef dma_chan_filter
* @brief channel filter function call
*
* filter function that is used to find the matched internal dma channel
* provide by caller
*
* @param dev Pointer to the DMA device instance
* @param channel the channel id to use
* @param filter_param filter function parameter, can be NULL
*
* @retval True on filter matched otherwise return False.
*/
typedef bool (*dma_api_chan_filter)(const struct device *dev,
int channel, void *filter_param);
__subsystem struct dma_driver_api {
dma_api_config config;
dma_api_reload reload;
dma_api_start start;
dma_api_stop stop;
dma_api_suspend suspend;
dma_api_resume resume;
dma_api_get_status get_status;
dma_api_chan_filter chan_filter;
};
/**
* @endcond
*/
/**
* @brief Configure individual channel for DMA transfer.
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel to configure
* @param config Data structure containing the intended configuration for the
* selected channel
*
* @retval 0 if successful.
* @retval Negative errno code if failure.
*/
static inline int dma_config(const struct device *dev, uint32_t channel,
struct dma_config *config)
{
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
return api->config(dev, channel, config);
}
/**
* @brief Reload buffer(s) for a DMA channel
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel to configure
* selected channel
* @param src source address for the DMA transfer
* @param dst destination address for the DMA transfer
* @param size size of DMA transfer
*
* @retval 0 if successful.
* @retval Negative errno code if failure.
*/
#ifdef CONFIG_DMA_64BIT
static inline int dma_reload(const struct device *dev, uint32_t channel,
uint64_t src, uint64_t dst, size_t size)
#else
static inline int dma_reload(const struct device *dev, uint32_t channel,
uint32_t src, uint32_t dst, size_t size)
#endif
{
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
if (api->reload) {
return api->reload(dev, channel, src, dst, size);
}
return -ENOSYS;
}
/**
* @brief Enables DMA channel and starts the transfer, the channel must be
* configured beforehand.
*
* Implementations must check the validity of the channel ID passed in and
* return -EINVAL if it is invalid.
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel where the transfer will
* be processed
*
* @retval 0 if successful.
* @retval Negative errno code if failure.
*/
__syscall int dma_start(const struct device *dev, uint32_t channel);
static inline int z_impl_dma_start(const struct device *dev, uint32_t channel)
{
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
return api->start(dev, channel);
}
/**
* @brief Stops the DMA transfer and disables the channel.
*
* Implementations must check the validity of the channel ID passed in and
* return -EINVAL if it is invalid.
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel where the transfer was
* being processed
*
* @retval 0 if successful.
* @retval Negative errno code if failure.
*/
__syscall int dma_stop(const struct device *dev, uint32_t channel);
static inline int z_impl_dma_stop(const struct device *dev, uint32_t channel)
{
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
return api->stop(dev, channel);
}
/**
* @brief Suspend a DMA channel transfer
*
* Implementations must check the validity of the channel state and ID passed
* in and return -EINVAL if either are invalid.
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel to suspend
*
* @retval 0 If successful.
* @retval -ENOSYS If not implemented.
* @retval -EINVAL If invalid channel id or state.
* @retval -errno Other negative errno code failure.
*/
__syscall int dma_suspend(const struct device *dev, uint32_t channel);
static inline int z_impl_dma_suspend(const struct device *dev, uint32_t channel)
{
const struct dma_driver_api *api = (const struct dma_driver_api *)dev->api;
if (api->suspend == NULL) {
return -ENOSYS;
}
return api->suspend(dev, channel);
}
/**
* @brief Resume a DMA channel transfer
*
* Implementations must check the validity of the channel state and ID passed
* in and return -EINVAL if either are invalid.
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel to resume
*
* @retval 0 If successful.
* @retval -ENOSYS If not implemented
* @retval -EINVAL If invalid channel id or state.
* @retval -errno Other negative errno code failure.
*/
__syscall int dma_resume(const struct device *dev, uint32_t channel);
static inline int z_impl_dma_resume(const struct device *dev, uint32_t channel)
{
const struct dma_driver_api *api = (const struct dma_driver_api *)dev->api;
if (api->resume == NULL) {
return -ENOSYS;
}
return api->resume(dev, channel);
}
/**
* @brief request DMA channel.
*
* request DMA channel resources
* return -EINVAL if there is no valid channel available.
*
* @param dev Pointer to the device structure for the driver instance.
* @param filter_param filter function parameter
*
* @retval dma channel if successful.
* @retval Negative errno code if failure.
*/
__syscall int dma_request_channel(const struct device *dev,
void *filter_param);
static inline int z_impl_dma_request_channel(const struct device *dev,
void *filter_param)
{
int i = 0;
int channel = -EINVAL;
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
/* dma_context shall be the first one in dev data */
struct dma_context *dma_ctx = dev->data;
if (dma_ctx->magic != DMA_MAGIC) {
return channel;
}
for (i = 0; i < dma_ctx->dma_channels; i++) {
if (!atomic_test_and_set_bit(dma_ctx->atomic, i)) {
channel = i;
if (api->chan_filter &&
!api->chan_filter(dev, channel, filter_param)) {
atomic_clear_bit(dma_ctx->atomic, channel);
continue;
}
break;
}
}
return channel;
}
/**
* @brief release DMA channel.
*
* release DMA channel resources
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel channel number
*
*/
__syscall void dma_release_channel(const struct device *dev,
uint32_t channel);
static inline void z_impl_dma_release_channel(const struct device *dev,
uint32_t channel)
{
struct dma_context *dma_ctx = dev->data;
if (dma_ctx->magic != DMA_MAGIC) {
return;
}
if (channel < dma_ctx->dma_channels) {
atomic_clear_bit(dma_ctx->atomic, channel);
}
}
/**
* @brief DMA channel filter.
*
* filter channel by attribute
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel channel number
* @param filter_param filter attribute
*
* @retval Negative errno code if not support
*
*/
__syscall int dma_chan_filter(const struct device *dev,
int channel, void *filter_param);
static inline int z_impl_dma_chan_filter(const struct device *dev,
int channel, void *filter_param)
{
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
if (api->chan_filter) {
return api->chan_filter(dev, channel, filter_param);
}
return -ENOSYS;
}
/**
* @brief get current runtime status of DMA transfer
*
* Implementations must check the validity of the channel ID passed in and
* return -EINVAL if it is invalid or -ENOSYS if not supported.
*
* @param dev Pointer to the device structure for the driver instance.
* @param channel Numeric identification of the channel where the transfer was
* being processed
* @param stat a non-NULL dma_status object for storing DMA status
*
* @retval non-negative if successful.
* @retval Negative errno code if failure.
*/
static inline int dma_get_status(const struct device *dev, uint32_t channel,
struct dma_status *stat)
{
const struct dma_driver_api *api =
(const struct dma_driver_api *)dev->api;
if (api->get_status) {
return api->get_status(dev, channel, stat);
}
return -ENOSYS;
}
/**
* @brief Look-up generic width index to be used in registers
*
* WARNING: This look-up works for most controllers, but *may* not work for
* yours. Ensure your controller expects the most common register
* bit values before using this convenience function. If your
* controller does not support these values, you will have to write
* your own look-up inside the controller driver.
*
* @param size: width of bus (in bytes)
*
* @retval common DMA index to be placed into registers.
*/
static inline uint32_t dma_width_index(uint32_t size)
{
/* Check boundaries (max supported width is 32 Bytes) */
if (size < 1 || size > 32) {
return 0; /* Zero is the default (8 Bytes) */
}
/* Ensure size is a power of 2 */
if (!is_power_of_two(size)) {
return 0; /* Zero is the default (8 Bytes) */
}
/* Convert to bit pattern for writing to a register */
return find_msb_set(size);
}
/**
* @brief Look-up generic burst index to be used in registers
*
* WARNING: This look-up works for most controllers, but *may* not work for
* yours. Ensure your controller expects the most common register
* bit values before using this convenience function. If your
* controller does not support these values, you will have to write
* your own look-up inside the controller driver.
*
* @param burst: number of bytes to be sent in a single burst
*
* @retval common DMA index to be placed into registers.
*/
static inline uint32_t dma_burst_index(uint32_t burst)
{
/* Check boundaries (max supported burst length is 256) */
if (burst < 1 || burst > 256) {
return 0; /* Zero is the default (1 burst length) */
}
/* Ensure burst is a power of 2 */
if (!(burst & (burst - 1))) {
return 0; /* Zero is the default (1 burst length) */
}
/* Convert to bit pattern for writing to a register */
return find_msb_set(burst);
}
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#include <syscalls/dma.h>
#endif /* ZEPHYR_INCLUDE_DRIVERS_DMA_H_ */